-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutills.py
284 lines (219 loc) · 9.13 KB
/
utills.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
'''
Utills library for data processing, prediction decode and prediction postpprocessing
Some functions are from several kaggle kernels
https://www.kaggle.com/zstusnoopy/visualize-the-location-and-3d-bounding-box-of-car
https://www.kaggle.com/hocop1/centernet-baseline
https://www.kaggle.com/ebouteillon/augmented-reality
Thanks a lot for their shareing
'''
import cv2
import numpy as np
from math import cos, sin
from project_config import *
import matplotlib.pyplot as plt
def str2coords(s, names):
'''
Function for decoding the prediction string
------------------------------------------------------------
'''
coords = []
for l in np.array(s.split()).reshape([-1, 7]):
coords.append(dict(zip(names, l.astype('float'))))
return coords
def PredStr_2_6dof(predstr):
'''
Function for decoding the prediction string
------------------------------------------------------------
'''
tag=['id','pitch','yaw','roll','x','y','z']
coordinate = []
predstr = np.array(predstr.split()).reshape(-1,7)
for ps in predstr:
coordinate.append(dict(zip(tag,ps.astype('float'))))
coordinate[-1]['id'] = int(coordinate[-1]['id'])
return coordinate
def SIXDOF_2_ImageCoordinate(coordinate, maximum_objects=100):
'''
Function for generating 2d coordinate of cars in image
------------------------------------------------------------
Input:
Decoded prediction string
Output:
Car 2d coordinate(y, x format) in original image scale
'''
if len(coordinate) > maximum_objects:
coordinate = np.random.choice(coordinate, maximum_objects)
X = [c['x'] for c in coordinate]
Y = [c['y'] for c in coordinate]
Z = [c['z'] for c in coordinate]
real_world_coordinates = np.array(list(zip(X,Y,Z))).T
image_coordinate = np.dot(IntrinsicMatrix, real_world_coordinates).T
image_coordinate[:,0] /= image_coordinate[:,2]
image_coordinate[:,1] /= image_coordinate[:,2]
return np.array( [image_coordinate[:,1], image_coordinate[:,0]], dtype=np.float).T
def euler_to_Rot(yaw, pitch, roll):
'''
Function for transform the euler angle to rotation matrix
------------------------------------------------------------
Input :
Eular angles
Output:
Rotation matrix
'''
Y = np.array([[cos(yaw), 0, sin(yaw)],
[0, 1, 0],
[-sin(yaw), 0, cos(yaw)]])
P = np.array([[1, 0, 0],
[0, cos(pitch), -sin(pitch)],
[0, sin(pitch), cos(pitch)]])
R = np.array([[cos(roll), -sin(roll), 0],
[sin(roll), cos(roll), 0],
[0, 0, 1]])
return np.dot(Y, np.dot(P,R))
def Visual3D(image, args):
'''
Function for visualize the 3D brounding box of cars
------------------------------------------------------------
Input:
image
6dof in `pitch, yaw, roll, x, y, z` order
Output:
image with drawed 3d bounding box
'''
def draw_line(image, points):
color = (255, 0, 0)
cv2.line(image, tuple(points[1][:2]), tuple(points[2][:2]), color, 8)
cv2.line(image, tuple(points[1][:2]), tuple(points[4][:2]), color, 8)
cv2.line(image, tuple(points[1][:2]), tuple(points[5][:2]), color, 8)
cv2.line(image, tuple(points[2][:2]), tuple(points[3][:2]), color, 8)
cv2.line(image, tuple(points[2][:2]), tuple(points[6][:2]), color, 8)
cv2.line(image, tuple(points[3][:2]), tuple(points[4][:2]), color, 8)
cv2.line(image, tuple(points[3][:2]), tuple(points[7][:2]), color, 8)
cv2.line(image, tuple(points[4][:2]), tuple(points[8][:2]), color, 8)
cv2.line(image, tuple(points[5][:2]), tuple(points[8][:2]), color, 8)
cv2.line(image, tuple(points[5][:2]), tuple(points[6][:2]), color, 8)
cv2.line(image, tuple(points[6][:2]), tuple(points[7][:2]), color, 8)
cv2.line(image, tuple(points[7][:2]), tuple(points[8][:2]), color, 8)
return image
def draw_points(image, points):
image = np.array(image)
for (p_x, p_y, p_z) in points:
cv2.circle(image, (p_x, p_y), 5, (255, 0, 0), -1)
return image
x_l = 1.02
y_l = 0.80
z_l = 2.31
img = image.copy()
pitch, yaw, roll, x, y, z = args
yaw = -yaw
pitch = -pitch
roll = -roll
RT_mat = np.eye(4)
RT_mat[:3,3] = np.array([x,y,z])
RT_mat[:3,:3] = euler_to_Rot(yaw, pitch,roll).T
RT_mat = RT_mat[:3,:]
P = np.array([[0, 0, 0, 1],
[x_l, y_l, -z_l, 1],
[x_l, y_l, z_l, 1],
[-x_l, y_l, z_l, 1],
[-x_l, y_l, -z_l, 1],
[x_l, -y_l, -z_l, 1],
[x_l, -y_l, z_l, 1],
[-x_l, -y_l, z_l, 1],
[-x_l, -y_l, -z_l, 1]]).T
points = np.dot(IntrinsicMatrix, np.dot(RT_mat, P)).T
points[:,0] /= points[:,2]
points[:,1] /= points[:,2]
points = points.astype('int')
img = draw_line(img, points)
img = draw_points(img, points)
return img
def rotate(x, angle):
'''
Function for encoding the roll ground truth
------------------------------------------------------------
'''
x = x + angle
x = x - (x + np.pi) // (2 * np.pi) * 2 * np.pi
return x
def rotateImage(alpha=0, beta=0, gamma=0, dx=1686.2379, dy=1354.9849):
'''
Function for generating the 2D and 3D rotation transformation matrix
------------------------------------------------------------
Input:
alpha : rotation angle around x-axis in radian format
beta : rotation angle around y-axis in radian format
gamma : rotation angle around z-axis in radian fotmat
dx : Camera principal point of x-axis
dy : Camera principal point of y-axis
Output:
TransMat : 2D transformation matrix of rotation
RotMat : 3D transformation matrix of rotation
'''
fx, dx = 2304.5479, dx
fy, dy = 2305.8757, dy
A1 = np.array([[1/fx, 0, -dx/fx],
[0, 1/fy, -dy/fy],
[0, 0, 1],
[0, 0, 1]])
RX = np.array([[1, 0, 0, 0],
[0, cos(alpha), -sin(alpha), 0],
[0, sin(alpha), cos(alpha), 0],
[0, 0, 0, 1]])
RY = np.array([[cos(beta), 0, -sin(beta), 0],
[0, 1, 0, 0],
[sin(beta), 0, cos(beta), 0],
[0, 0, 0, 1]])
RZ = np.array([[cos(gamma), -sin(gamma), 0, 0],
[sin(gamma), cos(gamma), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
A2 = np.array([[fx, 0, dx, 0],
[0, fy, dy, 0],
[0, 0, 1, 0]])
RotMat = np.dot(RZ, np.dot(RX,RY))
trans = np.dot(A2, np.dot(RotMat, A1))
return trans, RotMat
############################################################################
def clear_predictions(prediction, tags = ['pitch', 'yaw', 'roll', 'x', 'y', 'z']):
'''
Function for prediction postprocessing, which will discard the predictions which are too close to other prediction
Also discarding the predictions that the confidence value is lower than threshold
------------------------------------------------------------
'''
new_prediction = []
tag=['pitch','yaw','roll','x','y','z']
pitchs, yaws, rolls, xs, ys, zs, confidences = np.split(prediction,7)
predstr = np.array([pitchs, yaws, rolls, xs, ys, zs], dtype=np.float32).transpose(1,0)
coordinate = []
for ps in predstr:
coordinate.append(dict(zip(tag,ps.astype('float'))))
image_coordinates = SIXDOF_2_ImageCoordinate(coordinate)
ys_2d = image_coordinates[:,0]
xs_2d = image_coordinates[:,1]
for idx, (x1, y1, c1) in enumerate(zip(xs_2d, ys_2d, confidences)):
for idx2, (x2, y2, c2) in enumerate(zip(xs_2d, ys_2d, confidences)):
if idx != idx2:
distance = np.sqrt((x1-x2)**2 + (y1-y2)**2)
if distance < config['DUPLICATE_CAR_DISTANCE_THRESHOLD']:
if c1 <= c2:
confidences[idx] = -1
for p, y, r, X, Y, Z, c in zip(pitchs, yaws, rolls, xs, ys, zs, confidences):
if (c >= config['CONFIDENCE_THRESHOLD']) :
new_prediction.append(np.array([p,y,r,X,Y,Z,c]))
if len(new_prediction) == 0:
return np.array([])
return np.stack(new_prediction)
def decode_predictions(prediction, fx=2304.5479, fy=2305.8757, cx=1686.2379, cy=1354.9849):
'''
Function for decoding the prediction into desire format
------------------------------------------------------------
'''
pitchs, yaws, rolls, zs, confidences, kp_indices = np.split(prediction, 6)
xs_2d = ( kp_indices % config['OUTPUT_SIZE'][1] ) / config['OUTPUT_SIZE'][1] * 3384
ys_2d = ( kp_indices // config['OUTPUT_SIZE'][1]) / config['OUTPUT_SIZE'][0] * (2710-config['ORIGINAL_Y_CROPPED']) + config['ORIGINAL_Y_CROPPED']
#Transform 2D image coordinates into X and Y (world coordinate)
xs = ( xs_2d - cx ) * zs / fx
ys = ( ys_2d - cy ) * zs / fy
new_prediction = np.concatenate([pitchs, yaws, rolls, xs, ys, zs, confidences], axis=0)
return new_prediction