forked from vedant781999/Array_operation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Fermat-Little and Wilson Theorem_Number Theory.cpp
94 lines (75 loc) · 1.88 KB
/
Fermat-Little and Wilson Theorem_Number Theory.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
// Fermat theorem application
// 1) Modulo Inverse
// a^p = a(mod p)
// If a is not divisible by p,
// a^p-1 = 1(mod p)
// On multiplying by a^-1
// a^p-2 = a^-1(mod p)
// 2) Binary Exponentiation
// 3) (a/b)%m = (a%m)*(b^-1 % m) % m
// 4) (nCr)%p
// if p>n
// 1) pre calculate factorial taking modulo p
// 2) nCr % p = (fac[n])*modInverse(fac[r])%p * modInverse(fac[n-r])%p) % p
// if n>=p than n! % p = 0 because n! me p bhi to hoga
// Wilson Theorem
// A positive integer n>1 is a prime if and only if
// (n-1)! = -1(mod n) or (n-1)! = n-1(mod n)
// also vice versa is true
// In other word, (n-1)! is 1 less than a multiple of n
// For eg, 101 is prime so 100! = 101k - 1 for some integer k
// For eg Calculate (25! % 29)
// From Wilson theorem we know that 28! is -1
// So we need to find
// [(-1)*inverse(28,29)*inverse(27,29)*inverse(26,29)]%29
// Spoj Boring Factorial (calculate factorial of very very big number)
// if n>=p than 0
// if p > n than (p-1)! = p-1(mod p)
// But we have to remove (n+1)*(n+2)*....(p-1) by taking inverse modulo
// for(int i=n+1;i<p;i++)
// {
// res = (res * modInverse(i,p)) % p;
// }
// O((p-n)*logn)
#include<bits/stdc++.h>
using namespace std;
#define int long long
int power(int x,int y,int p)
{
int res=1;
x = x%p;
while(y>0)
{
if(y&1)
{
res = (res*x)%p;
}
y = y>>1;
x = (x*x)%p;
}
return res;
}
int modInverse(int a,int p)
{
return power(a,p-2,p); // Fermat little theorem a^p-1 = a^-1(mod p)
}
int modfact(int n,int p)
{
if(p <= n)
{
return 0;
}
int res = (p-1);
for(int i=n+1;i<p;i++)
{
res = (res*modInverse(i,p))%p;
}
return res;
}
int32_t main()
{
int n,p;
cin>>n>>p;
cout<<modfact(n,p);
return 0;
}