-
Notifications
You must be signed in to change notification settings - Fork 0
/
faces_train.py
51 lines (42 loc) · 1.5 KB
/
faces_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import os
import numpy as np
from PIL import Image
import cv2
import pickle
BASE_DIR=os.path.dirname(os.path.abspath(__file__))
image_dir=os.path.join(BASE_DIR,"images")
face_cascade=cv2.CascadeClassifier('data/haarcascade_frontalface_alt2.xml')
recognizer=cv2.face.LBPHFaceRecognizer_create()
current_id=0
label_ids={}
y_labels=[]
x_train=[]
for root,dirs,files in os.walk(image_dir):
for file in files:
if file.endswith("png") or file.endswith("jpg"):
path=os.path.join(root,file)
label=os.path.basename(os.path.dirname(path)).replace(" ","-").lower()
# print(label,path)
if not label in label_ids:
label_ids[label]=current_id
current_id+=1
id_=label_ids[label]
# print(label_ids)
# y_labels.append(label)
# x_train.append(path)
pil_image=Image.open(path).convert("L")
size=(550,550)
final_image=pil_image.resize(size,Image.ANTIALIAS)
image_array=np.array(final_image,"uint8")
# print(image_array)
faces=face_cascade.detectMultiScale(image_array,scaleFactor=1.1,minNeighbors=5)
for(x,y,h,w) in faces:
roi=image_array[y:y+h,x:x+w]
x_train.append(roi)
y_labels.append(id_)
# print(y_labels)
# print(x_train)
with open("labels.pickle",'wb') as f:
pickle.dump(label_ids,f)
recognizer.train(x_train,np.array(y_labels))
recognizer.save("trainner.yml")