-
Notifications
You must be signed in to change notification settings - Fork 3
/
voc12.py
50 lines (44 loc) · 2.12 KB
/
voc12.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import os
import tarfile
import torch.utils.data as data
from PIL import Image
from torchvision.datasets.utils import download_url
class Voc12Segmentation(data.Dataset):
def __init__(self,root,image_set,transforms,download=False):
self.root = os.path.expanduser(root)
self.url='http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar'
self.filename='VOCtrainval_11-May-2012.tar'
self.md5='6cd6e144f989b92b3379bac3b3de84fd'
self.base_dir='VOCdevkit/VOC2012'
self.transforms=transforms
voc_root = os.path.join(self.root, self.base_dir)
image_dir = os.path.join(voc_root, 'JPEGImages')
if download:
download_extract(self.url, self.root, self.filename, self.md5)
if not os.path.isdir(voc_root):
raise RuntimeError(f'{voc_root} not found')
if image_set == 'train_aug':
mask_dir = os.path.join(voc_root, 'SegmentationClassAug')
split_f = os.path.join(voc_root, f'ImageSets/Segmentation/{image_set}.txt')
else:
mask_dir = os.path.join(voc_root, 'SegmentationClass')
split_f = os.path.join(voc_root, f'ImageSets/Segmentation/{image_set}.txt')
if not os.path.exists(split_f):
raise RuntimeError(f'{split_f} not found')
with open(split_f, "r") as f:# os.path.join(split_f)
file_names = [x.strip() for x in f.readlines()]
self.images = [os.path.join(image_dir, x + ".jpg") for x in file_names]
self.masks = [os.path.join(mask_dir, x + ".png") for x in file_names]
assert (len(self.images) == len(self.masks))
def __getitem__(self, index):
img = Image.open(self.images[index]).convert('RGB')
target = Image.open(self.masks[index])
if self.transforms is not None:
img, target = self.transforms(img, target)
return img, target
def __len__(self):
return len(self.images)
def download_extract(url, root, filename, md5):
download_url(url, root, filename, md5)
with tarfile.open(os.path.join(root, filename), "r") as tar:
tar.extractall(path=root)