diff --git a/docs/Structure b/docs/Structure index 0effe235..d56a2358 100644 --- a/docs/Structure +++ b/docs/Structure @@ -1,3 +1,3 @@ Order: normal_form_game, Computing Nash Equilibria, Repeated Game -Computing Nash Equilibria: pure_nash +Computing Nash Equilibria: pure_nash, support_enumeration Repeated Game: repeated_game_util, repeated_game diff --git a/src/Games.jl b/src/Games.jl index 871e2074..a29f50f4 100644 --- a/src/Games.jl +++ b/src/Games.jl @@ -23,7 +23,7 @@ include("pure_nash.jl") include("repeated_game_util.jl") include("repeated_game.jl") include("random.jl") - +include("support_enumeration.jl") export # Types @@ -49,6 +49,9 @@ export worst_values, outerapproximation, # Random Games - random_game, covariance_game + random_game, covariance_game, + + # Support Enumeration + support_enumeration, support_enumeration_task end # module diff --git a/src/support_enumeration.jl b/src/support_enumeration.jl new file mode 100644 index 00000000..7291b0bb --- /dev/null +++ b/src/support_enumeration.jl @@ -0,0 +1,299 @@ +#= +Compute all mixed Nash equilibria of a 2-player (non-degenerate) normal +form game by support enumeration. + +Julia version of QuantEcon.py/support_enumeration.py + +Authors: Daisuke Oyama, Zejin Shi + +References +---------- +B. von Stengel, "Equilibrium Computation for Two-Player Games in +Strategic and Extensive Form," Chapter 3, N. Nisan, T. Roughgarden, E. +Tardos, and V. Vazirani eds., Algorithmic Game Theory, 2007. +=# + +""" + support_enumeration(g::NormalFormGame{2}) + +Compute mixed-action Nash equilibria with equal support size +for a 2-player normal form game by support enumeration. For a +non-degenerate game input, these are all the Nash equilibria. + +The algorithm checks all the equal-size support pairs; if the +players have the same number n of actions, there are 2n choose n +minus 1 such pairs. This should thus be used only for small games. + +# Arguments + +* `g::NormalFormGame{2}`: 2-player NormalFormGame instance. + +# Returns + +* `::Vector{Tuple{Vector{Real}, Vector{Real}}}`: Mixed-action + Nash equilibria that are found. +""" +function support_enumeration(g::NormalFormGame{2}) + + c = Channel(0) + task = support_enumeration_task(c, g) + bind(c, task) + schedule(task) + NEs = Tuple{Vector{Real}, Vector{Real}}[NE for NE in c] + + return NEs + +end + +""" + support_enumeration_task(g::NormalFormGame{2}) + +Task version of `support_enumeration`. + +# Arguments + +* `c::Channel`: Channel to be binded with the support enumeration task. +* `g::NormalFormGame{2}`: 2-player NormalFormGame instance. + +# Returns + +* `::Task`: Runnable task for generating Nash equilibria. +""" +function support_enumeration_task(c::Channel, + g::NormalFormGame{2}) + + task = Task( + () -> _support_enumeration_producer(c, + (g.players[1].payoff_array, + g.players[2].payoff_array)) + ) + + return task +end + +""" + _support_enumeration_producer{T<:Real}(payoff_matrices + ::NTuple{2,Matrix{T}}) + +Main body of `support_enumeration_task`. + +# Arguments + +* `c::Channel`: Channel to be binded with the support enumeration task. +* `payoff_matrices::NTuple{2, Matrix{T}}`: Payoff matrices of player 1 and + player 2. + +# Puts + +* `Tuple{Vector{S},Vector{S}}`: Tuple of Nash equilibrium mixed actions. + `S` is Float if `T` is Int or Float, and Rational if `T` is Rational. +""" +function _support_enumeration_producer{T<:Real}(c::Channel, + payoff_matrices + ::NTuple{2,Matrix{T}}) + + nums_actions = size(payoff_matrices[1], 1), size(payoff_matrices[2], 1) + n_min = min(nums_actions...) + S = typeof(zero(T)/one(T)) + + for k = 1:n_min + supps = (collect(1:k), Vector{Int}(k)) + actions = (Vector{S}(k), Vector{S}(k)) + A = Matrix{S}(k+1, k+1) + b = Vector{S}(k+1) + while supps[1][end] <= nums_actions[1] + supps[2][:] = collect(1:k) + while supps[2][end] <= nums_actions[2] + if _indiff_mixed_action!(A, b, actions[2], + payoff_matrices[1], + supps[1], supps[2]) + if _indiff_mixed_action!(A, b, actions[1], + payoff_matrices[2], + supps[2], supps[1]) + out = (zeros(S, nums_actions[1]), + zeros(S, nums_actions[2])) + for (p, (supp, action)) in enumerate(zip(supps, + actions)) + out[p][supp] = action + end + put!(c, out) + end + end + _next_k_array!(supps[2]) + end + _next_k_array!(supps[1]) + end + end + +end + +""" + _indiff_mixed_action!{T<:Real}(A::Matrix{T}, b::Vector{T}, + out::Vector{T}, + payoff_matrix::Matrix, + own_supp::Vector{Int}, + opp_supp::Vector{Int}) + +Given a player's payoff matrix `payoff_matrix`, an array `own_supp` +of this player's actions, and an array `opp_supp` of the opponent's +actions, each of length k, compute the opponent's mixed action whose +support equals `opp_supp` and for which the player is indifferent +among the actions in `own_supp`, if any such exists. Return `true` +if such a mixed action exists and actions in `own_supp` are indeed +best responses to it, in which case the outcome is stored in `out`; +`false` otherwise. Arrays `A` and `b` are used in intermediate +steps. + +# Arguments + +* `A::Matrix{T}`: Matrix used in intermediate steps. +* `b::Vector{T}`: Vector used in intermediate steps. +* `out::Vector{T}`: Vector to store the nonzero values of the + desired mixed action. +* `payoff_matrix::Matrix{T}`: The player's payoff matrix. +* `own_supp::Vector{Int}`: Vector containing the player's action indices. +* `opp_supp::Vector{Int}`: Vector containing the opponent's action indices. + +# Returns + +* `::Bool`: `true` if a desired mixed action exists and `false` otherwise. +""" +function _indiff_mixed_action!{T<:Real}(A::Matrix{T}, b::Vector{T}, + out::Vector{T}, + payoff_matrix::Matrix, + own_supp::Vector{Int}, + opp_supp::Vector{Int}) + + m = size(payoff_matrix, 1) + k = length(own_supp) + + A[1:end-1, 1:end-1] = payoff_matrix[own_supp, opp_supp] + A[1:end-1, end] = -one(T) + A[end, 1:end-1] = one(T) + A[end, end] = zero(T) + b[1:end-1] = zero(T) + b[end] = one(T) + try + b = A_ldiv_B!(lufact!(A), b) + catch LinAlg.SingularException + return false + end + + for i in 1:k + b[i] <= zero(T) && return false + end + + out[:] = b[1:end-1] + val = b[end] + + if k == m + return true + end + + own_supp_flags = falses(m) + own_supp_flags[own_supp] = true + + for i = 1:m + if !own_supp_flags[i] + payoff = zero(T) + for j = 1:k + payoff += payoff_matrix[i, opp_supp[j]] * out[j] + end + if payoff > val + return false + end + end + end + + return true +end + +""" + _next_k_combination(x::Int) + +Find the next k-combination, as described by an integer in binary +representation with the k set bits, by "Gosper's hack". + +Copy-paste from en.wikipedia.org/wiki/Combinatorial_number_system + +# Arguments + +* `x::Int`: Integer with k set bits. + +# Returns + +* `::Int`: Smallest integer > x with k set bits. +""" +function _next_k_combination(x::Int) + + u = x & -x + v = u + x + return v + (fld((v ⊻ x), u) >> 2) + +end + +""" + _next_k_array!(a::Vector{Int}) + +Given an array `a` of k distinct nonnegative integers, return the +next k-array in lexicographic ordering of the descending sequences +of the elements. `a` is modified in place. + +# Arguments + +* `a::Vector{Int}`: Array of length k. + +# Returns + +* `:::Vector{Int}`: Next k-array of `a`. + +# Examples + +```julia +julia> n, k = 4, 2 +(4,2) + +julia> a = collect(1:k) +2-element Array{Int64,1}: + 1 + 2 + +julia> while a[end] < n + 1 + @show a + _next_k_array!(a) + end +a = [1,2] +a = [1,3] +a = [2,3] +a = [1,4] +a = [2,4] +a = [3,4] +``` +""" +function _next_k_array!(a::Vector{Int}) + + k = length(a) + if k == 0 + return a + end + + x = 0 + for i = 1:k + x += (1 << (a[i] - 1)) + end + + x = _next_k_combination(x) + + pos = 0 + for i = 1:k + while x & 1 == 0 + x = x >> 1 + pos += 1 + end + a[i] = pos + 1 + x = x >> 1 + pos += 1 + end + + return a +end diff --git a/test/runtests.jl b/test/runtests.jl index 6b0a5fe2..e1b60250 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -5,3 +5,4 @@ include("test_pure_nash.jl") include("test_repeated_game.jl") include("test_normal_form_game.jl") include("test_random.jl") +include("test_support_enumeration.jl") diff --git a/test/test_support_enumeration.jl b/test/test_support_enumeration.jl new file mode 100644 index 00000000..05615a5a --- /dev/null +++ b/test/test_support_enumeration.jl @@ -0,0 +1,91 @@ +@testset "Testing Support Enumeration" begin + + @testset "test 3 by 2 non-degenerate normal form game(Float)" begin + g = NormalFormGame(Player([3.0 3.0; 2.0 5.0; 0.0 6.0]), + Player([3.0 2.0 3.0; 2.0 6.0 1.0])) + NEs = [([1.0, 0.0, 0.0], [1.0, 0.0]), + ([0.8, 0.2, 0.0], [2/3, 1/3]), + ([0.0, 1/3, 2/3], [1/3, 2/3])] + + for (actions_computed, actions) in zip(NEs, support_enumeration(g)) + for (action_computed, action) in zip(actions_computed, actions) + @test action_computed ≈ action + @test eltype(action_computed) <: AbstractFloat + end + end + end + + @testset "test 3 by 2 non-degenerate normal form game(Int)" begin + g = NormalFormGame(Player([3 3; 2 5; 0 6]), + Player([3 2 3; 2 6 1])) + NEs = [([1.0, 0.0, 0.0], [1.0, 0.0]), + ([0.8, 0.2, 0.0], [2/3, 1/3]), + ([0.0, 1/3, 2/3], [1/3, 2/3])] + + for (actions_computed, actions) in zip(NEs, support_enumeration(g)) + for (action_computed, action) in zip(actions_computed, actions) + @test action_computed ≈ action + @test eltype(action_computed) <: AbstractFloat + end + end + end + + @testset "test 3 by 2 non-degenerate normal form game(Rational)" begin + g = NormalFormGame(Player([3//1 3//1; 2//1 5//1; 0//1 6//1]), + Player([3//1 2//1 3//1; 2//1 6//1 1//1])) + NEs = [([1//1, 0//1, 0//1], [1//1, 0//1]), + ([4//5, 1//5, 0//1], [2//3, 1//3]), + ([0//1, 1//3, 2//3], [1//3, 2//3])] + + for (actions_computed, actions) in zip(NEs, support_enumeration(g)) + for (action_computed, action) in zip(actions_computed, actions) + @test action_computed ≈ action + @test eltype(action_computed) <: Rational + end + end + end + + @testset "test 3 by 2 degenerate normal form game(Float)" begin + g = NormalFormGame(Player([1.0 -1.0; -1.0 1.0; 0.0 0.0]), + Player([1.0 0.0 0.0; 0.0 0.0 0.0])) + NEs = [([1.0, 0.0, 0.0], [1.0, 0.0]), + ([0.0, 1.0, 0.0], [0.0, 1.0])] + + for (actions_computed, actions) in zip(NEs, support_enumeration(g)) + for (action_computed, action) in zip(actions_computed, actions) + @test action_computed ≈ action + @test eltype(action_computed) <: AbstractFloat + end + end + end + + @testset "test 3 by 2 degenerate normal form game(Int)" begin + g = NormalFormGame(Player([1 -1; -1 1; 0 0]), + Player([1 0 0; 0 0 0])) + NEs = [([1.0, 0.0, 0.0], [1.0, 0.0]), + ([0.0, 1.0, 0.0], [0.0, 1.0])] + + for (actions_computed, actions) in zip(NEs, support_enumeration(g)) + for (action_computed, action) in zip(actions_computed, actions) + @test action_computed ≈ action + @test eltype(action_computed) <: AbstractFloat + end + end + end + + @testset "test 3 by 2 degenerate normal form game(Rational)" begin + g = NormalFormGame(Player([1//1 -1//1; -1//1 1//1; 0//1 0//1]), + Player([1//1 0//1 0//1; 0//1 0//1 0//1])) + NEs = [([1//1, 0//1, 0//1], [1//1, 0//1]), + ([0//1, 1//1, 0//1], [0//1, 1//1])] + + for (actions_computed, actions) in zip(NEs, support_enumeration(g)) + for (action_computed, action) in zip(actions_computed, actions) + @test action_computed ≈ action + @test eltype(action_computed) <: Rational + end + end + end + + +end