Skip to content

CCEdit: Creative and Controllable Video Editing via Diffusion Models

License

Notifications You must be signed in to change notification settings

RuoyuFeng/CCEdit

Repository files navigation

CCEdit: Creative and Controllable Video Editing via Diffusion Models

CVPR 2024

Ruoyu Feng, Wenming Weng, Yanhui Wang, Yuhui Yuan, Jianmin Bao, Chong Luo, Zhibo Chen, Baining Guo

🔥 Update

  • 🔥 Mar. 27, 2024. BalanceCC Benchmark is released! BalanceCC benchmark contains 100 videos with varied attributes, designed to offer a comprehensive platform for evaluating generative video editing, focusing on both controllability and creativity.

Installation

# env
conda create -n ccedit python=3.9.17
conda activate ccedit
pip install -r requirements.txt
# pip install -r requirements_pt2.txt
# pip install torch==2.0.1 torchaudio==2.0.2 torchdata==0.6.1 torchmetrics==1.0.0 torchvision==0.15.2
pip install basicsr==1.4.2 wandb loralib av decord timm==0.6.7
pip install moviepy imageio==2.6.0 scikit-image==0.20.0 scipy==1.9.1 diffusers==0.17.1 transformers==4.27.3
pip install accelerate==0.20.3 ujson

git clone https://github.com/lllyasviel/ControlNet-v1-1-nightly src/controlnet11
git clone https://github.com/MichalGeyer/pnp-diffusers src/pnp-diffusers

Download models

download models from https://huggingface.co/RuoyuFeng/CCEdit and put them in ./models

Inference

Text-Video-to-Video

python scripts/sampling/sampling_tv2v.py   --config_path configs/inference_ccedit/keyframe_no2ndca_depthmidas.yaml   --ckpt_path models/tv2v-no2ndca-depthmidas.ckpt  --H 512 --W 768 --original_fps 18 --target_fps 6 --num_keyframes 17 --batch_size 1 --num_samples 2   --sample_steps 30 --sampler_name DPMPP2SAncestralSampler  --cfg_scale 7.5   --prompt 'a bear is walking.' --video_path assets/Samples/davis/bear   --add_prompt 'Van Gogh style'   --save_path outputs/tv2v/bear-VanGogh   --disable_check_repeat

Text-Video-Image-to-Video

Specifiy the edited center frame.

python scripts/sampling/sampling_tv2v_ref.py \
    --seed 201574 \
    --config_path configs/inference_ccedit/keyframe_ref_cp_no2ndca_add_cfca_depthzoe.yaml \
    --ckpt_path models/tvi2v-no2ndca-depthmidas.ckpt \
    --H 512 --W 768 --original_fps 18 --target_fps 6 --num_keyframes 17 --batch_size 1 --num_samples 2 \
    --sample_steps 50 --sampler_name DPMPP2SAncestralSampler --cfg_scale 7 \
    --prompt 'A person walks on the grass, the Milky Way is in the sky, night' \
    --add_prompt 'masterpiece, best quality,' \
    --video_path assets/Samples/tshirtman.mp4 \
    --reference_path assets/Samples/tshirtman-milkyway.png \
    --save_path outputs/tvi2v/tshirtman-MilkyWay \
    --disable_check_repeat \
    --prior_coefficient_x 0.03 \
    --prior_type ref

Automatic edit the center frame via pnp-diffusers Note that the performance of this pipeline heavily depends on the quality of the automatic editing result. So try to use more powerful automatic editing methods to edit the center frame. Or we recommond combine CCEdit with other powerfull AI editing tools, such as Stable-Diffusion WebUI, comfyui, etc.

# python preprocess.py --data_path <path_to_guidance_image> --inversion_prompt <inversion_prompt>
python src/pnp-diffusers/preprocess.py --data_path assets/Samples/tshirtman-milkyway.png --inversion_prompt 'a man walks in the filed'
# modify the config file (config_pnp.yaml) to use the processed image
# python pnp.py --config_path <pnp_config_path>
python src/pnp-diffusers/pnp.py --config_path config_pnp.yaml
python scripts/sampling/sampling_tv2v_ref.py \
    --seed 201574 \
    --config_path configs/inference_ccedit/keyframe_ref_cp_no2ndca_add_cfca_depthzoe.yaml \
    --ckpt_path models/tvi2v-no2ndca-depthmidas.ckpt \
    --H 512 --W 768 --original_fps 18 --target_fps 6 --num_keyframes 17 --batch_size 1 --num_samples 2 \
    --sample_steps 50 --sampler_name DPMPP2SAncestralSampler --cfg_scale 7 \
    --prompt 'A person walks on the grass, the Milky Way is in the sky, night' \
    --add_prompt 'masterpiece, best quality,' \
    --video_path assets/Samples/tshirtman.mp4 \
    --reference_path "PNP-results/tshirtman-milkyway/output-a man walks in the filed, milky way.png" \
    --save_path outputs/tvi2v/tshirtman-MilkyWay \
    --disable_check_repeat \
    --prior_coefficient_x 0.03 \
    --prior_type ref

You can use the following pipeline to automatically extract the center frame, conduct editing via pnp-diffusers and then conduct video editing via tvi2v.

python scripts/sampling/pnp_generate_config.py \
    --p_config config_pnp_auto.yaml \
    --output_path "outputs/automatic_ref_editing/image" \
    --image_path "outputs/centerframe/tshirtman.png" \
    --latents_path "latents_forward" \
    --prompt "a man walks on the beach" 
python scripts/tools/extract_centerframe.py \
    --p_video assets/Samples/tshirtman.mp4 \
    --p_save outputs/centerframe/tshirtman.png \
    --orifps 18 \
    --targetfps 6 \
    --n_keyframes 17 \
    --length_long 512 \
    --length_short 512
python src/pnp-diffusers/preprocess.py --data_path outputs/centerframe/tshirtman.png --inversion_prompt 'a man walks in the filed'
python src/pnp-diffusers/pnp.py --config_path config_pnp_auto.yaml
python scripts/sampling/sampling_tv2v_ref.py \
    --seed 201574 \
    --config_path configs/inference_ccedit/keyframe_ref_cp_no2ndca_add_cfca_depthzoe.yaml \
    --ckpt_path models/tvi2v-no2ndca-depthmidas.ckpt \
    --H 512 --W 768 --original_fps 18 --target_fps 6 --num_keyframes 17 --batch_size 1 --num_samples 2 \
    --sample_steps 50 --sampler_name DPMPP2SAncestralSampler --cfg_scale 7 \
    --prompt 'A man walks on the beach' \
    --add_prompt 'masterpiece, best quality,' \
    --video_path assets/Samples/tshirtman.mp4 \
    --reference_path "outputs/automatic_ref_editing/image/output-a man walks on the beach.png" \
    --save_path outputs/tvi2v/tshirtman-Beach \
    --disable_check_repeat \
    --prior_coefficient_x 0.03 \
    --prior_type ref

Train example

python main.py -b configs/example_training/sd_1_5_controlldm-test-ruoyu-tv2v-depthmidas.yaml --wandb False

BibTeX

If you find this work useful for your research, please cite us:

@article{feng2023ccedit,
  title={CCEdit: Creative and Controllable Video Editing via Diffusion Models},
  author={Feng, Ruoyu and Weng, Wenming and Wang, Yanhui and Yuan, Yuhui and Bao, Jianmin and Luo, Chong and Chen, Zhibo and Guo, Baining},
  journal={arXiv preprint arXiv:2309.16496},
  year={2023}
}

Conact Us

Ruoyu Feng: [email protected]

Acknowledgements

The source videos in this repository come from our own collections and downloads from Pexels. If anyone feels that a particular piece of content is used inappropriately, please feel free to contact me, and I will remove it immediately.

Thanks to model contributers of CivitAI and RunwayML.

About

CCEdit: Creative and Controllable Video Editing via Diffusion Models

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages