Skip to content

Latest commit

 

History

History
44 lines (29 loc) · 1.47 KB

README.md

File metadata and controls

44 lines (29 loc) · 1.47 KB

COOT

Python3 implementation of the paper CO-Optimal Transport (NeurIPS 2020)

CO-Optimal Transport (COOT) is an Optimal Transport problem between measures whose supports do not necessarily live in the same metric space. It aims to simultaneously optimize two transport maps between both samples and features of two datasets with possibly different number of rows and columns.

Feel free to ask if any question.

If you use this toolbox in your research and find it useful, please cite COOT using the following bibtex reference:

@incollection{coot_2020,
title = {CO-Optimal Transport},
author = {Redko, Ievgen, Vayer, Titouan, Flamary, R\'{e}mi and Courty, Nicolas},
booktitle = {Advances in Neural Information Processing Systems 33},
year = {2020}
}

Prerequisites

What is included ?

  • The main function that computes the COOT problem between two datasets in the code folder (file cot.py)

  • Demo notebooks:

  • Code to repoduce results of the paper in the expe folder.

Authors