diff --git a/Indicators/HurstExponent.cs b/Indicators/HurstExponent.cs index 3a676742272f..36171280e85a 100644 --- a/Indicators/HurstExponent.cs +++ b/Indicators/HurstExponent.cs @@ -21,6 +21,9 @@ namespace QuantConnect.Indicators { /// /// Represents the Hurst Exponent indicator, which is used to measure the long-term memory of a time series. + /// - H less than 0.5: Mean-reverting; high values followed by low ones, stronger as H approaches 0. + /// - H equal to 0.5: Random walk (geometric). + /// - H greater than 0.5: Trending; high values followed by higher ones, stronger as H approaches 1. /// public class HurstExponent : Indicator, IIndicatorWarmUpPeriodProvider { @@ -32,41 +35,60 @@ public class HurstExponent : Indicator, IIndicatorWarmUpPeriodProvider /// /// The list of time lags used to calculate tau values. /// - private List timeLags; + private List _timeLags; /// - /// The list of the logarithms of the time lags, used for the regression line calculation. + /// Sum of the logarithms of the time lags, precomputed for efficiency. /// - private List logTimeLags; + private decimal _sumX; + + /// + /// Sum of the squares of the logarithms of the time lags, precomputed for efficiency. + /// + private decimal _sumX2; /// /// Initializes a new instance of the class. /// The default maxLag value of 20 is chosen for reliable and accurate results, but using a higher lag may reduce precision. /// /// The name of the indicator. - /// The lookbackPeriod over which to calculate the Hurst Exponent. + /// The period over which to calculate the Hurst Exponent. /// The maximum lag to consider for time series analysis. - public HurstExponent(string name, int lookbackPeriod, int maxLag = 20) : base(name) + public HurstExponent(string name, int period, int maxLag = 20) : base(name) { - _priceWindow = new RollingWindow(lookbackPeriod); - timeLags = Enumerable.Range(2, maxLag - 2).ToList(); - logTimeLags = timeLags.Select(x => (decimal)Math.Log(x)).ToList(); - WarmUpPeriod = lookbackPeriod; + if (maxLag > 2) + { + throw new ArgumentException("The maxLag parameter must be greater than 2 to compute the Hurst Exponent.", nameof(maxLag)); + } + _priceWindow = new RollingWindow(period); + _sumX = 0m; + _sumX2 = 0m; + _timeLags = new List(); + + // Precompute logarithms of time lags and their squares for regression calculations + for (int i = 2; i < maxLag; i++) + { + var logTimeLag = (decimal)Math.Log(i); + _timeLags.Add(i); + _sumX += logTimeLag; + _sumX2 += logTimeLag * logTimeLag; + } + WarmUpPeriod = period; } /// - /// Initializes a new instance of the class with the specified lookbackPeriod and maxLag. + /// Initializes a new instance of the class with the specified period and maxLag. /// The default maxLag value of 20 is chosen for reliable and accurate results, but using a higher lag may reduce precision. /// - /// The lookbackPeriod over which to calculate the Hurst Exponent. + /// The period over which to calculate the Hurst Exponent. /// The maximum lag to consider for time series analysis. - public HurstExponent(int lookbackPeriod, int maxLag = 20) - : this($"HE({lookbackPeriod},{maxLag})", lookbackPeriod, maxLag) + public HurstExponent(int period, int maxLag = 20) + : this($"HE({period},{maxLag})", period, maxLag) { } /// - /// Gets the lookbackPeriod over which the indicator is calculated. + /// Gets the period over which the indicator is calculated. /// public int WarmUpPeriod { get; } @@ -88,62 +110,50 @@ protected override decimal ComputeNextValue(IndicatorDataPoint input) return decimal.Zero; } - // List to store the log of tau values for each time lag - var logTauValues = new List(); - foreach (var lag in timeLags) + // Sum of log(standard deviation) values + var sumY = 0m; + + // Sum of log(lag) * log(standard deviation) + var sumXY = 0m; + + // Number of time lags used for the computation + int n = _timeLags.Count; + + foreach (var lag in _timeLags) { - var sub = new List(); + var mean = 0m; + var sumOfSquares = 0m; + int counter = 0; // Calculate the differences between values separated by the given lag for (int i = _priceWindow.Size - 1 - lag; i >= 0; i--) { var value = _priceWindow[i] - _priceWindow[i + lag]; - sub.Add(value); + sumOfSquares += value * value; + mean += value; + counter++; } + var standardDeviation = 0.0; - // Ensure sub is not empty to avoid division by zero. - if (sub.Count > 0) + // Avoid division by zero + if (counter > 0) { - standardDeviation = ComputeStandardDeviation(sub); + mean = mean / counter; + var variance = (sumOfSquares / counter) - (mean * mean); + standardDeviation = Math.Sqrt((double)variance); } - logTauValues.Add(standardDeviation == 0.0 ? 0m : (decimal)Math.Log(standardDeviation)); - } - // Calculate the Hurst Exponent as the slope of the log-log plot - var hurstExponent = ComputeSlope(logTimeLags, logTauValues); - if (IsReady) - { - return hurstExponent; - } - return decimal.Zero; - } + // Compute log(standard deviation) and log(lag) for the regression. + var logTau = standardDeviation == 0.0 ? 0m : (decimal)Math.Log(standardDeviation); + var logLag = (decimal)Math.Log(lag); - /// - /// Calculates the standard deviation of a list of decimal values. - /// - /// The list of values to calculate the standard deviation for. - /// The standard deviation of the given values. - private double ComputeStandardDeviation(IEnumerable values) - { - var avg = values.Average(); - var variance = values.Sum(x => (x - avg) * (x - avg)) / values.Count(); - return Math.Sqrt((double)variance); - } + // Accumulate sums for the regression equation. + sumY += logTau; + sumXY += logLag * logTau; + } - /// - /// Calculates the slope of the regression line through a set of data points. - /// - /// The x-coordinates of the data points. - /// The y-coordinates of the data points. - /// The slope of the regression line. - public decimal ComputeSlope(IEnumerable x, IEnumerable y) - { - int n = x.Count(); - var sumX = x.Sum(); - var sumY = y.Sum(); - var sumXY = x.Zip(y, (xi, yi) => xi * yi).Sum(); - var sumX2 = x.Select(xi => xi * xi).Sum(); - var m = (n * sumXY - sumX * sumY) / (n * sumX2 - sumX * sumX); - return m; + // Compute the Hurst Exponent using the slope of the log-log regression. + var hurstExponent = (n * sumXY - _sumX * sumY) / (n * _sumX2 - _sumX * _sumX); + return hurstExponent; } ///