forked from simplelifetime/TIVE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
348 lines (269 loc) · 12.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import json
import os
import random
import torch
from transformers import AutoTokenizer
from llava.mm_utils import process_images, tokenizer_image_token
from llava import conversation as conversation_lib
from llava.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.model import *
import argparse
from PIL import Image
from typing import Dict, List, Tuple, Sequence
import transformers
import copy
from tqdm import tqdm
import math
import tokenizers
from packaging import version
IS_TOKENIZER_GREATER_THAN_0_14 = version.parse(tokenizers.__version__) >= version.parse('0.14')
from torch.utils._foreach_utils import _group_tensors_by_device_and_dtype, _has_foreach_support
import IPython
def find_all_linear_names(model):
cls = torch.nn.Linear
lora_module_names = set()
multimodal_keywords = ['mm_projector', 'vision_tower', 'vision_resampler']
for name, module in model.named_modules():
if any(mm_keyword in name for mm_keyword in multimodal_keywords):
continue
if isinstance(module, cls):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if 'lm_head' in lora_module_names: # needed for 16-bit
lora_module_names.remove('lm_head')
return list(lora_module_names)
def load_pretrained_model_lora(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", **kwargs):
kwargs = {"device_map": device_map, **kwargs}
if device != "cuda":
kwargs['device_map'] = {"": device}
kwargs['torch_dtype'] = torch.float16
if 'llava' in model_name.lower():
# Load LLaVA model
if 'lora' in model_name.lower() and model_base is None:
warnings.warn('There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.')
if 'lora' in model_name.lower() and model_base is not None:
from llava.model.language_model.llava_llama import LlavaConfig
lora_cfg_pretrained = LlavaConfig.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
print('Loading LLaVA from base model...')
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs)
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
if model.lm_head.weight.shape[0] != token_num:
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
print('Loading additional LLaVA weights...')
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu')
else:
# this is probably from HF Hub
from huggingface_hub import hf_hub_download
def load_from_hf(repo_id, filename, subfolder=None):
cache_file = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder)
return torch.load(cache_file, map_location='cpu')
non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin')
non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()}
if any(k.startswith('model.model.') for k in non_lora_trainables):
non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()}
model.load_state_dict(non_lora_trainables, strict=False)
from peft import PeftModel
print('Loading LoRA weights...')
model = PeftModel.from_pretrained(model, model_path)
if 'llava' in model_name.lower():
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
if mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
if mm_use_im_start_end:
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
model.resize_token_embeddings(len(tokenizer))
vision_tower = model.get_vision_tower()
if not vision_tower.is_loaded:
vision_tower.load_model()
vision_tower.to(device=device, dtype=torch.float16)
image_processor = vision_tower.image_processor
if hasattr(model.config, "max_sequence_length"):
context_len = model.config.max_sequence_length
else:
context_len = 2048
return tokenizer, model, image_processor, context_len
def load_image(image_file):
image = Image.open(image_file).convert('RGB')
return image
def preprocess_multimodal(
sources: Sequence[str]
) -> Dict:
for source in sources:
for sentence in source:
if DEFAULT_IMAGE_TOKEN in sentence['value']:
sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip()
sentence['value'] = DEFAULT_IMAGE_TOKEN + '\n' + sentence['value']
sentence['value'] = sentence['value'].strip()
if "mmtag" in conversation_lib.default_conversation.version:
sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '<Image>' + DEFAULT_IMAGE_TOKEN + '</Image>')
replace_token = DEFAULT_IMAGE_TOKEN
sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token)
return sources
def preprocess_v1(
sources,
tokenizer: transformers.PreTrainedTokenizer,
has_image: bool = False
) -> Dict:
conv = conversation_lib.default_conversation.copy()
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
# Apply prompt templates
conversations = []
for i, source in enumerate(sources):
if roles[source[0]["from"]] != conv.roles[0]:
# Skip the first one if it is not from human
source = source[1:]
conv.messages = []
for j, sentence in enumerate(source):
role = roles[sentence["from"]]
assert role == conv.roles[j % 2], f"{i}"
conv.append_message(role, sentence["value"])
conversations.append(conv.get_prompt())
# Tokenize conversations
if has_image:
input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0)
else:
input_ids = tokenizer(
conversations,
return_tensors="pt",
padding="longest",
max_length=tokenizer.model_max_length,
truncation=True,
).input_ids
targets = input_ids.clone()
assert conv.sep_style == conversation_lib.SeparatorStyle.TWO
# Mask targets
sep = conv.sep + conv.roles[1] + ": "
for conversation, target in zip(conversations, targets):
total_len = int(target.ne(tokenizer.pad_token_id).sum())
rounds = conversation.split(conv.sep2)
cur_len = 1
target[:cur_len] = IGNORE_INDEX
for i, rou in enumerate(rounds):
if rou == "":
break
parts = rou.split(sep)
if len(parts) != 2:
break
parts[0] += sep
if has_image:
round_len = len(tokenizer_image_token(rou, tokenizer))
instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2
else:
round_len = len(tokenizer(rou).input_ids)
instruction_len = len(tokenizer(parts[0]).input_ids) - 2
if i != 0 and not tokenizer.legacy and IS_TOKENIZER_GREATER_THAN_0_14:
round_len -= 1
instruction_len -= 1
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
cur_len += round_len
target[cur_len:] = IGNORE_INDEX
if cur_len < tokenizer.model_max_length:
if cur_len != total_len:
target[:] = IGNORE_INDEX
print(
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
f" (ignored)"
)
return dict(
input_ids=input_ids,
labels=targets,
)
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
def compute_gradient(dd, model, tokenizer, image_processor):
model.zero_grad()
sources = dd.copy()
sources['conversations'] = sources['conversations']
sources = [sources]
sources = preprocess_multimodal(copy.deepcopy([e["conversations"] for e in sources]),)
res = preprocess_v1(
sources,
tokenizer,
has_image=('image' in dd))
input_id = res['input_ids'].cuda()
label = res['labels'].cuda()
image_root = '/nas/data/zkliu/llava_datasets/'
# image_root = '/nas/data/zkliu/llava_evaluation/'
if 'image' in dd:
image = load_image(os.path.join(image_root, dd['image']))
# Similar operation in model_worker.py
image_tensor = process_images([image], image_processor, model.config)
image_tensor = image_tensor.to(model.device, dtype=torch.float16)
else:
image_tensor = None
model.zero_grad()
outputs = model.forward(
input_id,
images=image_tensor,
labels=label)
outputs.loss.backward()
grads = [p.grad for n, p in model.named_parameters() if p.grad is not None]
### compute self-influence
first_device = grads[0].device
grouped_grads: Dict[Tuple[torch.device, torch.dtype], List[List[torch.Tensor]]] \
= _group_tensors_by_device_and_dtype([[g.detach() for g in grads]])
norms = []
foreach = None
norm_type=2.0
for ((device, _), ([grads], _)) in grouped_grads.items():
if (foreach is None or foreach) and _has_foreach_support(grads, device=device):
norms.extend(torch._foreach_norm(grads, norm_type))
elif foreach:
raise RuntimeError(f'foreach=True was passed, but can\'t use the foreach API on {device.type} tensors')
else:
norms.extend([torch.linalg.vector_norm(g, norm_type) for g in grads])
total_norm = torch.linalg.vector_norm(torch.stack([norm.to(first_device) for norm in norms]), norm_type)
# Partial gradient projection if needed
def check_parameter(n):
return True
# module_list = ['model.mm_projector', 'model.layers.31']
# if 'layernorm' in n or 'bias' in n:
# return False
# for module in module_list:
# if module in n:
# return True
# return False
vectorized_grads = torch.cat(
[p.grad.view(-1) for n, p in model.named_parameters() if p.grad is not None and check_parameter(n)])
return vectorized_grads, float(total_norm)
def get_chunks_ind(lst, chunk_size):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), chunk_size):
yield lst[i:i + chunk_size]
def compute_projected_gradients(dd_list, model, tokenizer, image_processor, proj):
grad_list, norm_list = [], []
for d in dd_list:
vectorzed_grad, grad_norm = compute_gradient(d, model, tokenizer, image_processor)
grad_list.append(vectorzed_grad)
norm_list.append(grad_norm)
grads = torch.stack(grad_list)
projected_grads = proj.project(grads, model_id=0)
return projected_grads, norm_list
def combine_gradients(gradient_path, chunk_num=8):
all_gradients = []
for idx in range(chunk_num):
g = torch.load(f"{gradient_path}/output_{idx}", map_location='cpu')
all_gradients.extend(torch.cat(g, dim=0))
return all_gradients
def calculate_influence_score(training_info: torch.Tensor, validation_info: torch.Tensor):
"""Calculate the influence score.
Args:
training_info (torch.Tensor): training info (gradients/representations) stored in a tensor of shape N x N_DIM
validation_info (torch.Tensor): validation info (gradients/representations) stored in a tensor of shape N_VALID x N_DIM
"""
# N x N_VALID
influence_scores = torch.matmul(
training_info, validation_info.transpose(0, 1))
return influence_scores