-
Notifications
You must be signed in to change notification settings - Fork 2.4k
/
u.py
230 lines (183 loc) · 8.02 KB
/
u.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Two-pulse single-qubit gate."""
import numpy
from qiskit.circuit.controlledgate import ControlledGate
from qiskit.circuit.gate import Gate
from qiskit.circuit.quantumregister import QuantumRegister
class UGate(Gate):
r"""Generic single-qubit rotation gate with 3 Euler angles.
Implemented using two X90 pulses on IBM Quantum systems:
.. math::
U(\theta, \phi, \lambda) =
RZ(\phi - \pi/2) RX(\pi/2) RZ(\pi - \theta) RX(\pi/2) RZ(\lambda - \pi/2)
**Circuit symbol:**
.. parsed-literal::
┌──────────┐
q_0: ┤ U(ϴ,φ,λ) ├
└──────────┘
**Matrix Representation:**
.. math::
\newcommand{\th}{\frac{\theta}{2}}
U(\theta, \phi, \lambda) =
\begin{pmatrix}
\cos(\th) & -e^{i\lambda}\sin(\th) \\
e^{i\phi}\sin(\th) & e^{i(\phi+\lambda)}\cos(\th)
\end{pmatrix}
**Examples:**
.. math::
U\left(\theta, -\frac{\pi}{2}, \frac{pi}{2}\right) = RX(\theta)
.. math::
U(\theta, 0, 0) = RY(\theta)
"""
def __init__(self, theta, phi, lam, label=None):
"""Create new U gate."""
super().__init__('u', 1, [theta, phi, lam], label=label)
def inverse(self):
r"""Return inverted U gate.
:math:`U(\theta,\phi,\lambda)^{\dagger} =U3(-\theta,-\phi,-\lambda)`)
"""
return UGate(-self.params[0], -self.params[2], -self.params[1])
def control(self, num_ctrl_qubits=1, label=None, ctrl_state=None):
"""Return a (mutli-)controlled-U3 gate.
Args:
num_ctrl_qubits (int): number of control qubits.
label (str or None): An optional label for the gate [Default: None]
ctrl_state (int or str or None): control state expressed as integer,
string (e.g. '110'), or None. If None, use all 1s.
Returns:
ControlledGate: controlled version of this gate.
"""
if num_ctrl_qubits == 1:
gate = CUGate(self.params[0], self.params[1], self.params[2], 0,
label=label, ctrl_state=ctrl_state)
gate.base_gate.label = self.label
return gate
return super().control(num_ctrl_qubits=num_ctrl_qubits, label=label, ctrl_state=ctrl_state)
def _define(self):
"""Alias for U3 until U becomes a basis gate."""
from qiskit.circuit.quantumcircuit import QuantumCircuit
q = QuantumRegister(1, 'q')
qc = QuantumCircuit(q)
qc.u3(self.params[0], self.params[1], self.params[2], q[0])
self.definition = qc
def to_matrix(self):
"""Return a numpy.array for the U gate."""
theta, phi, lam = [float(param) for param in self.params]
return numpy.array([
[
numpy.cos(theta / 2),
-numpy.exp(1j * lam) * numpy.sin(theta / 2)
],
[
numpy.exp(1j * phi) * numpy.sin(theta / 2),
numpy.exp(1j * (phi + lam)) * numpy.cos(theta / 2)
]
], dtype=complex)
class CUGate(ControlledGate):
r"""Controlled-U gate (4-parameter two-qubit gate).
This is a controlled version of the U gate (generic single qubit rotation),
including a possible global phase :math:`e^{i\gamma}` of the U gate.
**Circuit symbol:**
.. parsed-literal::
q_0: ──────■──────
┌─────┴──────┐
q_1: ┤ U(ϴ,φ,λ,γ) ├
└────────────┘
**Matrix representation:**
.. math::
\newcommand{\th}{\frac{\theta}{2}}
CU(\theta, \phi, \lambda)\ q_0, q_1 =
I \otimes |0\rangle\langle 0| +
e^{i\gamma} U(\theta,\phi,\lambda) \otimes |1\rangle\langle 1| =
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & e^{i\gamma}\cos(\th) & 0 & -e^{i(\gamma + \lambda)}\sin(\th) \\
0 & 0 & 1 & 0 \\
0 & e^{i(\gamma+\phi)}\sin(\th) & 0 & e^{i(\gamma+\phi+\lambda)}\cos(\th)
\end{pmatrix}
.. note::
In Qiskit's convention, higher qubit indices are more significant
(little endian convention). In many textbooks, controlled gates are
presented with the assumption of more significant qubits as control,
which in our case would be q_1. Thus a textbook matrix for this
gate will be:
.. parsed-literal::
┌────────────┐
q_0: ┤ U(ϴ,φ,λ,γ) ├
└─────┬──────┘
q_1: ──────■───────
.. math::
CU(\theta, \phi, \lambda)\ q_1, q_0 =
|0\rangle\langle 0| \otimes I +
e^{i\gamma}|1\rangle\langle 1| \otimes U3(\theta,\phi,\lambda) =
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & e^{i\gamma} \cos(\th) & -e^{i(\gamma + \lambda)}\sin(\th) \\
0 & 0 & e^{i(\gamma + \phi)}\sin(\th) & e^{i(\gamma + \phi+\lambda)}\cos(\th)
\end{pmatrix}
"""
def __init__(self, theta, phi, lam, gamma, label=None, ctrl_state=None):
"""Create new CU gate."""
super().__init__('cu', 2, [theta, phi, lam, gamma], num_ctrl_qubits=1,
label=label, ctrl_state=ctrl_state)
self.base_gate = UGate(theta, phi, lam)
def _define(self):
"""
gate cu(theta,phi,lambda,gamma) c, t
{ phase(gamma) c;
phase((lambda+phi)/2) c;
phase((lambda-phi)/2) t;
cx c,t;
u(-theta/2,0,-(phi+lambda)/2) t;
cx c,t;
u(theta/2,phi,0) t;
}
"""
# pylint: disable=cyclic-import
from qiskit.circuit.quantumcircuit import QuantumCircuit
q = QuantumRegister(2, 'q')
qc = QuantumCircuit(q, name=self.name)
qc.p(self.params[3], 0)
qc.p((self.params[2] + self.params[1]) / 2, 0)
qc.p((self.params[2] - self.params[1]) / 2, 1)
qc.cx(0, 1)
qc.u(-self.params[0] / 2, 0, -(self.params[1] + self.params[2]) / 2, 1)
qc.cx(0, 1)
qc.u(self.params[0] / 2, self.params[1], 0, 1)
self.definition = qc
def inverse(self):
r"""Return inverted CU gate.
:math:`CU(\theta,\phi,\lambda,\gamma)^{\dagger} = CU(-\theta,-\phi,-\lambda,-\gamma)`)
"""
return CUGate(-self.params[0], -self.params[2], -self.params[1], -self.params[3])
def to_matrix(self):
"""Return a numpy.array for the CU gate."""
theta, phi, lam, gamma = [float(param) for param in self.params]
cos = numpy.cos(theta / 2)
sin = numpy.sin(theta / 2)
a = numpy.exp(1j * gamma) * cos
b = -numpy.exp(1j * (gamma + lam)) * sin
c = numpy.exp(1j * (gamma + phi)) * sin
d = numpy.exp(1j * (gamma + phi + lam)) * cos
if self.ctrl_state:
return numpy.array([[1, 0, 0, 0],
[0, a, 0, b],
[0, 0, 1, 0],
[0, c, 0, d]], dtype=complex)
else:
return numpy.array([[a, 0, b, 0],
[0, 1, 0, 0],
[c, 0, d, 0],
[0, 0, 0, 1]], dtype=complex)