diff --git a/src/ecc/ECC.jl b/src/ecc/ECC.jl index df0052b9b..6b9e5d0c6 100644 --- a/src/ecc/ECC.jl +++ b/src/ecc/ECC.jl @@ -3,6 +3,7 @@ module ECC using QuantumClifford using QuantumClifford: AbstractOperation using LinearAlgebra +using Nemo import QuantumClifford: Stabilizer, MixedDestabilizer abstract type AbstractECC end @@ -416,7 +417,9 @@ function canonicalize_cleve97(checks::Stabilizer) Z0 = (checks |> stab_to_gf2)[:,n+1:2n]' # Now let's work on getting X1 and Z1 - b = rank(X0) + Z2field = Nemo.ResidueRing(ZZ, 2) + b = rank(Nemo.matrix(Z2field, X0)) + r = d-b k = n-d @@ -452,7 +455,6 @@ function canonicalize_cleve97(checks::Stabilizer) STOP = true end end - println(i) push!(bank, i) for a in (r+1):(r+b) if a == j @@ -472,22 +474,73 @@ function canonicalize_cleve97(checks::Stabilizer) end end append!(qubit_order, bank) - println(qubit_order) - X1 = X0_5[qubit_order, :] Z1 = Z0_5[qubit_order, :] # Now begins the march towards X2 and Z2, starting with B' - r1 = rank(Z1[1:r+k,1:r]) + r1 = rank(Nemo.matrix(Z2field, Z1[1:r+k,1:r])) r2 = r - r1 - println("WARN: If r2 is greater than 0, this will not work. r2: ", r2) - # TODO implement calculation of B' using the same alogirthm as above - # For the Cleve8 code r2 = 0, so X1= X2 and Z1 = Z2 - X2 = X1; Z2 = Z1; # TODO this is generally wrong - see above comment. + # First let's move the 0 columns of B to the left: + nullColumns = [] + notNullColumns = [] + for j in 1:r + if count(Z1[:,j])==0 # TODO make sure this is condition <-> null generator + push!(nullColumns, j) + else + push!(notNullColumns, j) + end + end + for j in r+1:d + push!(notNullColumns, j) + end + + # Reorder the generators/columns so 0 vectors are in front of B: + column_order = vcat(nullColumns, notNullColumns) + Z1_5 = Z1[:, column_order] + + # Now Gaussian elimination again, this time over B' + bank = [] + for j in (r2+1):(r2+r1) + i = 1 + STOP = false + while !STOP + if Z1_5[i, j] != 1 + i+=1 + if i > n + print("ERROR") + STOP = true + end + else + STOP = true + end + end + push!(bank, i) + for a in (r2+1):(r2+r1) + if a == j + continue + end + if Z1_5[i,a] == 1 + Z1_5[:,a] = (Z1_5[:,j]+Z1_5[:,a]).%2 + end + end + end + + qubit_order = [] + for i in 1:n + if i ∉ bank && i<= k+r + push!(qubit_order, i) + end + end + for i in k+r+1:n # rows not in B + push!(bank, i) + end + append!(qubit_order, bank) + Z2 = Z1_5[qubit_order, :] + X2 = X1[qubit_order, :] # X is unchanged by operations on b, except for reindexing of qubits # Now time for the final steps before arriving at Xstar Zstar - B1 = Z2[1:k,1:r2+r1] + B1 = Z2[1:k,1+r2:r2+r1] XI = zeros(Bool, k , k) for i in 1:k @@ -496,16 +549,20 @@ function canonicalize_cleve97(checks::Stabilizer) Xs = (vcat(XI, zeros(Bool,r2, k), B1', zeros(Bool, b, k))) Zs = zeros(Bool, n, k) + println("k, r2, r1, b: ", k, " ", r2, " ", r1, " ", b) Xstar = hcat(Xs,X2) Zstar = hcat(Zs,Z2) - return Xstar, Zstar, Stabilizer(X2',Z2') # TODO at some point unreorder the qubits + return Xstar, Zstar, Stabilizer(X2',Z2')# TODO at some point unreorder the qubits? Recall they get reordered twice. end """ The naive implementation of the encoding circuit by arXiv:quant-ph/9607030 """ function naive_encoding_circuit(checks::Stabilizer) d, n = size(checks) X0 = (checks |> stab_to_gf2)[:,1:n]' - b = rank(X0) + + Z2field = Nemo.ResidueRing(ZZ, 2) + b = rank(Nemo.matrix(Z2field, X0)) + r = d-b k = n-d