-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathmetrics.py
97 lines (77 loc) · 2.49 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import numpy as np
class matrix_evolution():
""" Implement Score Metrics and find Confusion Matrix
Attributes
==========
None
Methods
=======
confusion_matrix(y_true, y_pred)
Finds true_positive,false_positive,false_negative,true_negative
and make confusion_matrix
score_metrics(y_true, y_pred)
Finds common evaluation metrices like precision,recall,accuracy,F1
simplicity and FbTheta
"""
def confusion_matrix(y_true, y_pred):
""" confusion_matrix Function
For creating Confusion Matrix
PARAMETERS
==========
y_true: ndarray(dtype=float,ndim=1)
1D array of True Values
y_pred: ndarray(dtype=float,ndim=1)
1D array of Predicted Values
RETURNS
=======
conf_matrix:ndarray(dtype=float,ndim=2)
2D Confusion Matrix
"""
stack = np.vstack((y_true, y_pred))
tp = 0
tn = 0
fp = 0
fn = 0
for i in range(len(stack[0])):
if stack[0][i] == 1 and stack[1][i] == 1:
tp += 1
if stack[0][i] == 0 and stack[1][i] == 0:
tn += 1
if stack[0][i] == 0 and stack[1][i] == 1:
fp += 1
if stack[0][i] == 1 and stack[1][i] == 0:
fn += 1
conf_matrix = np.reshape(np.array([tp, fp, fn, tn]), (-1, 2))
return conf_matrix
def score_metrics(y_true, y_pred):
""" Implements Score Metrics
PARAMETERS
==========
y_true: ndarray(dtype=float,ndim=1)
1D array of True Values
y_pred: ndarray(dtype=float,ndim=1)
1D array of Predicted Values
"""
m = matrix_evolution.confusion_matrix(y_true, y_pred)
tp = m[0][0]
fp = m[0][1]
fn = m[1][0]
tn = m[1][1]
accuracy = (tp)/(tp + fp + tn + fn)
precision = (tp)/(tp + fp)
recall = (tp)/(tp + fn)
p = precision
r = recall
f1 = (2 * p * r)/(p + r)
specificity = (tn)/(tn + fp)
b1 = 0.5
fb1 = ((1 + b1**2)*(p * r))/(p * b1**2 + r)
b2 = 2
fb2 = ((1 + b2**2)*(p * r))/(p * b2**2 + r)
print("Accuracy = ", accuracy)
print("Precision = ", precision)
print("Recall = ", recall)
print("Specificity = ", specificity)
print("F1 =", f1)
print("FbTheta for 0.5 = ", fb1)
print("FbTheta for 2.0 = ", fb2)