From 3e758f86304499dbf1b0d51dc9ab1b93184499ed Mon Sep 17 00:00:00 2001 From: Daisuke Oyama Date: Thu, 4 Jan 2018 20:22:02 +0900 Subject: [PATCH] support_enumeration: Use util.combinatorics.next_k_array instead of _next_k_combination and _next_k_array --- quantecon/game_theory/support_enumeration.py | 86 +------------------- 1 file changed, 3 insertions(+), 83 deletions(-) diff --git a/quantecon/game_theory/support_enumeration.py b/quantecon/game_theory/support_enumeration.py index d2f57a13e..f9b3b50ed 100644 --- a/quantecon/game_theory/support_enumeration.py +++ b/quantecon/game_theory/support_enumeration.py @@ -14,6 +14,7 @@ import numpy as np from numba import jit from ..util.numba import _numba_linalg_solve +from ..util.combinatorics import next_k_array def support_enumeration(g): @@ -106,8 +107,8 @@ def _support_enumeration_gen(payoff_matrix0, payoff_matrix1): actions)): out[p][supp] = action[:-1] yield out - _next_k_array(supps[1]) - _next_k_array(supps[0]) + next_k_array(supps[1]) + next_k_array(supps[0]) @jit(nopython=True, cache=True) @@ -180,84 +181,3 @@ def _indiff_mixed_action(payoff_matrix, own_supp, opp_supp, A, out): if payoff > val: return False return True - - -@jit(nopython=True, cache=True) -def _next_k_combination(x): - """ - Find the next k-combination, as described by an integer in binary - representation with the k set bits, by "Gosper's hack". - - Copy-paste from en.wikipedia.org/wiki/Combinatorial_number_system - - Parameters - ---------- - x : int - Integer with k set bits. - - Returns - ------- - int - Smallest integer > x with k set bits. - - """ - u = x & -x - v = u + x - return v + (((v ^ x) // u) >> 2) - - -@jit(nopython=True, cache=True) -def _next_k_array(a): - """ - Given an array `a` of k distinct nonnegative integers, return the - next k-array in lexicographic ordering of the descending sequences - of the elements. `a` is modified in place. - - Parameters - ---------- - a : ndarray(int, ndim=1) - Array of length k. - - Returns - ------- - a : ndarray(int, ndim=1) - View of `a`. - - Examples - -------- - Enumerate all the subsets with k elements of the set {0, ..., n-1}. - - >>> n, k = 4, 2 - >>> a = np.arange(k) - >>> while a[-1] < n: - ... print(a) - ... a = _next_k_array(a) - ... - [0 1] - [0 2] - [1 2] - [0 3] - [1 3] - [2 3] - - """ - k = len(a) - if k == 0: - return a - - x = 0 - for i in range(k): - x += (1 << a[i]) - - x = _next_k_combination(x) - - pos = 0 - for i in range(k): - while x & 1 == 0: - x = x >> 1 - pos += 1 - a[i] = pos - x = x >> 1 - pos += 1 - - return a