Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add an efficient circuit synthesis for a special pattern exp(-it (IZZ + ZZI + ZZZ)) #13285

Open
t-imamichi opened this issue Oct 7, 2024 · 13 comments
Labels

Comments

@t-imamichi
Copy link
Member

t-imamichi commented Oct 7, 2024

What should we add?

[1] proposed an efficient way to synthesize the following special pattern of two-body terms (IZZ and ZZI) and three-body term (ZZZ) (Fig. 2 [1]).
It can halve the number of two-qubit gates (8 to 4).
This pattern is useful to handle QAOA with cubic terms as [1] did.

It would be nice if Qiskit can handle this special pattern of synthesis.

Target (coeffs can be arbitrary)

     ┌────────────────────────────────┐
q_0: ┤0                               ├
     │                                │
q_1: ┤1 exp(-it (IZZ + ZZI + ZZZ))(x) ├
     │                                │
q_2: ┤2                               ├
     └────────────────────────────────┘
# PauliEvolutionGate(SparsePauliOp(["IZZ", "ZZI", "ZZZ"], coeffs=[1, 2, 3]), x)

Qiskit optimization_level=3

                                                        ┌───┐┌───────────┐┌───┐
q_0: ──■─────────────────■──────────────────────────────┤ X ├┤ Rz(6.0*x) ├┤ X ├─────
     ┌─┴─┐┌───────────┐┌─┴─┐                       ┌───┐└─┬─┘└───────────┘└─┬─┘┌───┐
q_1: ┤ X ├┤ Rz(2.0*x) ├┤ X ├──■─────────────────■──┤ X ├──■─────────────────■──┤ X ├
     └───┘└───────────┘└───┘┌─┴─┐┌───────────┐┌─┴─┐└─┬─┘                       └─┬─┘
q_2: ───────────────────────┤ X ├┤ Rz(4.0*x) ├┤ X ├──■───────────────────────────■──
                            └───┘└───────────┘└───┘
OrderedDict({'cx': 8, 'rz': 3})

Proposed circuit by [1]

q_0: ──■───────────────────────────────────■────────────────────
     ┌─┴─┐┌───────────┐┌───┐┌───────────┐┌─┴─┐┌───────────┐┌───┐
q_1: ┤ X ├┤ Rz(2.0*x) ├┤ X ├┤ Rz(6.0*x) ├┤ X ├┤ Rz(4.0*x) ├┤ X ├
     └───┘└───────────┘└─┬─┘└───────────┘└───┘└───────────┘└─┬─┘
q_2: ────────────────────■───────────────────────────────────■──
OrderedDict({'cx': 4, 'rz': 3})

Reference
[1] Pelofske, E., Bärtschi, A., & Eidenbenz, S. (2024). Short-depth QAOA circuits and quantum annealing on higher-order ising models. Npj Quantum Information, 10(1), 30. https://doi.org/10.1038/s41534-024-00825-w


Script to reproduce

from qiskit import QuantumCircuit, generate_preset_pass_manager
from qiskit.circuit import Parameter
from qiskit.circuit.library import PauliEvolutionGate
from qiskit.quantum_info import SparsePauliOp

# PauliEvolutionGate
qc = QuantumCircuit(3)
x = Parameter("x")
op = SparsePauliOp(["IZZ", "ZZI", "ZZZ"], coeffs=[1, 2, 3])
evo = PauliEvolutionGate(op, x)
qc.append(evo, qargs=qc.qregs[0])
print("PauliEvolutionGate")
print(qc)
print("PauliEvolutionGate + decompose")
print(qc.decompose())
pm = generate_preset_pass_manager(optimization_level=3, basis_gates=["cx", "rz"])
qc = pm.run(qc)
print("PauliEvolutionGate + optimization_level=3")
print(qc)

# Hand-optimized
qc2 = QuantumCircuit(3)
qc2.rzz(2.0 * x, 0, 1)
# RZZZ(6 * x, 0, 1, 2)
qc2.cx(0, 1)
qc2.rzz(6.0 * x, 2, 1)
qc2.cx(0, 1)
#
qc2.rzz(4.0 * x, 2, 1)
print("Hand-optimized")
print(qc2)

print("Hand-optimization + optimization_level=3")
qc3 = pm.run(qc2)
print(qc3)
@t-imamichi t-imamichi added synthesis type: feature request New feature or request labels Oct 7, 2024
@jakelishman
Copy link
Member

This seems like a very nice optimisation for this kind of class of PauliEvolutionGate. Can we think about what the most general form of this decomposition that we could implement is, too? I haven't read the paper, but just judging by the structure of the output circuit, I'm assuming that we can make a similarly valid pattern for any evolution of the form

$$ \biggl(\sum_{i\in \text{qubits}} c_{1,i} P_i\biggr) + \biggl(\sum_{i\ne0} c_{2,i} P_0 P_i \biggr) + c_3 P_0 P_1 P_2 $$

for any single Pauli $P$ (the subscript denotes the qubit), and any permutation of the "centre" qubit (here denoted $q_0$).

As in: I feel like a similar trick would work if these were all X rotations instead of Z, it should be impervious to commuting linear terms being in the mix, and it clearly should be valid under permutation of the qubits. If we add this case, I feel like we should make sure it validly recognises all those additional places too. That might not mean putting in separate catches for the linear terms - maybe the synthesis works out cleaner if we separate those out into a prefix (since they all trivially commute with all other operators).

Going further, is it possible that for evolution of any polynomial of the same Pauli to use this cubic case as a decomposition to lift the synthesis to higher orders? It might not be immediately useful, but it feels like there might be some sort of decomposition rule possible here, since that kind of polynomial is fairly trivially detectable as "everything commutes".

@jakelishman

This comment has been minimized.

@DisantHoridnt
Copy link

how do I start helping?

@t-imamichi
Copy link
Member Author

Thank you for your idea of generalization, @jakelishman. It sounds great.
I tried X and it works well too. I agree with the idea to add the most general form.

PauliEvolutionGate
     ┌────────────────────────────────┐
q_0: ┤0                               ├
     │                                │
q_1: ┤1 exp(-it (IXX + XXI + XXX))(x) ├
     │                                │
q_2: ┤2                               ├
     └────────────────────────────────┘

PauliEvolutionGate + optimization_level=3
     ┌───┐                                                   ┌───┐┌───────────┐┌───┐┌───┐
q_0: ┤ H ├──■─────────────────■──────────────────────────────┤ X ├┤ Rz(6.0*x) ├┤ X ├┤ H ├─────
     ├───┤┌─┴─┐┌───────────┐┌─┴─┐                       ┌───┐└─┬─┘└───────────┘└─┬─┘├───┤┌───┐
q_1: ┤ H ├┤ X ├┤ Rz(2.0*x) ├┤ X ├──■─────────────────■──┤ X ├──■─────────────────■──┤ X ├┤ H ├
     ├───┤└───┘└───────────┘└───┘┌─┴─┐┌───────────┐┌─┴─┐└─┬─┘                       └─┬─┘├───┤
q_2: ┤ H ├───────────────────────┤ X ├┤ Rz(4.0*x) ├┤ X ├──■───────────────────────────■──┤ H ├
     └───┘                       └───┘└───────────┘└───┘                                 └───┘

Hand-optimization + optimization_level=3
     ┌───┐                                             ┌───┐
q_0: ┤ H ├──■───────────────────────────────────■──────┤ H ├──────────────
     ├───┤┌─┴─┐┌───────────┐┌───┐┌───────────┐┌─┴─┐┌───┴───┴───┐┌───┐┌───┐
q_1: ┤ H ├┤ X ├┤ Rz(2.0*x) ├┤ X ├┤ Rz(6.0*x) ├┤ X ├┤ Rz(4.0*x) ├┤ X ├┤ H ├
     ├───┤└───┘└───────────┘└─┬─┘└───────────┘└───┘└───────────┘└─┬─┘├───┤
q_2: ┤ H ├────────────────────■───────────────────────────────────■──┤ H ├
     └───┘                                                           └───┘
import numpy as np
from qiskit import QuantumCircuit, generate_preset_pass_manager
from qiskit.circuit import Parameter
from qiskit.circuit.library import PauliEvolutionGate
from qiskit.quantum_info import SparsePauliOp, Statevector, Operator

# PauliEvolutionGate
qc = QuantumCircuit(3)
x = Parameter("x")
op = SparsePauliOp(["IXX", "XXI", "XXX"], coeffs=[1, 2, 3])
evo = PauliEvolutionGate(op, x)
qc.append(evo, qargs=qc.qregs[0])
print("PauliEvolutionGate")
print(qc)
print("PauliEvolutionGate + decompose")
print(qc.decompose())
pm = generate_preset_pass_manager(optimization_level=3, basis_gates=["cx", "rz", "h"])
qc = pm.run(qc)
print("PauliEvolutionGate + optimization_level=3")
print(qc)

# Hand-optimized
qc2 = QuantumCircuit(3)
qc2.rxx(2.0 * x, 0, 1)
# RXXX(6 * x, 0, 1, 2)
qc2.h([0, 1, 2])
qc2.cx(0, 1)
qc2.rzz(6.0 * x, 2, 1)
qc2.cx(0, 1)
qc2.h([0, 1, 2])
#
qc2.rxx(4.0 * x, 2, 1)
print("Hand-optimized")
print(qc2)

print("Hand-optimization + optimization_level=3")
qc2 = pm.run(qc2)
print(qc2)

for h in np.linspace(-1, 1, 10):
    op = Operator(qc.assign_parameters([h]))
    op2 = Operator(qc2.assign_parameters([h]))
    assert np.allclose(op.to_matrix(), op2.to_matrix())
print("passed")

@jakelishman
Copy link
Member

Ah, thanks for checking Imamichi-san. Yeah, I guess I should have applied a couple of seconds' actual thought while typing all that... It's obvious when you draw it out that we can just rotate each individual single-qubit axis round to ZZZ, do the same trick, and rotate back. We ought to be able to handle the case that each qubit is being rotated on a different axis as well, right, e.g. if the cubic term is $XYZ$, the corresponding linear terms are $Z_0$, $Y_1$, $X_2$, and the quadratics are $Z_0 Y_1$ and $Z_0 X_2$ (or whatever the "central" qubit is). Then the required evolutions would be $H_2$ and $H_1 S_1$ (or whatever the exact $Y\to Z$ map is - I never remember off the top of my head).

This is still all for CX-based synthesis, but I think recognising these transformations means that we ought to be able to formulate the synthesis neatly for $R_{zx}$-based entanglers as well (though I guess that was already a fairly obvious extension for $R_{zz}$-based systems stemming from the paper).

@t-imamichi
Copy link
Member Author

Thank you for the detailed explanation. I got how we can handle cubic term $$XYZ$$. The generalization sounds much more attractive than my original request.

@t-imamichi
Copy link
Member Author

t-imamichi commented Oct 8, 2024

I hand-optimized 4-body terms in the similar way as follows. The number of two-qubit gates become half (16 -> 8).

     ┌────────────────────────────────────────────────────────┐
q_0: ┤0                                                       ├
     │                                                        │
q_1: ┤1                                                       ├
     │  exp(-it (ZZII + IZZI + IIZZ + IZZZ + ZZZI + ZZZZ))(x) │
q_2: ┤2                                                       ├
     │                                                        │
q_3: ┤3                                                       ├
     └────────────────────────────────────────────────────────┘

PauliEvolutionGate + optimization_level=3
                                                                               ┌───┐┌───────────┐┌───┐                             ┌───┐┌────────────┐┌───┐
q_0: ────────────────────────────────────────────────■─────────────────■───────┤ X ├┤ Rz(8.0*x) ├┤ X ├─────────────────────────────┤ X ├┤ Rz(12.0*x) ├┤ X ├──────────
                                                   ┌─┴─┐┌───────────┐┌─┴─┐┌───┐└─┬─┘└───────────┘└─┬─┘┌───┐     ┌───┐┌────────────┐└─┬─┘└────────────┘└─┬─┘┌───┐
q_1: ─────────────────────────■─────────────────■──┤ X ├┤ Rz(6.0*x) ├┤ X ├┤ X ├──■─────────────────■──┤ X ├─────┤ X ├┤ Rz(10.0*x) ├──■──────────────────■──┤ X ├─────
                            ┌─┴─┐┌───────────┐┌─┴─┐└───┘└───────────┘└───┘└─┬─┘                       └─┬─┘┌───┐└─┬─┘└────────────┘                        └─┬─┘┌───┐
q_2: ──■─────────────────■──┤ X ├┤ Rz(4.0*x) ├┤ X ├─────────────────────────■───────────────────────────■──┤ X ├──■──────────────────────────────────────────■──┤ X ├
     ┌─┴─┐┌───────────┐┌─┴─┐└───┘└───────────┘└───┘                                                        └─┬─┘                                                └─┬─┘
q_3: ┤ X ├┤ Rz(2.0*x) ├┤ X ├─────────────────────────────────────────────────────────────────────────────────■────────────────────────────────────────────────────■──
     └───┘└───────────┘└───┘
OrderedDict({'cx': 16, 'rz': 6})

Hand-optimization + optimization_level=3

q_0: ──────────────────■────────────────────────────────────────────────■───────────────────────────────────
     ┌───┐┌─────────┐┌─┴─┐┌─────────┐┌───┐┌─────────┐┌───┐┌──────────┐┌─┴─┐┌──────────┐┌───┐
q_1: ┤ X ├┤ Rz(4*x) ├┤ X ├┤ Rz(8*x) ├┤ X ├┤ Rz(6*x) ├┤ X ├┤ Rz(12*x) ├┤ X ├┤ Rz(10*x) ├┤ X ├────────────────
     └─┬─┘└─────────┘└───┘└─────────┘└─┬─┘└──┬───┬──┘└─┬─┘└──────────┘└───┘└──────────┘└─┬─┘┌─────────┐┌───┐
q_2: ──■───────────────────────────────■─────┤ X ├─────■─────────────────────────────────■──┤ Rz(2*x) ├┤ X ├
                                             └─┬─┘                                          └─────────┘└─┬─┘
q_3: ──────────────────────────────────────────■─────────────────────────────────────────────────────────■──

OrderedDict({'cx': 8, 'rz': 6})

script to reproduce

import numpy as np
from qiskit import QuantumCircuit, generate_preset_pass_manager
from qiskit.circuit import Parameter
from qiskit.circuit.library import PauliEvolutionGate
from qiskit.quantum_info import SparsePauliOp, Operator

# PauliEvolutionGate
qc = QuantumCircuit(4)
x = Parameter("x")
op = SparsePauliOp(["ZZII", "IZZI", "IIZZ", "IZZZ", "ZZZI", "ZZZZ"], coeffs=[1, 2, 3, 4, 5, 6])
evo = PauliEvolutionGate(op, x)
qc.append(evo, qargs=qc.qregs[0])
print("PauliEvolutionGate")
print(qc)
print("PauliEvolutionGate + decompose")
print(qc.decompose())
pm = generate_preset_pass_manager(optimization_level=3, basis_gates=["cx", "rz", "h"])
qc = pm.run(qc)
print("PauliEvolutionGate + optimization_level=3")
print(qc)
print(qc.count_ops())

# Hand-optimized
qc2 = QuantumCircuit(4)
# IZZI
qc2.rzz(4 * x, 2, 1)
# IZZZ
qc2.cx(0, 1)
qc2.rzz(8 * x, 2, 1)
qc2.cx(0, 1)
# IIZZ
qc2.rzz(6 * x, 0, 1)
# ZZZZ
qc2.cx(3, 2)
qc2.cx(2, 1)
qc2.rzz(12 * x, 0, 1)
qc2.cx(2, 1)
qc2.cx(3, 2)
# ZZZI
qc2.cx(3, 2)
qc2.rzz(10 * x, 2, 1)
qc2.cx(3, 2)
# ZZII
qc2.rzz(2 * x, 3, 2)
print("Hand-optimized")
print(qc2)

print("Hand-optimization + optimization_level=3")
qc2 = pm.run(qc2)
print(qc2)
print(qc2.count_ops())

for h in np.linspace(-1, 1, 10):
    op = Operator(qc.assign_parameters([h]))
    op2 = Operator(qc2.assign_parameters([h]))
    assert op.equiv(op2)
print("passed")

@t-imamichi
Copy link
Member Author

@itoko -san taught me that circuit synthesis of only CNOT and RZ is called phase polynomial and qiskit has a heuristic for all-to-all connectivity https://docs.quantum.ibm.com/api/qiskit/synthesis#synth_cnot_phase_aam.

@alexanderivrii
Copy link
Contributor

Here is a small head-up: @Cryoris and I are actively working on integrating Simon Martiel's Rustiq synthesis code (see https://github.com/smartiel/rustiq) natively within Qiskit. This is a clever heuristic algorithm for all-to-all connectivity, and in particular exploits existing commutativity relations between Paulis: in both examples above all the Pauli terms commute and hence can be arbitrarily rearranged during synthesis (I am not sure if this is what makes the difference but it might).

Here are the results for the two examples above:

#op = SparsePauliOp(["IXX", "XXI", "XXX"], coeffs=[1, 2, 3])
Qiskit: count_2q = 6, depth_2q = 6, ops = OrderedDict([('cx', 4), ('rzz', 2), ('rz', 1)])
Rustiq: count_2q = 5, depth_2q = 5, ops = OrderedDict([('h', 6), ('cx', 5), ('rz', 3)])
Qiskit+Transpile: count_2q = 8, depth_2q = 8, ops = OrderedDict([('cx', 8), ('rz', 3)])
Rustiq+Transpile: count_2q = 5, depth_2q = 5, ops = OrderedDict([('cx', 5), ('rz', 3)])

#op = SparsePauliOp(["ZZII", "IZZI", "IIZZ", "IZZZ", "ZZZI", "ZZZZ"], coeffs=[1, 2, 3, 4, 5, 6])
Qiskit: count_2q = 17, depth_2q = 17, ops = OrderedDict([('cx', 14), ('rzz', 3), ('rz', 3)])
Rustiq: count_2q = 9, depth_2q = 6, ops = OrderedDict([('cx', 9), ('h', 8), ('rz', 6)])
Qiskit+Transpile: count_2q = 16, depth_2q = 16, ops = OrderedDict([('cx', 16), ('rz', 6)])
Rustiq+Transpile: count_2q = 9, depth_2q = 6, ops = OrderedDict([('cx', 9), ('rz', 6)])

The hand-crafted circuits are still slightly better, but only marginally so.

@t-imamichi
Copy link
Member Author

Thanks, @alexanderivrii. It's a great news. It would be nice if Rustiq can include the hand-optimized pattern too.

@t-imamichi
Copy link
Member Author

@alexanderivrii I tried rustiq following the reno, but 2q count by rustiq is larger than your experiment (count_2q = 5).
Could you please tell me if I miss anything?

from qiskit import QuantumCircuit, generate_preset_pass_manager
from qiskit.circuit import Parameter
from qiskit.circuit.library import PauliEvolutionGate
from qiskit.quantum_info import SparsePauliOp
from qiskit.transpiler.passes import HLSConfig

# PauliEvolutionGate
qc = QuantumCircuit(3)
x = Parameter("x")
op = SparsePauliOp(["IZZ", "ZZI", "ZZZ"], coeffs=[1, 2, 3])
evo = PauliEvolutionGate(op, x)
qc.append(evo, qargs=qc.qregs[0])
print("PauliEvolutionGate")
print(qc)
print("PauliEvolutionGate + decompose")
print(qc.decompose())
pm = generate_preset_pass_manager(optimization_level=3, basis_gates=["cx", "rz"])
tqc = pm.run(qc)
print("PauliEvolutionGate + optimization_level=3")
print(tqc)
print(tqc.count_ops(), "\n")

config = HLSConfig(PauliEvolution=[("rustiq", {"upto_phase": False})])
pm = generate_preset_pass_manager(optimization_level=3, basis_gates=["cx", "rz"], hls_config=config)
tqc = pm.run(qc)
print("PauliEvolutionGate + rustiq + optimization_level=3")
print(tqc)
print(tqc.count_ops(), "\n")

# Hand-optimized
qc2 = QuantumCircuit(3)
qc2.rzz(2.0 * x, 0, 1)
# RZZZ(6 * x, 0, 1, 2)
qc2.cx(0, 1)
qc2.rzz(6.0 * x, 2, 1)
qc2.cx(0, 1)
#
qc2.rzz(4.0 * x, 2, 1)
print("Hand-optimized")
print(qc2)

print("Hand-optimization + optimization_level=3")
tqc2 = pm.run(qc2)
print(tqc2)
print(tqc2.count_ops(), "\n")
# 1.3.0rc1 and main branch
PauliEvolutionGate
     ┌────────────────────────────────┐
q_0: ┤0                               ├
     │                                │
q_1: ┤1 exp(-it (IZZ + ZZI + ZZZ))(x) ├
     │                                │
q_2: ┤2                               ├
     └────────────────────────────────┘
PauliEvolutionGate + decompose
                                  ┌───┐┌───────────┐┌───┐
q_0: ─■───────────────────────────┤ X ├┤ Rz(6.0*x) ├┤ X ├─────
      │ZZ(2.0*x)             ┌───┐└─┬─┘└───────────┘└─┬─┘┌───┐
q_1: ─■───────────■──────────┤ X ├──■─────────────────■──┤ X ├
                  │ZZ(4.0*x) └─┬─┘                       └─┬─┘
q_2: ─────────────■────────────■───────────────────────────■──

PauliEvolutionGate + optimization_level=3
                                                        ┌───┐┌───────────┐┌───┐
q_0: ──■─────────────────■──────────────────────────────┤ X ├┤ Rz(6.0*x) ├┤ X ├─────
     ┌─┴─┐┌───────────┐┌─┴─┐                       ┌───┐└─┬─┘└───────────┘└─┬─┘┌───┐
q_1: ┤ X ├┤ Rz(2.0*x) ├┤ X ├──■─────────────────■──┤ X ├──■─────────────────■──┤ X ├
     └───┘└───────────┘└───┘┌─┴─┐┌───────────┐┌─┴─┐└─┬─┘                       └─┬─┘
q_2: ───────────────────────┤ X ├┤ Rz(4.0*x) ├┤ X ├──■───────────────────────────■──
                            └───┘└───────────┘└───┘
OrderedDict({'cx': 8, 'rz': 3})

PauliEvolutionGate + rustiq + optimization_level=3
                       ┌───┐┌───────────┐┌───┐┌───────────┐┌───┐┌───┐
q_0: ──────────────────┤ X ├┤ Rz(6.0*x) ├┤ X ├┤ Rz(2.0*x) ├┤ X ├┤ X ├─────
     ┌───┐┌───────────┐└─┬─┘└───────────┘└─┬─┘└───────────┘└─┬─┘└─┬─┘┌───┐
q_1: ┤ X ├┤ Rz(4.0*x) ├──■─────────────────┼─────────────────┼────■──┤ X ├
     └─┬─┘└───────────┘                    │                 │       └─┬─┘
q_2: ──■───────────────────────────────────■─────────────────■─────────■──

OrderedDict({'cx': 6, 'rz': 3})

Hand-optimized

q_0: ─■────────────■────────────────■──────────────
      │ZZ(2.0*x) ┌─┴─┐            ┌─┴─┐
q_1: ─■──────────┤ X ├─■──────────┤ X ├─■──────────
                 └───┘ │ZZ(6.0*x) └───┘ │ZZ(4.0*x)
q_2: ──────────────────■────────────────■──────────

Hand-optimization + optimization_level=3

q_0: ──■───────────────────────────────────■────────────────────
     ┌─┴─┐┌───────────┐┌───┐┌───────────┐┌─┴─┐┌───────────┐┌───┐
q_1: ┤ X ├┤ Rz(2.0*x) ├┤ X ├┤ Rz(6.0*x) ├┤ X ├┤ Rz(4.0*x) ├┤ X ├
     └───┘└───────────┘└─┬─┘└───────────┘└───┘└───────────┘└─┬─┘
q_2: ────────────────────■───────────────────────────────────■──

OrderedDict({'cx': 4, 'rz': 3})

@alexanderivrii
Copy link
Contributor

alexanderivrii commented Nov 17, 2024

Thanks @t-imamichi!

We have indeed encountered a certain complication when integrating Rustiq's synthesis algorithm inside Qiskit. The default algorithm in the rustiq-core package pushes off some Clifford gates to the end of the circuit and then resynthesizes these gates into a smaller Clifford. However, this does not preserve the global phase of the circuit, and currently we don't have the Qiskit code to fix this global phase (but I was told that this would be possible with the extended Clifford simulator that was once available in Qiskit-Aqua). So, in order to preserve the global phase in Qiskit by default, we simply undo the Clifford gates at the end of the circuit: you can see that the 3 CX-gates at the end mirror the earlier CX-gates. However, if you do not care about the global phase, you can set "upto_phase": True instead of False, and you will get a circuit with only 5 CX-gates.

One other point is that Rustiq is a greedy algorithm and at each step it chooses the "move" that minimizes a certain cost function. However, there are usually multiple best moves available. This is all to say that Rustiq's behavior might change from one version to another and in particular the number of CX-gates could have also changed due to some recent changes to Rustiq, but this is actually not the case for the example above. Within the same Qiskit version the behavior is deterministic.

I am actually planning to study this example to see if we could modify Rustiq's heuristic to produce only 4 CX-gates.

I am thinking that it would be worthwhile to implement the approach from the referenced paper with your and Jake's suggested extensions (in addition to having Rustiq).

@t-imamichi
Copy link
Member Author

Thank you for your information. I tried "upto_phase": True and it results in 5 CX-gates.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

4 participants