diff --git a/src/linesearch.jl b/src/linesearch.jl index 0abe25c..ffacd01 100644 --- a/src/linesearch.jl +++ b/src/linesearch.jl @@ -66,7 +66,7 @@ function search!(opt::SFNOptimizer, stats::Stats, x::S, f::F, fval::T, g::S, g_n #Update regularization # println("Accepted η: ", η) - opt.M = max(min(1e8, opt.M/η^2), 1e-15) + opt.M = max(min(1e8, opt.M/η^2), 1e-8) # println("Updated M: ", opt.M) return success diff --git a/src/minimize.jl b/src/minimize.jl index 899dafb..ffccc8b 100644 --- a/src/minimize.jl +++ b/src/minimize.jl @@ -156,7 +156,7 @@ function iterate!(opt::O, x::S, f::F1, fg!::F2, Hv::H, itmax::I, time_limit::T) if opt.linesearch && !search!(opt, stats, x, f, fval, grads, g_norm, Hv) break else - println("P-norm: ", norm(opt.solver.p)) + # println("P-norm: ", norm(opt.solver.p)) x .+= opt.solver.p end ########## diff --git a/src/solvers.jl b/src/solvers.jl index d75d239..5f09397 100644 --- a/src/solvers.jl +++ b/src/solvers.jl @@ -69,10 +69,11 @@ function step!(solver::GLKSolver, stats::Stats, Hv::H, g::S, g_norm::T, M::T, ti # println("Max E: ", maximum(E.values), " Min E: ", minimum(E.values)) #Quadrature scaling factor - # c = eigmax(Hv, tol=1e-1) #+ sqrt(λ) - c = λ≤1 ? 1. : sqrt(λ) + c = eigmax(Hv, tol=1e-6) + # c = sqrt(eigmax(Hv, tol=1e-6)) #+ sqrt(λ) + # c = λ≤1 ? 1. : sqrt(λ) - println("c: ", c) + # println("c: ", c) #Shifts shifts = c^2*solver.quad_nodes .+ λ @@ -121,7 +122,7 @@ function hvp_power(solver::GCKSolver) return 2 end -function GCKSolver(dim::I, type::Type{<:AbstractVector{T}}=Vector{Float64}, quad_order::I=25, krylov_order::I=0) where {I<:Integer, T<:AbstractFloat} +function GCKSolver(dim::I, type::Type{<:AbstractVector{T}}=Vector{Float64}, quad_order::I=31, krylov_order::I=0) where {I<:Integer, T<:AbstractFloat} #Quadrature nodes, weights = gausschebyshevt(quad_order) @@ -154,14 +155,12 @@ function step!(solver::GCKSolver, stats::Stats, Hv::H, g::S, g_norm::T, M::T, ti - Median =# # β = 1.0 - # β = λ > 1 ? λ : one(λ) - # β = eigmax(Hv, tol=1e-6) - # E = eigen(Matrix(Hv)) - # println(E.values) - # println("λ: ", λ) + # β = λ > 1 ? λ : one(λ) + β = eigmax(Hv, tol=1e-6) + # β = sqrt(eigmax(Hv, tol=1e-6)) # β = sum(E.values)/length(g) + λ + # β = λ≤1 ? 1. : sqrt(λ) # println("β: ", β) - β = 100 #Shifts and scalings shifts = (λ-β) .* solver.quad_nodes .+ (λ+β) @@ -182,8 +181,9 @@ function step!(solver::GCKSolver, stats::Stats, Hv::H, g::S, g_norm::T, M::T, ti push!(stats.krylov_iterations, solver.krylov_solver.stats.niter) #Update search direction - for i in eachindex(scales) + for i in eachindex(shifts) @inbounds solver.p .+= solver.quad_weights[i]*solver.krylov_solver.x[i] + # @inbounds solver.p .-= solver.quad_weights[i]*(scales[i]*Matrix(Hv)+shifts[i]*I)\g end solver.p .*= sqrt(β)