-
Notifications
You must be signed in to change notification settings - Fork 162
/
digraph.rs
2775 lines (2635 loc) · 107 KB
/
digraph.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed under the Apache License, Version 2.0 (the "License"); you may
// not use this file except in compliance with the License. You may obtain
// a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
use std::cmp;
use std::cmp::Ordering;
use std::collections::BTreeMap;
use std::fs::File;
use std::io::prelude::*;
use std::io::{BufReader, BufWriter};
use std::str;
use hashbrown::{HashMap, HashSet};
use indexmap::IndexSet;
use retworkx_core::dictmap::*;
use pyo3::exceptions::PyIndexError;
use pyo3::gc::PyVisit;
use pyo3::prelude::*;
use pyo3::types::{PyBool, PyDict, PyList, PyLong, PyString, PyTuple};
use pyo3::PyTraverseError;
use pyo3::Python;
use ndarray::prelude::*;
use num_complex::Complex64;
use num_traits::Zero;
use numpy::PyReadonlyArray2;
use petgraph::algo;
use petgraph::graph::{EdgeIndex, NodeIndex};
use petgraph::prelude::*;
use petgraph::visit::{
GraphBase, IntoEdgeReferences, IntoNodeReferences, NodeCount, NodeFiltered, NodeIndexable,
Visitable,
};
use super::dot_utils::build_dot;
use super::iterators::{
EdgeIndexMap, EdgeIndices, EdgeList, NodeIndices, NodeMap, WeightedEdgeList,
};
use super::{
find_node_by_weight, merge_duplicates, weight_callable, DAGHasCycle, DAGWouldCycle, IsNan,
NoEdgeBetweenNodes, NoSuitableNeighbors, NodesRemoved, StablePyGraph,
};
use super::dag_algo::is_directed_acyclic_graph;
/// A class for creating directed graphs
///
/// The ``PyDiGraph`` class is used to create a directed graph. It can be a
/// multigraph (have multiple edges between nodes). Each node and edge
/// (although rarely used for edges) is indexed by an integer id. These ids
/// are stable for the lifetime of the graph object and on node or edge
/// deletions you can have holes in the list of indices for the graph.
/// Node indices will be reused on additions after removal. For example:
///
/// .. jupyter-execute::
///
/// import retworkx
///
/// graph = retworkx.PyDiGraph()
/// graph.add_nodes_from(list(range(5)))
/// graph.add_nodes_from(list(range(2)))
/// graph.remove_node(2)
/// print("After deletion:", graph.node_indices())
/// res_manual = graph.add_parent(6, None, None)
/// print("After adding a new node:", graph.node_indices())
///
/// Additionally, each node and edge contains an arbitrary Python object as a
/// weight/data payload. You can use the index for access to the data payload
/// as in the following example:
///
/// .. jupyter-execute::
///
/// import retworkx
///
/// graph = retworkx.PyDiGraph()
/// data_payload = "An arbitrary Python object"
/// node_index = graph.add_node(data_payload)
/// print("Node Index: %s" % node_index)
/// print(graph[node_index])
///
/// The PyDiGraph implements the Python mapping protocol for nodes so in
/// addition to access you can also update the data payload with:
///
/// .. jupyter-execute::
///
/// import retworkx
///
/// graph = retworkx.PyDiGraph()
/// data_payload = "An arbitrary Python object"
/// node_index = graph.add_node(data_payload)
/// graph[node_index] = "New Payload"
/// print("Node Index: %s" % node_index)
/// print(graph[node_index])
///
/// The PyDiGraph class has an option for real time cycle checking which can
/// be used to ensure any edges added to the graph does not introduce a cycle.
/// By default the real time cycle checking feature is disabled for performance,
/// however you can enable it by setting the ``check_cycle`` attribute to True.
/// For example::
///
/// import retworkx
/// dag = retworkx.PyDiGraph()
/// dag.check_cycle = True
///
/// or at object creation::
///
/// import retworkx
/// dag = retworkx.PyDiGraph(check_cycle=True)
///
/// With check_cycle set to true any calls to :meth:`PyDiGraph.add_edge` will
/// ensure that no cycles are added, ensuring that the PyDiGraph class truly
/// represents a directed acyclic graph. Do note that this cycle checking on
/// :meth:`~PyDiGraph.add_edge`, :meth:`~PyDiGraph.add_edges_from`,
/// :meth:`~PyDiGraph.add_edges_from_no_data`,
/// :meth:`~PyDiGraph.extend_from_edge_list`, and
/// :meth:`~PyDiGraph.extend_from_weighted_edge_list` comes with a performance
/// penalty that grows as the graph does. If you're adding a node and edge at
/// the same time leveraging :meth:`PyDiGraph.add_child` or
/// :meth:`PyDiGraph.add_parent` will avoid this overhead.
///
/// By default a ``PyDiGraph`` is a multigraph (meaning there can be parallel
/// edges between nodes) however this can be disabled by setting the
/// ``multigraph`` kwarg to ``False`` when calling the ``PyDiGraph``
/// constructor. For example::
///
/// import retworkx
/// graph = retworkx.PyDiGraph(multigraph=False)
///
/// This can only be set at ``PyDiGraph`` initialization and not adjusted after
/// creation. When :attr:`~retworkx.PyDiGraph.multigraph` is set to ``False``
/// if a method call is made that would add a parallel edge it will instead
/// update the existing edge's weight/data payload.
///
/// :param bool check_cycle: When this is set to ``True`` the created
/// ``PyDiGraph`` has runtime cycle detection enabled.
/// :param bool multgraph: When this is set to ``False`` the created
/// ``PyDiGraph`` object will not be a multigraph. When ``False`` if a
/// method call is made that would add parallel edges the the weight/weight
/// from that method call will be used to update the existing edge in place.
#[pyclass(mapping, module = "retworkx", subclass)]
#[pyo3(text_signature = "(/, check_cycle=False, multigraph=True)")]
#[derive(Clone)]
pub struct PyDiGraph {
pub graph: StablePyGraph<Directed>,
pub cycle_state: algo::DfsSpace<NodeIndex, <StablePyGraph<Directed> as Visitable>::Map>,
pub check_cycle: bool,
pub node_removed: bool,
pub multigraph: bool,
}
impl GraphBase for PyDiGraph {
type NodeId = NodeIndex;
type EdgeId = EdgeIndex;
}
impl<'a> NodesRemoved for &'a PyDiGraph {
fn nodes_removed(&self) -> bool {
self.node_removed
}
}
impl NodeCount for PyDiGraph {
fn node_count(&self) -> usize {
self.graph.node_count()
}
}
// Rust side only PyDiGraph methods
impl PyDiGraph {
fn add_edge_no_cycle_check(
&mut self,
p_index: NodeIndex,
c_index: NodeIndex,
edge: PyObject,
) -> usize {
if !self.multigraph {
let exists = self.graph.find_edge(p_index, c_index);
if let Some(index) = exists {
let edge_weight = self.graph.edge_weight_mut(index).unwrap();
*edge_weight = edge;
return index.index();
}
}
let edge = self.graph.add_edge(p_index, c_index, edge);
edge.index()
}
fn _add_edge(
&mut self,
p_index: NodeIndex,
c_index: NodeIndex,
edge: PyObject,
) -> PyResult<usize> {
// Only check for cycles if instance attribute is set to true
if self.check_cycle {
// Only check for a cycle (by running has_path_connecting) if
// the new edge could potentially add a cycle
let cycle_check_required = is_cycle_check_required(self, p_index, c_index);
let state = Some(&mut self.cycle_state);
if cycle_check_required
&& algo::has_path_connecting(&self.graph, c_index, p_index, state)
{
return Err(DAGWouldCycle::new_err("Adding an edge would cycle"));
}
}
Ok(self.add_edge_no_cycle_check(p_index, c_index, edge))
}
fn insert_between(
&mut self,
py: Python,
node: usize,
node_between: usize,
direction: bool,
) -> PyResult<()> {
let dir = if direction {
petgraph::Direction::Outgoing
} else {
petgraph::Direction::Incoming
};
let index = NodeIndex::new(node);
let node_between_index = NodeIndex::new(node_between);
let edges: Vec<(NodeIndex, EdgeIndex, PyObject)> = self
.graph
.edges_directed(node_between_index, dir)
.map(|edge| {
if direction {
(edge.target(), edge.id(), edge.weight().clone_ref(py))
} else {
(edge.source(), edge.id(), edge.weight().clone_ref(py))
}
})
.collect::<Vec<(NodeIndex, EdgeIndex, PyObject)>>();
for (other_index, edge_index, weight) in edges {
if direction {
self._add_edge(node_between_index, index, weight.clone_ref(py))?;
self._add_edge(index, other_index, weight.clone_ref(py))?;
} else {
self._add_edge(other_index, index, weight.clone_ref(py))?;
self._add_edge(index, node_between_index, weight.clone_ref(py))?;
}
self.graph.remove_edge(edge_index);
}
Ok(())
}
}
#[pymethods]
impl PyDiGraph {
#[new]
#[args(check_cycle = "false", multigraph = "true")]
fn new(check_cycle: bool, multigraph: bool) -> Self {
PyDiGraph {
graph: StablePyGraph::<Directed>::new(),
cycle_state: algo::DfsSpace::default(),
check_cycle,
node_removed: false,
multigraph,
}
}
fn __getstate__(&self, py: Python) -> PyResult<PyObject> {
let out_dict = PyDict::new(py);
let node_dict = PyDict::new(py);
let mut out_list: Vec<PyObject> = Vec::with_capacity(self.graph.edge_count());
out_dict.set_item("nodes", node_dict)?;
out_dict.set_item("nodes_removed", self.node_removed)?;
out_dict.set_item("multigraph", self.multigraph)?;
let dir = petgraph::Direction::Incoming;
for node_index in self.graph.node_indices() {
let node_data = self.graph.node_weight(node_index).unwrap();
node_dict.set_item(node_index.index(), node_data)?;
for edge in self.graph.edges_directed(node_index, dir) {
let edge_w = edge.weight();
let triplet = (edge.source().index(), edge.target().index(), edge_w).to_object(py);
out_list.push(triplet);
}
}
let py_out_list: PyObject = PyList::new(py, out_list).into();
out_dict.set_item("edges", py_out_list)?;
Ok(out_dict.into())
}
fn __setstate__(&mut self, py: Python, state: PyObject) -> PyResult<()> {
self.graph = StablePyGraph::<Directed>::new();
let dict_state = state.cast_as::<PyDict>(py)?;
let nodes_dict = dict_state.get_item("nodes").unwrap().downcast::<PyDict>()?;
let edges_list = dict_state.get_item("edges").unwrap().downcast::<PyList>()?;
let nodes_removed_raw = dict_state
.get_item("nodes_removed")
.unwrap()
.downcast::<PyBool>()?;
self.node_removed = nodes_removed_raw.extract()?;
let multigraph_raw = dict_state
.get_item("multigraph")
.unwrap()
.downcast::<PyBool>()?;
self.multigraph = multigraph_raw.extract()?;
let mut node_indices: Vec<usize> = Vec::new();
for raw_index in nodes_dict.keys() {
let tmp_index = raw_index.downcast::<PyLong>()?;
node_indices.push(tmp_index.extract()?);
}
if node_indices.is_empty() {
return Ok(());
}
let max_index: usize = *node_indices.iter().max().unwrap();
if max_index + 1 != node_indices.len() {
self.node_removed = true;
}
let mut tmp_nodes: Vec<NodeIndex> = Vec::new();
let mut node_count: usize = 0;
while max_index >= self.graph.node_bound() {
match nodes_dict.get_item(node_count) {
Some(raw_data) => {
self.graph.add_node(raw_data.into());
}
None => {
let tmp_node = self.graph.add_node(py.None());
tmp_nodes.push(tmp_node);
}
};
node_count += 1;
}
for tmp_node in tmp_nodes {
self.graph.remove_node(tmp_node);
}
for raw_edge in edges_list.iter() {
let edge = raw_edge.downcast::<PyTuple>()?;
let raw_p_index = edge.get_item(0)?.downcast::<PyLong>()?;
let p_index: usize = raw_p_index.extract()?;
let raw_c_index = edge.get_item(1)?.downcast::<PyLong>()?;
let c_index: usize = raw_c_index.extract()?;
let edge_data = edge.get_item(2)?;
self.graph.add_edge(
NodeIndex::new(p_index),
NodeIndex::new(c_index),
edge_data.into(),
);
}
Ok(())
}
/// Whether cycle checking is enabled for the DiGraph/DAG.
///
/// If set to ``True`` adding new edges that would introduce a cycle
/// will raise a :class:`DAGWouldCycle` exception.
#[getter]
fn get_check_cycle(&self) -> bool {
self.check_cycle
}
#[setter]
fn set_check_cycle(&mut self, value: bool) -> PyResult<()> {
if !self.check_cycle && value && !is_directed_acyclic_graph(self) {
return Err(DAGHasCycle::new_err("PyDiGraph object has a cycle"));
}
self.check_cycle = value;
Ok(())
}
/// Whether the graph is a multigraph (allows multiple edges between
/// nodes) or not
///
/// If set to ``False`` multiple edges between nodes are not allowed and
/// calls that would add a parallel edge will instead update the existing
/// edge
#[getter]
fn multigraph(&self) -> bool {
self.multigraph
}
/// Detect if the graph has parallel edges or not
///
/// :returns: ``True`` if the graph has parallel edges, otherwise ``False``
/// :rtype: bool
#[pyo3(text_signature = "(self)")]
fn has_parallel_edges(&self) -> bool {
if !self.multigraph {
return false;
}
let mut edges: HashSet<[NodeIndex; 2]> = HashSet::with_capacity(self.graph.edge_count());
for edge in self.graph.edge_references() {
let endpoints = [edge.source(), edge.target()];
if edges.contains(&endpoints) {
return true;
}
edges.insert(endpoints);
}
false
}
/// Return the number of nodes in the graph
#[pyo3(text_signature = "(self)")]
pub fn num_nodes(&self) -> usize {
self.graph.node_count()
}
/// Return the number of edges in the graph
#[pyo3(text_signature = "(self)")]
pub fn num_edges(&self) -> usize {
self.graph.edge_count()
}
/// Return a list of all edge data.
///
/// :returns: A list of all the edge data objects in the graph
/// :rtype: list
#[pyo3(text_signature = "(self)")]
pub fn edges(&self) -> Vec<&PyObject> {
self.graph
.edge_indices()
.map(|edge| self.graph.edge_weight(edge).unwrap())
.collect()
}
/// Return a list of all edge indices.
///
/// :returns: A list of all the edge indices in the graph
/// :rtype: EdgeIndices
#[pyo3(text_signature = "(self)")]
pub fn edge_indices(&self) -> EdgeIndices {
EdgeIndices {
edges: self.graph.edge_indices().map(|edge| edge.index()).collect(),
}
}
/// Return a list of all node data.
///
/// :returns: A list of all the node data objects in the graph
/// :rtype: list
#[pyo3(text_signature = "(self)")]
pub fn nodes(&self) -> Vec<&PyObject> {
self.graph
.node_indices()
.map(|node| self.graph.node_weight(node).unwrap())
.collect()
}
/// Return a list of all node indices.
///
/// :returns: A list of all the node indices in the graph
/// :rtype: NodeIndices
#[pyo3(text_signature = "(self)")]
pub fn node_indices(&self) -> NodeIndices {
NodeIndices {
nodes: self.graph.node_indices().map(|node| node.index()).collect(),
}
}
/// Return a list of all node indices.
///
/// .. note::
///
/// This is identical to :meth:`.node_indices()`, which is the
/// preferred method to get the node indices in the graph. This
/// exists for backwards compatibility with earlier releases.
///
/// :returns: A list of all the node indices in the graph
/// :rtype: NodeIndices
#[pyo3(text_signature = "(self)")]
pub fn node_indexes(&self) -> NodeIndices {
self.node_indices()
}
/// Return True if there is an edge from node_a to node_b.
///
/// :param int node_a: The source node index to check for an edge
/// :param int node_b: The destination node index to check for an edge
///
/// :returns: True if there is an edge false if there is no edge
/// :rtype: bool
#[pyo3(text_signature = "(self, node_a, node_b, /)")]
pub fn has_edge(&self, node_a: usize, node_b: usize) -> bool {
let index_a = NodeIndex::new(node_a);
let index_b = NodeIndex::new(node_b);
self.graph.find_edge(index_a, index_b).is_some()
}
/// Return a list of all the node successor data.
///
/// :param int node: The index for the node to get the successors for
///
/// :returns: A list of the node data for all the child neighbor nodes
/// :rtype: list
#[pyo3(text_signature = "(self, node, /)")]
pub fn successors(&self, node: usize) -> Vec<&PyObject> {
let index = NodeIndex::new(node);
let children = self
.graph
.neighbors_directed(index, petgraph::Direction::Outgoing);
let mut succesors: Vec<&PyObject> = Vec::new();
let mut used_indices: HashSet<NodeIndex> = HashSet::new();
for succ in children {
if !used_indices.contains(&succ) {
succesors.push(self.graph.node_weight(succ).unwrap());
used_indices.insert(succ);
}
}
succesors
}
/// Return a list of all the node predecessor data.
///
/// :param int node: The index for the node to get the predecessors for
///
/// :returns: A list of the node data for all the parent neighbor nodes
/// :rtype: list
#[pyo3(text_signature = "(self, node, /)")]
pub fn predecessors(&self, node: usize) -> Vec<&PyObject> {
let index = NodeIndex::new(node);
let parents = self
.graph
.neighbors_directed(index, petgraph::Direction::Incoming);
let mut predec: Vec<&PyObject> = Vec::new();
let mut used_indices: HashSet<NodeIndex> = HashSet::new();
for pred in parents {
if !used_indices.contains(&pred) {
predec.push(self.graph.node_weight(pred).unwrap());
used_indices.insert(pred);
}
}
predec
}
/// Return a filtered list of successors data such that each
/// node has at least one edge data which matches the filter.
///
/// :param int node: The index for the node to get the successors for
///
/// :param filter_fn: The filter function to use for matching nodes. It takes
/// in one argument, the edge data payload/weight object, and will return a
/// boolean whether the edge matches the conditions or not. If any edge returns
/// ``True``, the node will be included.
///
/// :returns: A list of the node data for all the child neighbor nodes
/// whose at least one edge matches the filter
/// :rtype: list
#[pyo3(text_signature = "(self, node, filter_fn, /)")]
pub fn find_successors_by_edge(
&self,
py: Python,
node: usize,
filter_fn: PyObject,
) -> PyResult<Vec<&PyObject>> {
let index = NodeIndex::new(node);
let mut succesors: Vec<&PyObject> = Vec::new();
let mut used_indices: HashSet<NodeIndex> = HashSet::new();
let filter_edge = |edge: &PyObject| -> PyResult<bool> {
let res = filter_fn.call1(py, (edge,))?;
res.extract(py)
};
let raw_edges = self
.graph
.edges_directed(index, petgraph::Direction::Outgoing);
for edge in raw_edges {
let succ = edge.target();
if !used_indices.contains(&succ) {
let edge_weight = edge.weight();
if filter_edge(edge_weight)? {
used_indices.insert(succ);
succesors.push(self.graph.node_weight(succ).unwrap());
}
}
}
Ok(succesors)
}
/// Return a filtered list of predecessor data such that each
/// node has at least one edge data which matches the filter.
///
/// :param int node: The index for the node to get the predecessor for
///
/// :param filter_fn: The filter function to use for matching nodes. It takes
/// in one argument, the edge data payload/weight object, and will return a
/// boolean whether the edge matches the conditions or not. If any edge returns
/// ``True``, the node will be included.
///
/// :returns: A list of the node data for all the parent neighbor nodes
/// whose at least one edge matches the filter
/// :rtype: list
#[pyo3(text_signature = "(self, node, filter_fn, /)")]
pub fn find_predecessors_by_edge(
&self,
py: Python,
node: usize,
filter_fn: PyObject,
) -> PyResult<Vec<&PyObject>> {
let index = NodeIndex::new(node);
let mut predec: Vec<&PyObject> = Vec::new();
let mut used_indices: HashSet<NodeIndex> = HashSet::new();
let filter_edge = |edge: &PyObject| -> PyResult<bool> {
let res = filter_fn.call1(py, (edge,))?;
res.extract(py)
};
let raw_edges = self
.graph
.edges_directed(index, petgraph::Direction::Incoming);
for edge in raw_edges {
let pred = edge.source();
if !used_indices.contains(&pred) {
let edge_weight = edge.weight();
if filter_edge(edge_weight)? {
used_indices.insert(pred);
predec.push(self.graph.node_weight(pred).unwrap());
}
}
}
Ok(predec)
}
/// Return the edge data for an edge between 2 nodes.
///
/// :param int node_a: The index for the first node
/// :param int node_b: The index for the second node
///
/// :returns: The data object set for the edge
/// :raises NoEdgeBetweenNodes: When there is no edge between nodes
#[pyo3(text_signature = "(self, node_a, node_b, /)")]
pub fn get_edge_data(&self, node_a: usize, node_b: usize) -> PyResult<&PyObject> {
let index_a = NodeIndex::new(node_a);
let index_b = NodeIndex::new(node_b);
let edge_index = match self.graph.find_edge(index_a, index_b) {
Some(edge_index) => edge_index,
None => return Err(NoEdgeBetweenNodes::new_err("No edge found between nodes")),
};
let data = self.graph.edge_weight(edge_index).unwrap();
Ok(data)
}
/// Return the edge data for the edge by its given index
///
/// :param int edge_index: The edge index to get the data for
///
/// :returns: The data object for the edge
/// :raises IndexError: when there is no edge present with the provided
/// index
#[pyo3(text_signature = "(self, edge_index, /)")]
pub fn get_edge_data_by_index(&self, edge_index: usize) -> PyResult<&PyObject> {
let data = match self.graph.edge_weight(EdgeIndex::new(edge_index)) {
Some(data) => data,
None => {
return Err(PyIndexError::new_err(format!(
"Provided edge index {} is not present in the graph",
edge_index
)));
}
};
Ok(data)
}
/// Return the edge endpoints for the edge by its given index
///
/// :param int edge_index: The edge index to get the endpoints for
///
/// :returns: The endpoint tuple for the edge
/// :rtype: tuple
/// :raises IndexError: when there is no edge present with the provided
/// index
#[pyo3(text_signature = "(self, edge_index, /)")]
pub fn get_edge_endpoints_by_index(&self, edge_index: usize) -> PyResult<(usize, usize)> {
let endpoints = match self.graph.edge_endpoints(EdgeIndex::new(edge_index)) {
Some(endpoints) => (endpoints.0.index(), endpoints.1.index()),
None => {
return Err(PyIndexError::new_err(format!(
"Provided edge index {} is not present in the graph",
edge_index
)));
}
};
Ok(endpoints)
}
/// Update an edge's weight/payload inplace
///
/// If there are parallel edges in the graph only one edge will be updated.
/// if you need to update a specific edge or need to ensure all parallel
/// edges get updated you should use
/// :meth:`~retworkx.PyDiGraph.update_edge_by_index` instead.
///
/// :param int source: The index for the first node
/// :param int target: The index for the second node
///
/// :raises NoEdgeBetweenNodes: When there is no edge between nodes
#[pyo3(text_signature = "(self, source, target, edge /)")]
pub fn update_edge(&mut self, source: usize, target: usize, edge: PyObject) -> PyResult<()> {
let index_a = NodeIndex::new(source);
let index_b = NodeIndex::new(target);
let edge_index = match self.graph.find_edge(index_a, index_b) {
Some(edge_index) => edge_index,
None => return Err(NoEdgeBetweenNodes::new_err("No edge found between nodes")),
};
let data = self.graph.edge_weight_mut(edge_index).unwrap();
*data = edge;
Ok(())
}
/// Update an edge's weight/payload by the edge index
///
/// :param int edge_index: The index for the edge
/// :param object edge: The data payload/weight to update the edge with
///
/// :raises IndexError: when there is no edge present with the provided
/// index
#[pyo3(text_signature = "(self, edge_index, edge, /)")]
pub fn update_edge_by_index(&mut self, edge_index: usize, edge: PyObject) -> PyResult<()> {
match self.graph.edge_weight_mut(EdgeIndex::new(edge_index)) {
Some(data) => *data = edge,
None => return Err(PyIndexError::new_err("No edge found for index")),
};
Ok(())
}
/// Return the node data for a given node index
///
/// :param int node: The index for the node
///
/// :returns: The data object set for that node
/// :raises IndexError: when an invalid node index is provided
#[pyo3(text_signature = "(self, node, /)")]
pub fn get_node_data(&self, node: usize) -> PyResult<&PyObject> {
let index = NodeIndex::new(node);
let node = match self.graph.node_weight(index) {
Some(node) => node,
None => return Err(PyIndexError::new_err("No node found for index")),
};
Ok(node)
}
/// Return the edge data for all the edges between 2 nodes.
///
/// :param int node_a: The index for the first node
/// :param int node_b: The index for the second node
/// :returns: A list with all the data objects for the edges between nodes
/// :rtype: list
/// :raises NoEdgeBetweenNodes: When there is no edge between nodes
#[pyo3(text_signature = "(self, node_a, node_b, /)")]
pub fn get_all_edge_data(&self, node_a: usize, node_b: usize) -> PyResult<Vec<&PyObject>> {
let index_a = NodeIndex::new(node_a);
let index_b = NodeIndex::new(node_b);
let raw_edges = self
.graph
.edges_directed(index_a, petgraph::Direction::Outgoing);
let out: Vec<&PyObject> = raw_edges
.filter(|x| x.target() == index_b)
.map(|edge| edge.weight())
.collect();
if out.is_empty() {
Err(NoEdgeBetweenNodes::new_err("No edge found between nodes"))
} else {
Ok(out)
}
}
/// Get edge list
///
/// Returns a list of tuples of the form ``(source, target)`` where
/// ``source`` and ``target`` are the node indices.
///
/// :returns: An edge list without weights
/// :rtype: EdgeList
pub fn edge_list(&self) -> EdgeList {
EdgeList {
edges: self
.graph
.edge_references()
.map(|edge| (edge.source().index(), edge.target().index()))
.collect(),
}
}
/// Get edge list with weights
///
/// Returns a list of tuples of the form ``(source, target, weight)`` where
/// ``source`` and ``target`` are the node indices and ``weight`` is the
/// payload of the edge.
///
/// :returns: An edge list with weights
/// :rtype: WeightedEdgeList
pub fn weighted_edge_list(&self, py: Python) -> WeightedEdgeList {
WeightedEdgeList {
edges: self
.graph
.edge_references()
.map(|edge| {
(
edge.source().index(),
edge.target().index(),
edge.weight().clone_ref(py),
)
})
.collect(),
}
}
/// Get an edge index map
///
/// Returns a read only mapping from edge indices to the weighted edge
/// tuple. The return is a mapping of the form:
/// ``{0: (0, 1, "weight"), 1: (2, 3, 2.3)}``
///
/// :returns: An edge index map
/// :rtype: EdgeIndexMap
#[pyo3(text_signature = "(self)")]
pub fn edge_index_map(&self, py: Python) -> EdgeIndexMap {
EdgeIndexMap {
edge_map: self
.graph
.edge_references()
.map(|edge| {
(
edge.id().index(),
(
edge.source().index(),
edge.target().index(),
edge.weight().clone_ref(py),
),
)
})
.collect(),
}
}
/// Remove a node from the graph.
///
/// :param int node: The index of the node to remove. If the index is not
/// present in the graph it will be ignored and this function will have
/// no effect.
#[pyo3(text_signature = "(self, node, /)")]
pub fn remove_node(&mut self, node: usize) -> PyResult<()> {
let index = NodeIndex::new(node);
self.graph.remove_node(index);
self.node_removed = true;
Ok(())
}
/// Remove a node from the graph and add edges from all predecessors to all
/// successors
///
/// By default the data/weight on edges into the removed node will be used
/// for the retained edges.
///
/// :param int node: The index of the node to remove. If the index is not
/// present in the graph it will be ingored and this function willl have
/// no effect.
/// :param bool use_outgoing: If set to true the weight/data from the
/// edge outgoing from ``node`` will be used in the retained edge
/// instead of the default weight/data from the incoming edge.
/// :param condition: A callable that will be passed 2 edge weight/data
/// objects, one from the incoming edge to ``node`` the other for the
/// outgoing edge, and will return a ``bool`` on whether an edge should
/// be retained. For example setting this kwarg to::
///
/// lambda in_edge, out_edge: in_edge == out_edge
///
/// would only retain edges if the input edge to ``node`` had the same
/// data payload as the outgoing edge.
#[pyo3(text_signature = "(self, node, /, use_outgoing=None, condition=None)")]
#[args(use_outgoing = "false")]
pub fn remove_node_retain_edges(
&mut self,
py: Python,
node: usize,
use_outgoing: bool,
condition: Option<PyObject>,
) -> PyResult<()> {
let index = NodeIndex::new(node);
let mut edge_list: Vec<(NodeIndex, NodeIndex, PyObject)> = Vec::new();
fn check_condition(
py: Python,
condition: &Option<PyObject>,
in_weight: &PyObject,
out_weight: &PyObject,
) -> PyResult<bool> {
match condition {
Some(condition) => {
let res = condition.call1(py, (in_weight, out_weight))?;
Ok(res.extract(py)?)
}
None => Ok(true),
}
}
for (source, in_weight) in self
.graph
.edges_directed(index, petgraph::Direction::Incoming)
.map(|x| (x.source(), x.weight()))
{
for (target, out_weight) in self
.graph
.edges_directed(index, petgraph::Direction::Outgoing)
.map(|x| (x.target(), x.weight()))
{
let weight = if use_outgoing { out_weight } else { in_weight };
if check_condition(py, &condition, in_weight, out_weight)? {
edge_list.push((source, target, weight.clone_ref(py)));
}
}
}
for (source, target, weight) in edge_list {
self._add_edge(source, target, weight)?;
}
self.graph.remove_node(index);
self.node_removed = true;
Ok(())
}
/// Add an edge between 2 nodes.
///
/// Use add_child() or add_parent() to create a node with an edge at the
/// same time as an edge for better performance. Using this method will
/// enable adding duplicate edges between nodes if the ``check_cycle``
/// attribute is set to ``True``.
///
/// :param int parent: Index of the parent node
/// :param int child: Index of the child node
/// :param edge: The object to set as the data for the edge. It can be any
/// python object.
///
/// :returns: The edge index of the created edge
/// :rtype: int
///
/// :raises: When the new edge will create a cycle
#[pyo3(text_signature = "(self, parent, child, edge, /)")]
pub fn add_edge(&mut self, parent: usize, child: usize, edge: PyObject) -> PyResult<usize> {
let p_index = NodeIndex::new(parent);
let c_index = NodeIndex::new(child);
let out_index = self._add_edge(p_index, c_index, edge)?;
Ok(out_index)
}
/// Add new edges to the dag.
///
/// :param list obj_list: A list of tuples of the form
/// ``(parent, child, obj)`` to attach to the graph. ``parent`` and
/// ``child`` are integer indices describing where an edge should be
/// added, and obj is the python object for the edge data.
///
/// :returns: A list of int indices of the newly created edges
/// :rtype: list
#[pyo3(text_signature = "(self, obj_list, /)")]
pub fn add_edges_from(
&mut self,
obj_list: Vec<(usize, usize, PyObject)>,
) -> PyResult<Vec<usize>> {
let mut out_list: Vec<usize> = Vec::with_capacity(obj_list.len());
for obj in obj_list {
let p_index = NodeIndex::new(obj.0);
let c_index = NodeIndex::new(obj.1);
let edge = self._add_edge(p_index, c_index, obj.2)?;
out_list.push(edge);
}
Ok(out_list)
}
/// Add new edges to the dag without python data.
///
/// :param list obj_list: A list of tuples of the form
/// ``(parent, child)`` to attach to the graph. ``parent`` and
/// ``child`` are integer indices describing where an edge should be
/// added. Unlike :meth:`add_edges_from` there is no data payload and
/// when the edge is created None will be used.
///
/// :returns: A list of int indices of the newly created edges
/// :rtype: list
#[pyo3(text_signature = "(self, obj_list, /)")]
pub fn add_edges_from_no_data(
&mut self,
py: Python,
obj_list: Vec<(usize, usize)>,
) -> PyResult<Vec<usize>> {
let mut out_list: Vec<usize> = Vec::with_capacity(obj_list.len());
for obj in obj_list {
let p_index = NodeIndex::new(obj.0);
let c_index = NodeIndex::new(obj.1);
let edge = self._add_edge(p_index, c_index, py.None())?;
out_list.push(edge);
}