From d5594aa87b5d703cf4bcaa58673ad7270b5ffd75 Mon Sep 17 00:00:00 2001 From: Stefan Krastanov Date: Mon, 4 Nov 2024 22:31:01 -0500 Subject: [PATCH] make the doctest actually use the function that it is documenting (and simplify the code a bit) --- ext/QuantumCliffordHeckeExt/lifted_product.jl | 14 ++-- test/test_ecc_2bga.jl | 66 +++++++++---------- 2 files changed, 39 insertions(+), 41 deletions(-) diff --git a/ext/QuantumCliffordHeckeExt/lifted_product.jl b/ext/QuantumCliffordHeckeExt/lifted_product.jl index 3ff39bb0d..21cd96481 100644 --- a/ext/QuantumCliffordHeckeExt/lifted_product.jl +++ b/ext/QuantumCliffordHeckeExt/lifted_product.jl @@ -153,8 +153,8 @@ code_s(c::LPCode) = size(c.repr(zero(c.GA)), 1) * (size(c.A, 1) * size(c.B, 1) + Two-block group algebra (2GBA) codes, which are a special case of lifted product codes from two group algebra elements `a` and `b`, used as `1x1` base matrices. -[[56, 28, 2]] 2BGA code from Table 2 of [lin2024quantum](@cite) with direct product -of `C₄ x C₂`. +Here is an example of a [[56, 28, 2]] 2BGA code from Table 2 of [lin2024quantum](@cite) +with direct product of `C₄ x C₂`. ```jldoctest julia> import Hecke: group_algebra, GF, abelian_group, gens; @@ -165,11 +165,11 @@ julia> x = gens(GA)[1]; julia> s = gens(GA)[2]; -julia> A = reshape([1 + x^7], (1, 1)); +julia> A = 1 + x^7 -julia> B = reshape([1 + x^7 + s + x^8 + s*x^7 + x], (1, 1)); +julia> B = 1 + x^7 + s + x^8 + s*x^7 + x -julia> c = LPCode(A,B); +julia> c = two_block_group_algebra_codes(A,B); julia> code_n(c), code_k(c) (56, 28) @@ -178,9 +178,7 @@ julia> code_n(c), code_k(c) See also: [`LPCode`](@ref), [`generalized_bicycle_codes`](@ref), [`bicycle_codes`](@ref) """ function two_block_group_algebra_codes(a::GroupAlgebraElem, b::GroupAlgebraElem) - A = reshape([a], (1, 1)) - B = reshape([b], (1, 1)) - LPCode(A, B) + LPCode([a;;], [b;;]) end """ diff --git a/test/test_ecc_2bga.jl b/test/test_ecc_2bga.jl index d42c4182e..e284abfab 100644 --- a/test/test_ecc_2bga.jl +++ b/test/test_ecc_2bga.jl @@ -3,25 +3,25 @@ using Hecke: group_algebra, GF, abelian_group, gens using QuantumClifford.ECC: LPCode, code_k, code_n - @testset "Reproduce Table 2 lin2024quantum" begin + @testset "Reproduce Table 2 lin2024quantum" begin # TODO these tests should probably just use the `two_block_group_algebra_codes` function as that would make them much shorter and simpler # codes taken from Table 2 of [lin2024quantum](@cite) # m = 4 GA = group_algebra(GF(2), abelian_group([4,2])) x = gens(GA)[1] s = gens(GA)[2] - A = reshape([1 + x], (1, 1)) - B = reshape([1 + x + s + x^2 + s*x + s*x^3], (1, 1)) + A = [1 + x;;] + B = [1 + x + s + x^2 + s*x + s*x^3;;] c = LPCode(A,B) # [[16, 2, 4]] 2BGA code @test code_n(c) == 16 && code_k(c) == 2 - A = reshape([1 + x], (1, 1)) - B = reshape([1 + x + s + x^2 + s*x + x^3], (1, 1)) + A = [1 + x;;] + B = [1 + x + s + x^2 + s*x + x^3;;] c = LPCode(A,B) # [[16, 4, 4]] 2BGA code @test code_n(c) == 16 && code_k(c) == 4 - A = reshape([1 + s], (1, 1)) - B = reshape([1 + x + s + x^2 + s*x + x^2], (1, 1)) + A = [1 + s;;] + B = [1 + x + s + x^2 + s*x + x^2;;] c = LPCode(A,B) # [[16, 8, 2]] 2BGA code @test code_n(c) == 16 && code_k(c) == 8 @@ -30,13 +30,13 @@ GA = group_algebra(GF(2), abelian_group([6,2])) x = gens(GA)[1] s = gens(GA)[2] - A = reshape([1 + x], (1, 1)) - B = reshape([1 + x^3 + s + x^4 + x^2 + s*x], (1, 1)) + A = [1 + x;;] + B = [1 + x^3 + s + x^4 + x^2 + s*x;;] c = LPCode(A,B) # [[24, 4, 5]] 2BGA code @test code_n(c) == 24 && code_k(c) == 4 - A = reshape([1 + x^3], (1, 1)) - B = reshape([1 + x^3 + s + x^4 + s*x^3 + x], (1, 1)) + A = [1 + x^3;;] + B = [1 + x^3 + s + x^4 + s*x^3 + x;;] c = LPCode(A,B) # [[24, 12, 2]] 2BGA code @test code_n(c) == 24 && code_k(c) == 12 @@ -45,13 +45,13 @@ GA = group_algebra(GF(2), abelian_group([8,2])) x = gens(GA)[1] s = gens(GA)[2] - A = reshape([1 + x^6], (1, 1)) - B = reshape([1 + s*x^7 + s*x^4 + x^6 + s*x^5 + s*x^2], (1, 1)) + A = [1 + x^6;;] + B = [1 + s*x^7 + s*x^4 + x^6 + s*x^5 + s*x^2;;] c = LPCode(A,B) # [[32, 8, 4]] 2BGA code @test code_n(c) == 32 && code_k(c) == 8 - A = reshape([1 + s*x^4], (1, 1)) - B = reshape([1 + s*x^7 + s*x^4 + x^6 + x^3 + s*x^2], (1, 1)) + A = [1 + s*x^4;;] + B = [1 + s*x^7 + s*x^4 + x^6 + x^3 + s*x^2;;] c = LPCode(A,B) # [[32, 16, 2]] 2BGA code @test code_n(c) == 32 && code_k(c) == 16 @@ -60,18 +60,18 @@ GA = group_algebra(GF(2), abelian_group([10,2])) x = gens(GA)[1] s = gens(GA)[2] - A = reshape([1 + x], (1, 1)) - B = reshape([1 + x^5 + x^6 + s*x^6 + x^7 + s*x^3], (1, 1)) + A = [1 + x;;] + B = [1 + x^5 + x^6 + s*x^6 + x^7 + s*x^3;;] c = LPCode(A,B) # [[40, 4, 8]] 2BGA code @test code_n(c) == 40 && code_k(c) == 4 - A = reshape([1 + x^6], (1, 1)) - B = reshape([1 + x^5 + s + x^6 + x + s*x^2], (1, 1)) + A = [1 + x^6;;] + B = [1 + x^5 + s + x^6 + x + s*x^2;;] c = LPCode(A,B) # [[40, 8, 5]] 2BGA code @test code_n(c) == 40 && code_k(c) == 8 - A = reshape([1 + x^5], (1, 1)) - B = reshape([1 + x^5 + s + x^6 + s*x^5 + x], (1, 1)) + A = [1 + x^5;;] + B = [1 + x^5 + s + x^6 + s*x^5 + x;;] c = LPCode(A,B) # [[40, 20, 2]] 2BGA code @test code_n(c) == 40 && code_k(c) == 20 @@ -80,23 +80,23 @@ GA = group_algebra(GF(2), abelian_group([12,2])) x = gens(GA)[1] s = gens(GA)[2] - A = reshape([1 + s*x^10], (1, 1)) - B = reshape([1 + x^3 + s*x^6 + x^4 + x^7 + x^8], (1, 1)) + A = [1 + s*x^10;;] + B = [1 + x^3 + s*x^6 + x^4 + x^7 + x^8;;] c = LPCode(A,B) # [[48, 8, 6]] 2BGA code @test code_n(c) == 48 && code_k(c) == 8 - A = reshape([1 + x^3], (1, 1)) - B = reshape([1 + x^3 + s*x^6 + x^4 + s*x^9 + x^7], (1, 1)) + A = [1 + x^3;;] + B = [1 + x^3 + s*x^6 + x^4 + s*x^9 + x^7;;] c = LPCode(A,B) # [[48, 12, 4]] 2BGA code @test code_n(c) == 48 && code_k(c) == 12 - A = reshape([1 + x^4], (1, 1)) - B = reshape([1 + x^3 + s*x^6 + x^4 + x^7 + s*x^10], (1, 1)) + A = [1 + x^4;;] + B = [1 + x^3 + s*x^6 + x^4 + x^7 + s*x^10;;] c = LPCode(A,B) # [[48, 16, 3]] 2BGA code @test code_n(c) == 48 && code_k(c) == 16 - A = reshape([1 + s*x^6], (1, 1)) - B = reshape([1 + x^3 + s*x^6 + x^4 + s*x^9 + s*x^10], (1, 1)) + A = [1 + s*x^6;;] + B = [1 + x^3 + s*x^6 + x^4 + s*x^9 + s*x^10;;] c = LPCode(A,B) # [[48, 24, 2]] 2BGA code @test code_n(c) == 48 && code_k(c) == 24 @@ -105,13 +105,13 @@ GA = group_algebra(GF(2), abelian_group([14,2])) x = gens(GA)[1] s = gens(GA)[2] - A = reshape([1 + x^8], (1, 1)) - B = reshape([1 + x^7 + s + x^8 + x^9 + s*x^4], (1, 1)) + A = [1 + x^8;;] + B = [1 + x^7 + s + x^8 + x^9 + s*x^4;;] c = LPCode(A,B) # [[56, 8, 7]] 2BGA code @test code_n(c) == 56 && code_k(c) == 8 - A = reshape([1 + x^7], (1, 1)) - B = reshape([1 + x^7 + s + x^8 + s*x^7 + x], (1, 1)) + A = [1 + x^7;;] + B = [1 + x^7 + s + x^8 + s*x^7 + x;;] c = LPCode(A,B) # [[56, 28, 2]] 2BGA code @test code_n(c) == 56 && code_k(c) == 28