forked from snap-stanford/GraphRNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
executable file
·518 lines (459 loc) · 18.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
import networkx as nx
import numpy as np
import torch
import torch.nn as nn
import torch.nn.init as init
from torch.autograd import Variable
import matplotlib.pyplot as plt
import torch.nn.functional as F
from torch import optim
from torch.optim.lr_scheduler import MultiStepLR
# import node2vec.src.main as nv
from sklearn.decomposition import PCA
import community
import pickle
import re
import data
def citeseer_ego():
_, _, G = data.Graph_load(dataset='citeseer')
G = max(nx.connected_component_subgraphs(G), key=len)
G = nx.convert_node_labels_to_integers(G)
graphs = []
for i in range(G.number_of_nodes()):
G_ego = nx.ego_graph(G, i, radius=3)
if G_ego.number_of_nodes() >= 50 and (G_ego.number_of_nodes() <= 400):
graphs.append(G_ego)
return graphs
def caveman_special(c=2,k=20,p_path=0.1,p_edge=0.3):
p = p_path
path_count = max(int(np.ceil(p * k)),1)
G = nx.caveman_graph(c, k)
# remove 50% edges
p = 1-p_edge
for (u, v) in list(G.edges()):
if np.random.rand() < p and ((u < k and v < k) or (u >= k and v >= k)):
G.remove_edge(u, v)
# add path_count links
for i in range(path_count):
u = np.random.randint(0, k)
v = np.random.randint(k, k * 2)
G.add_edge(u, v)
G = max(nx.connected_component_subgraphs(G), key=len)
return G
def n_community(c_sizes, p_inter=0.01):
graphs = [nx.gnp_random_graph(c_sizes[i], 0.7, seed=i) for i in range(len(c_sizes))]
G = nx.disjoint_union_all(graphs)
communities = list(nx.connected_component_subgraphs(G))
for i in range(len(communities)):
subG1 = communities[i]
nodes1 = list(subG1.nodes())
for j in range(i+1, len(communities)):
subG2 = communities[j]
nodes2 = list(subG2.nodes())
has_inter_edge = False
for n1 in nodes1:
for n2 in nodes2:
if np.random.rand() < p_inter:
G.add_edge(n1, n2)
has_inter_edge = True
if not has_inter_edge:
G.add_edge(nodes1[0], nodes2[0])
#print('connected comp: ', len(list(nx.connected_component_subgraphs(G))))
return G
def perturb(graph_list, p_del, p_add=None):
''' Perturb the list of graphs by adding/removing edges.
Args:
p_add: probability of adding edges. If None, estimate it according to graph density,
such that the expected number of added edges is equal to that of deleted edges.
p_del: probability of removing edges
Returns:
A list of graphs that are perturbed from the original graphs
'''
perturbed_graph_list = []
for G_original in graph_list:
G = G_original.copy()
trials = np.random.binomial(1, p_del, size=G.number_of_edges())
edges = list(G.edges())
i = 0
for (u, v) in edges:
if trials[i] == 1:
G.remove_edge(u, v)
i += 1
if p_add is None:
num_nodes = G.number_of_nodes()
p_add_est = np.sum(trials) / (num_nodes * (num_nodes - 1) / 2 -
G.number_of_edges())
else:
p_add_est = p_add
nodes = list(G.nodes())
tmp = 0
for i in range(len(nodes)):
u = nodes[i]
trials = np.random.binomial(1, p_add_est, size=G.number_of_nodes())
j = 0
for j in range(i+1, len(nodes)):
v = nodes[j]
if trials[j] == 1:
tmp += 1
G.add_edge(u, v)
j += 1
perturbed_graph_list.append(G)
return perturbed_graph_list
def perturb_new(graph_list, p):
''' Perturb the list of graphs by adding/removing edges.
Args:
p_add: probability of adding edges. If None, estimate it according to graph density,
such that the expected number of added edges is equal to that of deleted edges.
p_del: probability of removing edges
Returns:
A list of graphs that are perturbed from the original graphs
'''
perturbed_graph_list = []
for G_original in graph_list:
G = G_original.copy()
edge_remove_count = 0
for (u, v) in list(G.edges()):
if np.random.rand()<p:
G.remove_edge(u, v)
edge_remove_count += 1
# randomly add the edges back
for i in range(edge_remove_count):
while True:
u = np.random.randint(0, G.number_of_nodes())
v = np.random.randint(0, G.number_of_nodes())
if (not G.has_edge(u,v)) and (u!=v):
break
G.add_edge(u, v)
perturbed_graph_list.append(G)
return perturbed_graph_list
def imsave(fname, arr, vmin=None, vmax=None, cmap=None, format=None, origin=None):
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
fig = Figure(figsize=arr.shape[::-1], dpi=1, frameon=False)
canvas = FigureCanvas(fig)
fig.figimage(arr, cmap=cmap, vmin=vmin, vmax=vmax, origin=origin)
fig.savefig(fname, dpi=1, format=format)
def save_prediction_histogram(y_pred_data, fname_pred, max_num_node, bin_n=20):
bin_edge = np.linspace(1e-6, 1, bin_n + 1)
output_pred = np.zeros((bin_n, max_num_node))
for i in range(max_num_node):
output_pred[:, i], _ = np.histogram(y_pred_data[:, i, :], bins=bin_edge, density=False)
# normalize
output_pred[:, i] /= np.sum(output_pred[:, i])
imsave(fname=fname_pred, arr=output_pred, origin='upper', cmap='Greys_r', vmin=0.0, vmax=3.0 / bin_n)
# draw a single graph G
def draw_graph(G, prefix = 'test'):
parts = community.best_partition(G)
values = [parts.get(node) for node in G.nodes()]
colors = []
for i in range(len(values)):
if values[i] == 0:
colors.append('red')
if values[i] == 1:
colors.append('green')
if values[i] == 2:
colors.append('blue')
if values[i] == 3:
colors.append('yellow')
if values[i] == 4:
colors.append('orange')
if values[i] == 5:
colors.append('pink')
if values[i] == 6:
colors.append('black')
# spring_pos = nx.spring_layout(G)
plt.switch_backend('agg')
plt.axis("off")
pos = nx.spring_layout(G)
nx.draw_networkx(G, with_labels=True, node_size=35, node_color=colors,pos=pos)
# plt.switch_backend('agg')
# options = {
# 'node_color': 'black',
# 'node_size': 10,
# 'width': 1
# }
# plt.figure()
# plt.subplot()
# nx.draw_networkx(G, **options)
plt.savefig('figures/graph_view_'+prefix+'.png', dpi=200)
plt.close()
plt.switch_backend('agg')
G_deg = nx.degree_histogram(G)
G_deg = np.array(G_deg)
# plt.plot(range(len(G_deg)), G_deg, 'r', linewidth = 2)
plt.loglog(np.arange(len(G_deg))[G_deg>0], G_deg[G_deg>0], 'r', linewidth=2)
plt.savefig('figures/degree_view_' + prefix + '.png', dpi=200)
plt.close()
# degree_sequence = sorted(nx.degree(G).values(), reverse=True) # degree sequence
# plt.loglog(degree_sequence, 'b-', marker='o')
# plt.title("Degree rank plot")
# plt.ylabel("degree")
# plt.xlabel("rank")
# plt.savefig('figures/degree_view_' + prefix + '.png', dpi=200)
# plt.close()
# G = nx.grid_2d_graph(8,8)
# G = nx.karate_club_graph()
# draw_graph(G)
# draw a list of graphs [G]
def draw_graph_list(G_list, row, col, fname = 'figures/test', layout='spring', is_single=False,k=1,node_size=55,alpha=1,width=1.3):
# # draw graph view
# from pylab import rcParams
# rcParams['figure.figsize'] = 12,3
plt.switch_backend('agg')
for i,G in enumerate(G_list):
plt.subplot(row,col,i+1)
plt.subplots_adjust(left=0, bottom=0, right=1, top=1,
wspace=0, hspace=0)
# if i%2==0:
# plt.title('real nodes: '+str(G.number_of_nodes()), fontsize = 4)
# else:
# plt.title('pred nodes: '+str(G.number_of_nodes()), fontsize = 4)
# plt.title('num of nodes: '+str(G.number_of_nodes()), fontsize = 4)
# parts = community.best_partition(G)
# values = [parts.get(node) for node in G.nodes()]
# colors = []
# for i in range(len(values)):
# if values[i] == 0:
# colors.append('red')
# if values[i] == 1:
# colors.append('green')
# if values[i] == 2:
# colors.append('blue')
# if values[i] == 3:
# colors.append('yellow')
# if values[i] == 4:
# colors.append('orange')
# if values[i] == 5:
# colors.append('pink')
# if values[i] == 6:
# colors.append('black')
plt.axis("off")
if layout=='spring':
pos = nx.spring_layout(G,k=k/np.sqrt(G.number_of_nodes()),iterations=100)
# pos = nx.spring_layout(G)
elif layout=='spectral':
pos = nx.spectral_layout(G)
# # nx.draw_networkx(G, with_labels=True, node_size=2, width=0.15, font_size = 1.5, node_color=colors,pos=pos)
# nx.draw_networkx(G, with_labels=False, node_size=1.5, width=0.2, font_size = 1.5, linewidths=0.2, node_color = 'k',pos=pos,alpha=0.2)
if is_single:
# node_size default 60, edge_width default 1.5
nx.draw_networkx_nodes(G, pos, node_size=node_size, node_color='#336699', alpha=1, linewidths=0, font_size=0)
nx.draw_networkx_edges(G, pos, alpha=alpha, width=width)
else:
nx.draw_networkx_nodes(G, pos, node_size=1.5, node_color='#336699',alpha=1, linewidths=0.2, font_size = 1.5)
nx.draw_networkx_edges(G, pos, alpha=0.3,width=0.2)
# plt.axis('off')
# plt.title('Complete Graph of Odd-degree Nodes')
# plt.show()
plt.tight_layout()
plt.savefig(fname+'.png', dpi=600)
plt.close()
# # draw degree distribution
# plt.switch_backend('agg')
# for i, G in enumerate(G_list):
# plt.subplot(row, col, i + 1)
# G_deg = np.array(list(G.degree(G.nodes()).values()))
# bins = np.arange(20)
# plt.hist(np.array(G_deg), bins=bins, align='left')
# plt.xlabel('degree', fontsize = 3)
# plt.ylabel('count', fontsize = 3)
# G_deg_mean = 2*G.number_of_edges()/float(G.number_of_nodes())
# # if i % 2 == 0:
# # plt.title('real average degree: {:.2f}'.format(G_deg_mean), fontsize=4)
# # else:
# # plt.title('pred average degree: {:.2f}'.format(G_deg_mean), fontsize=4)
# plt.title('average degree: {:.2f}'.format(G_deg_mean), fontsize=4)
# plt.tick_params(axis='both', which='major', labelsize=3)
# plt.tick_params(axis='both', which='minor', labelsize=3)
# plt.tight_layout()
# plt.savefig(fname+'_degree.png', dpi=600)
# plt.close()
#
# # draw clustering distribution
# plt.switch_backend('agg')
# for i, G in enumerate(G_list):
# plt.subplot(row, col, i + 1)
# G_cluster = list(nx.clustering(G).values())
# bins = np.linspace(0,1,20)
# plt.hist(np.array(G_cluster), bins=bins, align='left')
# plt.xlabel('clustering coefficient', fontsize=3)
# plt.ylabel('count', fontsize=3)
# G_cluster_mean = sum(G_cluster) / len(G_cluster)
# # if i % 2 == 0:
# # plt.title('real average clustering: {:.4f}'.format(G_cluster_mean), fontsize=4)
# # else:
# # plt.title('pred average clustering: {:.4f}'.format(G_cluster_mean), fontsize=4)
# plt.title('average clustering: {:.4f}'.format(G_cluster_mean), fontsize=4)
# plt.tick_params(axis='both', which='major', labelsize=3)
# plt.tick_params(axis='both', which='minor', labelsize=3)
# plt.tight_layout()
# plt.savefig(fname+'_clustering.png', dpi=600)
# plt.close()
#
# # draw circle distribution
# plt.switch_backend('agg')
# for i, G in enumerate(G_list):
# plt.subplot(row, col, i + 1)
# cycle_len = []
# cycle_all = nx.cycle_basis(G)
# for item in cycle_all:
# cycle_len.append(len(item))
#
# bins = np.arange(20)
# plt.hist(np.array(cycle_len), bins=bins, align='left')
# plt.xlabel('cycle length', fontsize=3)
# plt.ylabel('count', fontsize=3)
# G_cycle_mean = 0
# if len(cycle_len)>0:
# G_cycle_mean = sum(cycle_len) / len(cycle_len)
# # if i % 2 == 0:
# # plt.title('real average cycle: {:.4f}'.format(G_cycle_mean), fontsize=4)
# # else:
# # plt.title('pred average cycle: {:.4f}'.format(G_cycle_mean), fontsize=4)
# plt.title('average cycle: {:.4f}'.format(G_cycle_mean), fontsize=4)
# plt.tick_params(axis='both', which='major', labelsize=3)
# plt.tick_params(axis='both', which='minor', labelsize=3)
# plt.tight_layout()
# plt.savefig(fname+'_cycle.png', dpi=600)
# plt.close()
#
# # draw community distribution
# plt.switch_backend('agg')
# for i, G in enumerate(G_list):
# plt.subplot(row, col, i + 1)
# parts = community.best_partition(G)
# values = np.array([parts.get(node) for node in G.nodes()])
# counts = np.sort(np.bincount(values)[::-1])
# pos = np.arange(len(counts))
# plt.bar(pos,counts,align = 'edge')
# plt.xlabel('community ID', fontsize=3)
# plt.ylabel('count', fontsize=3)
# G_community_count = len(counts)
# # if i % 2 == 0:
# # plt.title('real average clustering: {}'.format(G_community_count), fontsize=4)
# # else:
# # plt.title('pred average clustering: {}'.format(G_community_count), fontsize=4)
# plt.title('average clustering: {}'.format(G_community_count), fontsize=4)
# plt.tick_params(axis='both', which='major', labelsize=3)
# plt.tick_params(axis='both', which='minor', labelsize=3)
# plt.tight_layout()
# plt.savefig(fname+'_community.png', dpi=600)
# plt.close()
# plt.switch_backend('agg')
# G_deg = nx.degree_histogram(G)
# G_deg = np.array(G_deg)
# # plt.plot(range(len(G_deg)), G_deg, 'r', linewidth = 2)
# plt.loglog(np.arange(len(G_deg))[G_deg>0], G_deg[G_deg>0], 'r', linewidth=2)
# plt.savefig('figures/degree_view_' + prefix + '.png', dpi=200)
# plt.close()
# degree_sequence = sorted(nx.degree(G).values(), reverse=True) # degree sequence
# plt.loglog(degree_sequence, 'b-', marker='o')
# plt.title("Degree rank plot")
# plt.ylabel("degree")
# plt.xlabel("rank")
# plt.savefig('figures/degree_view_' + prefix + '.png', dpi=200)
# plt.close()
# directly get graph statistics from adj, obsoleted
def decode_graph(adj, prefix):
adj = np.asmatrix(adj)
G = nx.from_numpy_matrix(adj)
# G.remove_nodes_from(nx.isolates(G))
print('num of nodes: {}'.format(G.number_of_nodes()))
print('num of edges: {}'.format(G.number_of_edges()))
G_deg = nx.degree_histogram(G)
G_deg_sum = [a * b for a, b in zip(G_deg, range(0, len(G_deg)))]
print('average degree: {}'.format(sum(G_deg_sum) / G.number_of_nodes()))
if nx.is_connected(G):
print('average path length: {}'.format(nx.average_shortest_path_length(G)))
print('average diameter: {}'.format(nx.diameter(G)))
G_cluster = sorted(list(nx.clustering(G).values()))
print('average clustering coefficient: {}'.format(sum(G_cluster) / len(G_cluster)))
cycle_len = []
cycle_all = nx.cycle_basis(G, 0)
for item in cycle_all:
cycle_len.append(len(item))
print('cycles', cycle_len)
print('cycle count', len(cycle_len))
draw_graph(G, prefix=prefix)
def get_graph(adj):
'''
get a graph from zero-padded adj
:param adj:
:return:
'''
# remove all zeros rows and columns
adj = adj[~np.all(adj == 0, axis=1)]
adj = adj[:, ~np.all(adj == 0, axis=0)]
adj = np.asmatrix(adj)
G = nx.from_numpy_matrix(adj)
return G
# save a list of graphs
def save_graph_list(G_list, fname):
with open(fname, "wb") as f:
pickle.dump(G_list, f)
# pick the first connected component
def pick_connected_component(G):
node_list = nx.node_connected_component(G,0)
return G.subgraph(node_list)
def pick_connected_component_new(G):
adj_list = G.adjacency_list()
for id,adj in enumerate(adj_list):
id_min = min(adj)
if id<id_min and id>=1:
# if id<id_min and id>=4:
break
node_list = list(range(id)) # only include node prior than node "id"
G = G.subgraph(node_list)
G = max(nx.connected_component_subgraphs(G), key=len)
return G
# load a list of graphs
def load_graph_list(fname,is_real=True):
with open(fname, "rb") as f:
graph_list = pickle.load(f)
for i in range(len(graph_list)):
edges_with_selfloops = graph_list[i].selfloop_edges()
if len(edges_with_selfloops)>0:
graph_list[i].remove_edges_from(edges_with_selfloops)
if is_real:
graph_list[i] = max(nx.connected_component_subgraphs(graph_list[i]), key=len)
graph_list[i] = nx.convert_node_labels_to_integers(graph_list[i])
else:
graph_list[i] = pick_connected_component_new(graph_list[i])
return graph_list
def export_graphs_to_txt(g_list, output_filename_prefix):
i = 0
for G in g_list:
f = open(output_filename_prefix + '_' + str(i) + '.txt', 'w+')
for (u, v) in G.edges():
idx_u = G.nodes().index(u)
idx_v = G.nodes().index(v)
f.write(str(idx_u) + '\t' + str(idx_v) + '\n')
i += 1
def snap_txt_output_to_nx(in_fname):
G = nx.Graph()
with open(in_fname, 'r') as f:
for line in f:
if not line[0] == '#':
splitted = re.split('[ \t]', line)
# self loop might be generated, but should be removed
u = int(splitted[0])
v = int(splitted[1])
if not u == v:
G.add_edge(int(u), int(v))
return G
def test_perturbed():
graphs = []
for i in range(100,101):
for j in range(4,5):
for k in range(500):
graphs.append(nx.barabasi_albert_graph(i,j))
g_perturbed = perturb(graphs, 0.9)
print([g.number_of_edges() for g in graphs])
print([g.number_of_edges() for g in g_perturbed])
if __name__ == '__main__':
#test_perturbed()
#graphs = load_graph_list('graphs/' + 'GraphRNN_RNN_community4_4_128_train_0.dat')
#graphs = load_graph_list('graphs/' + 'GraphRNN_RNN_community4_4_128_pred_2500_1.dat')
graphs = load_graph_list('eval_results/mmsb/' + 'community41.dat')
for i in range(0, 160, 16):
draw_graph_list(graphs[i:i+16], 4, 4, fname='figures/community4_' + str(i))