-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathm4.1.py
50 lines (40 loc) · 1.37 KB
/
m4.1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#!/usr/bin/env python
import mxnet as mx
import logging
import sys
from reader import load_mnist
MODEL_DIR = "/models"
model_prefix = "ece408"
dataset_size = float("inf")
if len(sys.argv) > 1:
dataset_size = int(sys.argv[1])
if len(sys.argv) > 2:
print "Usage:", sys.argv[0], "<dataset size>"
print " <dataset_size> = [0 - 10000]"
sys.exit(-1)
# Log to stdout for MXNet
logging.getLogger().setLevel(logging.DEBUG) # logging to stdout
print "Loading fashion-mnist data...",
test_images, test_labels = load_mnist(
path="/fashion-mnist", rows=72, cols=72, kind="t10k-72")
print "done"
# Reduce the size of the dataset, if desired
dataset_size = max(0, min(dataset_size, 10000))
test_images = test_images[:dataset_size]
test_labels = test_labels[:dataset_size]
# Cap batch size at the size of our training data
batch_size = len(test_images)
# Get iterators that cover the dataset
test_iter = mx.io.NDArrayIter(
test_images, test_labels, batch_size)
# Evaluate the network
print "Loading model...",
lenet_model = mx.mod.Module.load(
prefix=MODEL_DIR + "/" + model_prefix, epoch=2, context=mx.gpu())
lenet_model.bind(data_shapes=test_iter.provide_data,
label_shapes=test_iter.provide_label)
print "done"
print "New Inference"
acc = mx.metric.Accuracy()
lenet_model.score(test_iter, acc)
print "Correctness:", acc.get()[1], "Model:", model_prefix