We'd love to accept your patches! Before we can take them, we have to jump a couple of legal hurdles.
Please fill out either the individual or corporate Contributor License Agreement (CLA).
- If you are an individual writing original source code and you're sure you own the intellectual property, then you'll need to sign an individual CLA.
- If you work for a company that wants to allow you to contribute your work, then you'll need to sign a corporate CLA.
Follow either of the two links above to access the appropriate CLA and instructions for how to sign and return it. Once we receive it, we'll be able to accept your pull requests.
NOTE: Only original source code from you and other people that have signed the CLA can be accepted into the main repository.
If you have improvements to TensorFlow, send us your pull requests! For those just getting started, Github has a howto.
If you want to contribute but you're not sure where to start, take a look at the issues with the "contributions welcome" label. These are issues that we believe are particularly well suited for outside contributions, often because we probably won't get to them right now. If you decide to start on an issue, leave a comment so that other people know that you're working on it. If you want to help out, but not alone, use the issue comment thread to coordinate.
Before sending your pull request for review, make sure your changes are consistent with the guidelines and follow the TensorFlow coding style.
- Include unit tests when you contribute new features, as they help to a) prove that your code works correctly, b) guard against future breaking changes to lower the maintenance cost.
- Bug fixes also generally require unit tests, because the presence of bugs usually indicates insufficient test coverage.
- Keep API compatibility in mind when you change code in core TensorFlow, e.g., code in tensorflow/core and tensorflow/python. TensorFlow has reached version 1 and hence cannot make non-backward-compatible API changes without a major release. Reviewers of your pull request will comment on any API compatibility issues.
- When you contribute a new feature to TensorFlow, the maintenance burden is (by default) transferred to the TensorFlow team. This means that benefit of contribution must be compared against the cost of maintaining the feature.
- Full new features (e.g., a new op implementing a cutting-edge algorithm) typically will live in tensorflow/contrib to get some airtime before decision is made regarding whether they are to be migrated to the core.
Include a license at the top of new files.
- C/C++ license example
- Python license example
- Java license example
- Go license example
- Bash license example
- HTML license example
- JavaScript/TypeScript license example
Bazel BUILD files also need to include a license section, e.g., BUILD example.
Changes to TensorFlow C++ code should conform to Google C++ Style Guide.
Use clang-tidy
to check your C/C++ changes. To install clang-tidy on ubuntu:16.04, do:
apt-get install -y clang-tidy
You can check a C/C++ file by doing:
clang-format <my_cc_file> --style=google > /tmp/my_cc_file.cc
diff <my_cc_file> /tmp/my_cc_file.cc
Changes to TensorFlow Python code should conform to Google Python Style Guide
Use pylint
to check your Python changes. To install pylint
and
retrieve TensorFlow's custom style definition:
pip install pylint
wget -O /tmp/pylintrc https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/tools/ci_build/pylintrc
To check a file with pylint
:
pylint --rcfile=/tmp/pylintrc myfile.py
If you have Docker installed on your system, you can perform a sanity check on your changes by running the command:
tensorflow/tools/ci_build/ci_build.sh CPU tensorflow/tools/ci_build/ci_sanity.sh
This will catch most license, Python coding style and BUILD file issues that may exist in your changes.
There are two ways to run TensorFlow unit tests.
-
Using tools and libraries installed directly on your system.
Refer to the CPU-only developer Dockerfile and GPU developer Dockerfile for the required packages. Alternatively, use the said Docker images, e.g.,
tensorflow/tensorflow:nightly-devel
andtensorflow/tensorflow:nightly-devel-gpu
for development to avoid installing the packages directly on your system.Once you have the packages installed, you can run a specific unit test in bazel by doing as follows:
If the tests are to be run on GPU, add CUDA paths to LD_LIBRARY_PATH and add the
cuda
option flagexport LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:$LD_LIBRARY_PATH" export flags="--config=opt --config=cuda -k"
For example, to run all tests under tensorflow/python, do:
bazel test ${flags} //tensorflow/python/...
-
Using Docker and TensorFlow's CI scripts.
# Install Docker first, then this will build and run cpu tests tensorflow/tools/ci_build/ci_build.sh CPU bazel test //tensorflow/...
See TensorFlow Builds for details.