findMedianSortedArrays()
below assumes input arrays are sorted.
class Solution {
public double findMedianSortedArrays(int[] input1, int[] input2) throws IllegalArgumentException {
if (input1 == null || input2 == null) {
throw new IllegalArgumentException();
} else if (input1.length > input2.length) {
return findMedianSortedArrays(input2, input1); // ensures 1st array is smaller than 2nd array
}
int x = input1.length;
int y = input2.length;
int low = 0;
int high = x;
while (low <= high) {
int partitionX = (low + high) / 2;
int partitionY = (x + y + 1) / 2 - partitionX;
int maxLeftX = (partitionX == 0) ? Integer.MIN_VALUE : input1[partitionX - 1];
int minRightX = (partitionX == x) ? Integer.MAX_VALUE : input1[partitionX];
int maxLeftY = (partitionY == 0) ? Integer.MIN_VALUE : input2[partitionY - 1];
int minRightY = (partitionY == y) ? Integer.MAX_VALUE : input2[partitionY];
if (maxLeftX <= minRightY && maxLeftY <= minRightX) {
if ((x + y) % 2 == 0) {
return ((double) Math.max(maxLeftX, maxLeftY) + Math.min(minRightX, minRightY)) / 2;
} else {
return (double) Math.max(maxLeftX, maxLeftY);
}
} else if (maxLeftX > minRightY) {
high = partitionX - 1;
} else {
low = partitionX + 1;
}
}
throw new IllegalArgumentException(); // can only occur if input arrays were not sorted.
}
}
- Time Complexity: O(min(log(x, y)))
- Space Complexity: O(1)