-
Notifications
You must be signed in to change notification settings - Fork 1
/
AC-3.py
510 lines (447 loc) · 18.4 KB
/
AC-3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import sys
from Queue import Queue
from time import time
# Running script: given code can be run with the command:
# python file.py, ./path/to/init_state.txt ./output/output.txt
FAILURE = -1
knownValues = {}
fileIn = None
printFlag = True
# Class containing csp model i.e. variables, domains, edges btw variables, backupForReassignment
class Csp(object):
def __init__(self, puzzle):
self.varList = list()
self.domain = dict()
self.neighbours = dict()
self.restore = dict()
self.initialise(self.transformTo1D(puzzle), puzzle)
def transformTo1D(self, puzzle):
output = []
for i in puzzle:
for j in i:
output.append(j)
return output
# puzzle1 is 1D puzzle, puzzle2 is 2D puzzle
def initialise(self, puzzle1, puzzle2):
# Init var to PAIR of coordinates from puzzle, varList[index]=var
for i in range(9):
for j in range(9):
self.varList.append((i, j))
# Init domains for each var, var:list()
idx = 0
for v in self.varList:
self.domain[v] = set()
if puzzle1[idx] == 0:
for j in range(1, 10):
self.domain[v].add(j)
else:
self.domain[v].add(puzzle1[idx])
idx += 1
# self.domain = {v: set([range(1, 10)]) if puzzle1[i] == 0 else set([puzzle1[i]]) for \
# i, v in enumerate(self.varList)}
# KnownValues
for i in range(len(puzzle2)):
for j in range(len(puzzle2)):
if puzzle2[i][j] != 0:
knownValues[(i, j)] = puzzle2[i][j]
# form neighbour dict for each var
for var in self.varList:
self.neighbours[var] = set()
for i in range(len(puzzle2)):
# Check same row
if (var[0], i) != var:
self.neighbours[var].add((var[0], i))
# Check same col
if (i, var[1]) != var:
self.neighbours[var].add((i, var[1]))
# Check same box
boxRow = (var[0] // 3) * 3
boxCol = (var[1] // 3) * 3
for i in range(boxRow, boxRow + 3):
for j in range(boxCol, boxCol + 3):
if (i, j) != var and (i, j) not in self.neighbours[var]:
self.neighbours[var].add((i, j))
# Init restore for each var, var:list()
# self.restore = {v: set() for v in self.varList}
# fix for sunfire:
for v in self.varList:
self.restore[v] = set()
def isSolved(self):
for var in self.varList:
if len(self.domain[var]) > 1:
return False
return True
# DEPRECATED
def isConsistent(self, assignment, var, value):
for xI, x in assignment.iteritems():
if x == value and xI in self.neighbours[var]:
return False
return True
# DEPRECATED
def assign(self, var, value, assignment):
assignment[var] = value
# do forward checking
for nCell in self.neighbours[var]:
if nCell not in assignment and value in self.domain[nCell]:
self.domain[nCell].remove(value)
self.restore[var].add((nCell, value))
# DEPRECATED
def unassign(self, var, assignment):
if var in assignment:
for (cell, value) in self.restore[var]:
self.domain[cell].append(value)
self.restore[var] = set()
del assignment[var]
# Class containing Sudoku solving methods: AC3 and Backtrack
class Sudoku(object):
def __init__(self, puzzle):
# you may add more attributes if you need
self.puzzle = puzzle # self.puzzle is a list of lists
self.ans = self.copy(puzzle) # self.ans is a list of lists
self.csp = Csp(puzzle)
self.constraints = self.getConstraints(self.csp)
self.steps = 0
self.timeTaken = 0
self.hiddenSingleFlag = True # Flag for finding HiddenSingles, set to True initially
def copy(self, puzzle):
new_puzzle = [[x for x in row] for row in puzzle]
return new_puzzle
def runAC3(self, csp, var=None, assignment=None):
if var is None or assignment is None:
qu = self.getConstraints(csp)
else:
qu = Queue()
for nCell in self.csp.neighbours[var]:
if nCell not in assignment:
qu.put((nCell, var))
while True:
if qu.empty():
break
xI, xJ = qu.get()
if self.revise(csp, xI, xJ, var):
if len(csp.domain[xI]) == 0:
return False
# Don't need propagate xI if it doesnt contain 1 value only
if var is not None and len(csp.domain[xI]) != 1:
continue
for xK in csp.neighbours[xI]:
if assignment is not None:
if xK != xJ and xK not in assignment:
qu.put((xK, xI))
elif xK != xJ:
qu.put((xK, xI))
return True
def revise(self, csp, xI, xJ, var=None):
revised = False
cop = csp.domain[xI].copy()
for dI in csp.domain[xI]:
if dI in csp.domain[xJ] and len(csp.domain[xJ]) == 1:
cop.remove(dI)
if var is not None:
csp.restore[var].add((xI, dI))
revised = True
csp.domain[xI] = cop
return revised
def getConstraints(self, csp):
qu = Queue() # Contains a pair of pairs xD
for cell in csp.neighbours: # sorted(csp.neighbours, key=csp.neighbours.get):
for nCell in csp.neighbours[cell]:
qu.put((cell, nCell))
return qu
def isConsistent(self, var, value):
for nCell in self.csp.neighbours[var]:
if value in self.csp.domain[nCell] and len(self.csp.domain[nCell]) == 1:
return False
return True
def assign(self, assignment, var, value):
assignment[var] = value
cop = self.csp.domain[var].copy()
for val in self.csp.domain[var]:
if val != value:
cop.remove(val)
self.csp.restore[var].add((var, val))
for nCell in self.csp.neighbours[var]:
self.csp.neighbours[nCell].remove(var)
self.csp.domain[var] = cop
def unassign(self, var, assignment):
if var in assignment:
for (cell, value) in self.csp.restore[var]:
self.csp.domain[cell].add(value)
for nCell in self.csp.neighbours[var]:
self.csp.neighbours[nCell].add(var)
self.csp.restore[var] = set()
del assignment[var]
def forwardCheck(self, assignment, var, value):
for nCell in self.csp.neighbours[var]:
if nCell not in assignment and value in self.csp.domain[nCell]:
self.csp.domain[nCell].remove(value)
self.csp.restore[var].add((nCell, value))
return True
def runInference(self, assignment, var, value):
return self.runAC3(self.csp, var, assignment)
# return self.forwardCheck(assignment, var, value)
# Bulk of solve is here
def backtrackSearch(self, assignment):
if len(assignment) == len(self.csp.varList):
return assignment
# Select from 3 criteria (SEE function for more info)
var = self.selectUnassignedVariable(assignment)
# Stop finding HiddenSingles if first occurrence of MRV has started
# if not isinstance(var, list) and not len(self.csp.domain[var]) == 1 and self.hiddenSingleFlag:
# self.hiddenSingleFlag = False
# Gives preference of value for HiddenSingle if found
prefVal = None
if isinstance(var, list):
prefVal = var[1]
var = var[0]
# Least Constraining Value heuristic
for value in self.orderDomainValues(var, prefVal):
if self.isConsistent(var, value):
self.assign(assignment, var, value)
# Do inference i.e. forward checking or ac-3 here
if self.runInference(assignment, var, value) != FAILURE:
result = self.backtrackSearch(assignment)
if result is not None:
return result
self.steps += 1
self.unassign(var, assignment)
return None
# Function to decide which variable to select for backtracking
# 3 criteria: size-1-domain var, HiddenSingles, MRV
def selectUnassignedVariable(self, assignment):
unassigned = [v for v in self.csp.varList if v not in assignment]
minV = min(unassigned, key=lambda var: len(self.csp.domain[var]))
# Return early if minV is confirmed to have only 1 value
if len(self.csp.domain[minV]) == 1:
return minV
chosenCell = minV
minDomain = float('inf')
maxDegree = -1
for cell in self.csp.varList:
if cell not in assignment:
currDomainSize = len(self.csp.domain[cell])
if currDomainSize < minDomain:
minDomain = currDomainSize
chosenCell = cell
elif currDomainSize == minDomain:
currDegree = len(self.csp.neighbours[cell])
if currDegree > maxDegree:
maxDegree = currDegree
chosenCell = cell
# Only find HiddenSingles if MRV isn't implemented yet [Idk why but it only works this way]
if self.hiddenSingleFlag:
for i in range(0, 9):
# rowList = {v: [] for v in range(1, 10)} # Checks for HiddenSingles by row
# fix for sunfire:
rowList = {}
for v in range(1, 10):
rowList[v] = []
# colList = {v: [] for v in range(1, 10)} # Checks for HiddenSingles by col
# fix for sunfire
colList = {}
for v in range(1, 10):
colList[v] = []
for j in range(0, 9):
for v in self.csp.domain[(i, j)]:
if len(self.csp.domain[(i, j)]) != 1:
rowList[v].append((i, j))
for v in self.csp.domain[(j, i)]:
if len(self.csp.domain[(j, i)]) != 1:
colList[v].append((j, i))
for v in rowList:
if len(rowList[v]) == 1:
return [rowList[v][0], v]
for v in colList:
if len(colList[v]) == 1:
return [colList[v][0], v]
# Checks for HiddenSingles by box
bxLs = [(0, 0), (0, 3), (0, 6), (3, 0), (3, 3), (3, 6), (6, 0), (6, 3), (6, 6)]
for i in range(0, 9):
# boxList = {v: [] for v in range(1, 10)}
# fix for sunfire:
boxList = {}
for v in range(1, 10):
boxList[v] = []
rowCount = bxLs[i][0]
for y in range(rowCount, rowCount + 3):
colCount = bxLs[i][1]
for x in range(colCount, colCount + 3):
if len(self.csp.domain[(y, x)]) == 1:
continue
for v in self.csp.domain[(y, x)]:
boxList[v].append((y, x))
for v in boxList:
if len(boxList[v]) == 1:
return [boxList[v][0], v]
self.hiddenSingleFlag = False
# MRV implemented if cannot find HiddenSingles
return chosenCell
# Firstly, tries to return domain with preferential value for HiddenSingle at the front, if present
# Else, return normal domain of var
def orderDomainValues(self, var, prefVal=None):
# Return value which gives least count of conflicts btw cells
if prefVal is not None:
prefList = []
for v in self.csp.domain[var]:
prefList.append(v)
prefList.insert(0, prefVal)
return prefList
# return sorted(self.csp.domain[var], key=lambda val: self.getConflictingCount(var, val))
return self.csp.domain[var]
def getConflictingCount(self, var, val):
count = 0
for nCell in self.csp.neighbours[var]:
if len(self.csp.domain[nCell]) > 1 and val in self.csp.domain[nCell]:
count += 1
return count
def getOutput(self, csp):
for var in csp.domain:
self.ans[var[0]][var[1]] = csp.domain[var][0]
def solve(self):
# TODO: Write your code here
newPuzzle = self.csp
pP(self.puzzle)
startTime = time()
# RUN BACKTRACKING
assignment = {}
# assignment.update(knownValues)
# self.runAC3(newPuzzle)
# for key in sorted(newPuzzle.domain):
# print key, newPuzzle.domain[key]
assignment = self.backtrackSearch(assignment)
if assignment is not None:
pr('STEPS:', self.steps)
for var in newPuzzle.domain:
newPuzzle.domain[var] = [assignment[var]] if len(var) > 1 else newPuzzle.domain[var]
for k in newPuzzle.domain:
pass
# print k, newPuzzle.domain[k]
if assignment is not None:
# TODO ASSIGN
self.timeTaken = time() - startTime
self.getOutput(newPuzzle)
pr('Backtrack SUCCESS')
pP(self.ans)
pr('Time:', self.timeTaken)
self.checkResult()
else:
# NO solution, returning original sudoku
pr('Backtrack FAILED')
# self.ans is a list of lists
return self.ans
def checkResult(self):
try:
fileOut = fileIn
if fileIn is not None:
if 'input' in fileIn and 'new' not in fileIn:
fileOut = fileOut.replace('input', 'output')
else:
fileOut = fileOut.replace('.txt', 'OUT.txt')
f = open(fileOut, 'r')
except IOError:
print("\nUsage: python CS3243_P2_Sudoku_XX.py input.txt output.txt\n")
raise IOError("Result file not found!")
puzzle = [[0 for i in range(9)] for j in range(9)]
lines = f.readlines()
i, j = 0, 0
for line in lines:
for number in line:
if '0' <= number <= '9':
puzzle[i][j] = int(number)
j += 1
if j == 9:
i += 1
j = 0
if puzzle == self.ans:
pr('PASS')
else:
pr('FAIL')
def pr(*items):
if printFlag:
for item in items:
print item,
print ""
def pP(puzzle):
if printFlag:
for i in range(len(puzzle)):
for j in range(len(puzzle)):
print puzzle[i][j],
print ""
def returnPuzzle(f):
lines = f.readlines()
puzzle = [[0 for i in range(9)] for j in range(9)]
i, j = 0, 0
for line in lines:
for number in line:
if '0' <= number <= '9':
puzzle[i][j] = int(number)
j += 1
if j == 9:
i += 1
j = 0
return puzzle
TIME_UB = 3
# Code for testing range of inputs
# Will find hardest inputs that the algorithm is trying to solve
def startTest(numRange):
numRange = numRange.split(',')
assert len(numRange) == 2
fileStart = 'sudoku/batchtest/new_input'
# Start the experiment to find top TIME_UB hardest puzzles
hardest = []
for i in range(int(numRange[0]), int(numRange[1]) + 1):
try:
fileName = fileStart + str(i) + '.txt'
f = open(fileName, 'r')
except:
print 'Whoops'
raise 'Input File ' + fileName + 'not found!'
puz = returnPuzzle(f)
sud = Sudoku(puz)
sud.solve()
if sud.timeTaken > TIME_UB:
tup = (sud.timeTaken, puz, fileName.replace('sudoku/batchtest/', ''))
hardest.append(tup)
hardest.sort(reverse=True)
for i in range(len(hardest)):
print hardest[i][0], hardest[i][2]
pP(hardest[i][1])
print '@' * 15
# if len(sys.argv) == 2: #Code for start of __main__, to run experiment
# print 'COMMENCING TEST'
# startTest(sys.argv[1])
# print 'END TEST'
# sys.exit(0)
# you may add more classes/functions if you think is useful
# However, ensure all the classes/functions are in this file ONLY
# Note that our evaluation scripts only call the solve method.
# Any other methods that you write should be used within the solve() method.
if __name__ == "__main__":
# STRICTLY do NOT modify the code in the main function here
if len(sys.argv) != 3:
print("\nUsage: python CS3243_P2_Sudoku_XX.py input.txt output.txt\n")
raise ValueError("Wrong number of arguments!")
try:
f = open(sys.argv[1], 'r')
fileIn = str(sys.argv[1])
except IOError:
print("\nUsage: python CS3243_P2_Sudoku_XX.py input.txt output.txt\n")
raise IOError("Input file not found!")
puzzle = [[0 for i in range(9)] for j in range(9)]
lines = f.readlines()
i, j = 0, 0
for line in lines:
for number in line:
if '0' <= number <= '9':
puzzle[i][j] = int(number)
j += 1
if j == 9:
i += 1
j = 0
sudoku = Sudoku(puzzle)
ans = sudoku.solve()
with open(sys.argv[2], 'a') as f:
for i in range(9):
for j in range(9):
f.write(str(ans[i][j]) + " ")
f.write("\n")