-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmi_estimators.py
366 lines (271 loc) · 14.4 KB
/
mi_estimators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import numpy as np
import math
import torch
import torch.nn as nn
class CLUBForCategorical(nn.Module): # Update 04/27/2022
'''
This class provide a CLUB estimator to calculate MI upper bound between vector-like embeddings and categorical labels.
Estimate I(X,Y), where X is continuous vector and Y is discrete label.
'''
def __init__(self, input_dim, label_num, hidden_size=None):
'''
input_dim : the dimension of input embeddings
label_num : the number of categorical labels
'''
super().__init__()
if hidden_size is None:
self.variational_net = nn.Linear(input_dim, label_num)
else:
self.variational_net = nn.Sequential(
nn.Linear(input_dim, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, label_num)
)
def forward(self, inputs, labels):
'''
inputs : shape [batch_size, input_dim], a batch of embeddings
labels : shape [batch_size], a batch of label index
'''
logits = self.variational_net(inputs) #[sample_size, label_num]
# log of conditional probability of positive sample pairs
#positive = - nn.functional.cross_entropy(logits, labels, reduction='none')
sample_size, label_num = logits.shape
logits_extend = logits.unsqueeze(1).repeat(1, sample_size, 1) # shape [sample_size, sample_size, label_num]
labels_extend = labels.unsqueeze(0).repeat(sample_size, 1) # shape [sample_size, sample_size]
# log of conditional probability of negative sample pairs
log_mat = - nn.functional.cross_entropy(
logits_extend.reshape(-1, label_num),
labels_extend.reshape(-1, ),
reduction='none'
)
log_mat = log_mat.reshape(sample_size, sample_size)
positive = torch.diag(log_mat).mean()
negative = log_mat.mean()
return positive - negative
def loglikeli(self, inputs, labels):
logits = self.variational_net(inputs)
return - nn.functional.cross_entropy(logits, labels)
def learning_loss(self, inputs, labels):
return - self.loglikeli(inputs, labels)
class CLUB(nn.Module): # CLUB: Mutual Information Contrastive Learning Upper Bound
'''
This class provides the CLUB estimation to I(X,Y)
Method:
forward() : provides the estimation with input samples
loglikeli() : provides the log-likelihood of the approximation q(Y|X) with input samples
Arguments:
x_dim, y_dim : the dimensions of samples from X, Y respectively
hidden_size : the dimension of the hidden layer of the approximation network q(Y|X)
x_samples, y_samples : samples from X and Y, having shape [sample_size, x_dim/y_dim]
'''
def __init__(self, x_dim, y_dim, hidden_size):
super(CLUB, self).__init__()
# p_mu outputs mean of q(Y|X)
#print("create CLUB with dim {}, {}, hiddensize {}".format(x_dim, y_dim, hidden_size))
self.p_mu = nn.Sequential(nn.Linear(x_dim, hidden_size//2),
nn.ReLU(),
nn.Linear(hidden_size//2, y_dim))
# p_logvar outputs log of variance of q(Y|X)
self.p_logvar = nn.Sequential(nn.Linear(x_dim, hidden_size//2),
nn.ReLU(),
nn.Linear(hidden_size//2, y_dim),
nn.Tanh())
def get_mu_logvar(self, x_samples):
mu = self.p_mu(x_samples)
logvar = self.p_logvar(x_samples)
return mu, logvar
def forward(self, x_samples, y_samples):
mu, logvar = self.get_mu_logvar(x_samples)
# log of conditional probability of positive sample pairs
positive = - (mu - y_samples)**2 /2./logvar.exp()
prediction_1 = mu.unsqueeze(1) # shape [nsample,1,dim]
y_samples_1 = y_samples.unsqueeze(0) # shape [1,nsample,dim]
# log of conditional probability of negative sample pairs
negative = - ((y_samples_1 - prediction_1)**2).mean(dim=1)/2./logvar.exp()
return (positive.sum(dim = -1) - negative.sum(dim = -1)).mean()
def loglikeli(self, x_samples, y_samples): # unnormalized loglikelihood
mu, logvar = self.get_mu_logvar(x_samples)
return (-(mu - y_samples)**2 /logvar.exp()-logvar).sum(dim=1).mean(dim=0)
def learning_loss(self, x_samples, y_samples):
return - self.loglikeli(x_samples, y_samples)
class CLUBMean(nn.Module): # Set variance of q(y|x) to 1, logvar = 0. Update 11/26/2022
def __init__(self, x_dim, y_dim, hidden_size=None):
# p_mu outputs mean of q(Y|X)
# print("create CLUB with dim {}, {}, hiddensize {}".format(x_dim, y_dim, hidden_size))
super(CLUBMean, self).__init__()
if hidden_size is None:
self.p_mu = nn.Linear(x_dim, y_dim)
else:
self.p_mu = nn.Sequential(nn.Linear(x_dim, int(hidden_size)),
nn.ReLU(),
nn.Linear(int(hidden_size), y_dim))
def get_mu_logvar(self, x_samples):
# variance is set to 1, which means logvar=0
mu = self.p_mu(x_samples)
return mu, 0
def forward(self, x_samples, y_samples):
mu, logvar = self.get_mu_logvar(x_samples)
# log of conditional probability of positive sample pairs
positive = - (mu - y_samples)**2 /2.
prediction_1 = mu.unsqueeze(1) # shape [nsample,1,dim]
y_samples_1 = y_samples.unsqueeze(0) # shape [1,nsample,dim]
# log of conditional probability of negative sample pairs
negative = - ((y_samples_1 - prediction_1)**2).mean(dim=1)/2.
return (positive.sum(dim = -1) - negative.sum(dim = -1)).mean()
def loglikeli(self, x_samples, y_samples): # unnormalized loglikelihood
mu, logvar = self.get_mu_logvar(x_samples)
return (-(mu - y_samples)**2).sum(dim=1).mean(dim=0)
def learning_loss(self, x_samples, y_samples):
return - self.loglikeli(x_samples, y_samples)
class CLUBSample(nn.Module): # Sampled version of the CLUB estimator
def __init__(self, x_dim, y_dim, hidden_size):
super(CLUBSample, self).__init__()
self.p_mu = nn.Sequential(nn.Linear(x_dim, hidden_size//2),
nn.ReLU(),
nn.Linear(hidden_size//2, y_dim))
self.p_logvar = nn.Sequential(nn.Linear(x_dim, hidden_size//2),
nn.ReLU(),
nn.Linear(hidden_size//2, y_dim),
nn.Tanh())
def get_mu_logvar(self, x_samples):
mu = self.p_mu(x_samples)
logvar = self.p_logvar(x_samples)
return mu, logvar
def loglikeli(self, x_samples, y_samples):
mu, logvar = self.get_mu_logvar(x_samples)
return (-(mu - y_samples)**2 /logvar.exp()-logvar).sum(dim=1).mean(dim=0)
def forward(self, x_samples, y_samples):
mu, logvar = self.get_mu_logvar(x_samples)
sample_size = x_samples.shape[0]
#random_index = torch.randint(sample_size, (sample_size,)).long()
random_index = torch.randperm(sample_size).long()
positive = - (mu - y_samples)**2 / logvar.exp()
negative = - (mu - y_samples[random_index])**2 / logvar.exp()
upper_bound = (positive.sum(dim = -1) - negative.sum(dim = -1)).mean()
return upper_bound/2.
def learning_loss(self, x_samples, y_samples):
return - self.loglikeli(x_samples, y_samples)
class MINE(nn.Module):
def __init__(self, x_dim, y_dim, hidden_size):
super(MINE, self).__init__()
self.T_func = nn.Sequential(nn.Linear(x_dim + y_dim, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, 1))
def forward(self, x_samples, y_samples): # samples have shape [sample_size, dim]
# shuffle and concatenate
sample_size = y_samples.shape[0]
random_index = torch.randint(sample_size, (sample_size,)).long()
y_shuffle = y_samples[random_index]
T0 = self.T_func(torch.cat([x_samples,y_samples], dim = -1))
T1 = self.T_func(torch.cat([x_samples,y_shuffle], dim = -1))
lower_bound = T0.mean() - torch.log(T1.exp().mean())
# compute the negative loss (maximise loss == minimise -loss)
return lower_bound
def learning_loss(self, x_samples, y_samples):
return -self.forward(x_samples, y_samples)
class NWJ(nn.Module):
def __init__(self, x_dim, y_dim, hidden_size):
super(NWJ, self).__init__()
self.F_func = nn.Sequential(nn.Linear(x_dim + y_dim, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, 1))
def forward(self, x_samples, y_samples):
# shuffle and concatenate
sample_size = y_samples.shape[0]
x_tile = x_samples.unsqueeze(0).repeat((sample_size, 1, 1))
y_tile = y_samples.unsqueeze(1).repeat((1, sample_size, 1))
T0 = self.F_func(torch.cat([x_samples,y_samples], dim = -1))
T1 = self.F_func(torch.cat([x_tile, y_tile], dim = -1))-1. #shape [sample_size, sample_size, 1]
lower_bound = T0.mean() - (T1.logsumexp(dim = 1) - np.log(sample_size)).exp().mean()
return lower_bound
def learning_loss(self, x_samples, y_samples):
return -self.forward(x_samples, y_samples)
class InfoNCE(nn.Module):
def __init__(self, x_dim, y_dim, hidden_size):
super(InfoNCE, self).__init__()
self.F_func = nn.Sequential(nn.Linear(x_dim + y_dim, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, 1),
nn.Softplus())
def forward(self, x_samples, y_samples): # samples have shape [sample_size, dim]
# shuffle and concatenate
sample_size = y_samples.shape[0]
x_tile = x_samples.unsqueeze(0).repeat((sample_size, 1, 1))
y_tile = y_samples.unsqueeze(1).repeat((1, sample_size, 1))
T0 = self.F_func(torch.cat([x_samples,y_samples], dim = -1))
T1 = self.F_func(torch.cat([x_tile, y_tile], dim = -1)) #[sample_size, sample_size, 1]
lower_bound = T0.mean() - (T1.logsumexp(dim = 1).mean() - np.log(sample_size))
return lower_bound
def learning_loss(self, x_samples, y_samples):
return -self.forward(x_samples, y_samples)
def log_sum_exp(value, dim=None, keepdim=False):
"""Numerically stable implementation of the operation
value.exp().sum(dim, keepdim).log()
"""
# TODO: torch.max(value, dim=None) threw an error at time of writing
if dim is not None:
m, _ = torch.max(value, dim=dim, keepdim=True)
value0 = value - m
if keepdim is False:
m = m.squeeze(dim)
return m + torch.log(torch.sum(torch.exp(value0),
dim=dim, keepdim=keepdim))
else:
m = torch.max(value)
sum_exp = torch.sum(torch.exp(value - m))
if isinstance(sum_exp, Number):
return m + math.log(sum_exp)
else:
return m + torch.log(sum_exp)
class L1OutUB(nn.Module): # naive upper bound
def __init__(self, x_dim, y_dim, hidden_size):
super(L1OutUB, self).__init__()
self.p_mu = nn.Sequential(nn.Linear(x_dim, hidden_size//2),
nn.ReLU(),
nn.Linear(hidden_size//2, y_dim))
self.p_logvar = nn.Sequential(nn.Linear(x_dim, hidden_size//2),
nn.ReLU(),
nn.Linear(hidden_size//2, y_dim),
nn.Tanh())
def get_mu_logvar(self, x_samples):
mu = self.p_mu(x_samples)
logvar = self.p_logvar(x_samples)
return mu, logvar
def forward(self, x_samples, y_samples):
batch_size = y_samples.shape[0]
mu, logvar = self.get_mu_logvar(x_samples)
positive = (- (mu - y_samples)**2 /2./logvar.exp() - logvar/2.).sum(dim = -1) #[nsample]
mu_1 = mu.unsqueeze(1) # [nsample,1,dim]
logvar_1 = logvar.unsqueeze(1)
y_samples_1 = y_samples.unsqueeze(0) # [1,nsample,dim]
all_probs = (- (y_samples_1 - mu_1)**2/2./logvar_1.exp()- logvar_1/2.).sum(dim = -1) #[nsample, nsample]
diag_mask = torch.ones([batch_size]).diag().unsqueeze(-1).cuda() * (-20.)
negative = log_sum_exp(all_probs + diag_mask,dim=0) - np.log(batch_size-1.) #[nsample]
return (positive - negative).mean()
def loglikeli(self, x_samples, y_samples):
mu, logvar = self.get_mu_logvar(x_samples)
return (-(mu - y_samples)**2 /logvar.exp()-logvar).sum(dim=1).mean(dim=0)
def learning_loss(self, x_samples, y_samples):
return - self.loglikeli(x_samples, y_samples)
class VarUB(nn.Module): # variational upper bound
def __init__(self, x_dim, y_dim, hidden_size):
super(VarUB, self).__init__()
self.p_mu = nn.Sequential(nn.Linear(x_dim, hidden_size//2),
nn.ReLU(),
nn.Linear(hidden_size//2, y_dim))
self.p_logvar = nn.Sequential(nn.Linear(x_dim, hidden_size//2),
nn.ReLU(),
nn.Linear(hidden_size//2, y_dim),
nn.Tanh())
def get_mu_logvar(self, x_samples):
mu = self.p_mu(x_samples)
logvar = self.p_logvar(x_samples)
return mu, logvar
def forward(self, x_samples, y_samples): #[nsample, 1]
mu, logvar = self.get_mu_logvar(x_samples)
return 1./2.*(mu**2 + logvar.exp() - 1. - logvar).mean()
def loglikeli(self, x_samples, y_samples):
mu, logvar = self.get_mu_logvar(x_samples)
return (-(mu - y_samples)**2 /logvar.exp()-logvar).sum(dim=1).mean(dim=0)
def learning_loss(self, x_samples, y_samples):
return - self.loglikeli(x_samples, y_samples)