-
Notifications
You must be signed in to change notification settings - Fork 0
/
Curve25519.cpp
1610 lines (1500 loc) · 54.6 KB
/
Curve25519.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "Curve25519.h"
#include "Crypto.h"
#include "RNG.h"
#include "utility/LimbUtil.h"
#include <string.h>
/**
* \class Curve25519 Curve25519.h <Curve25519.h>
* \brief Diffie-Hellman key agreement based on the elliptic curve
* modulo 2^255 - 19.
*
* \note The public functions in this class need a substantial amount of
* stack space to store intermediate results while the curve function is
* being evaluated. About 1k of free stack space is recommended for safety.
*
* References: http://cr.yp.to/ecdh.html,
* <a href="http://tools.ietf.org/html/rfc7748">RFC 7748</a>
*
* \sa Ed25519
*/
// Global switch to enable/disable AVR inline assembly optimizations.
#if defined(__AVR__)
// Disabled for now - there are issues with newer Arduino compilers. FIXME
//#define CURVE25519_ASM_AVR 1
#endif
// The overhead of clean() calls in mul(), reduceQuick(), etc can
// add up to a lot of processing time during eval(). Only do such
// cleanups if strict mode has been enabled. Other implementations
// like curve25519-donna don't do any cleaning at all so the value
// of cleaning up the stack is dubious at best anyway.
#if defined(CURVE25519_STRICT_CLEAN)
#define strict_clean(x) clean(x)
#else
#define strict_clean(x) do { ; } while (0)
#endif
/**
* \brief Evaluates the raw Curve25519 function.
*
* \param result The result of evaluating the curve function.
* \param s The S parameter to the curve function.
* \param x The X(Q) parameter to the curve function. If this pointer is
* NULL then the value 9 is used for \a x.
*
* This function is provided to assist with implementating other
* algorithms with the curve. Normally applications should use dh1()
* and dh2() directly instead.
*
* \return Returns true if the function was evaluated; false if \a x is
* not a proper member of the field modulo (2^255 - 19).
*
* Reference: <a href="http://tools.ietf.org/html/rfc7748">RFC 7748</a>
*
* \sa dh1(), dh2()
*/
bool Curve25519::eval(uint8_t result[32], const uint8_t s[32], const uint8_t x[32])
{
limb_t x_1[NUM_LIMBS_256BIT];
limb_t x_2[NUM_LIMBS_256BIT];
limb_t x_3[NUM_LIMBS_256BIT];
limb_t z_2[NUM_LIMBS_256BIT];
limb_t z_3[NUM_LIMBS_256BIT];
limb_t A[NUM_LIMBS_256BIT];
limb_t B[NUM_LIMBS_256BIT];
limb_t C[NUM_LIMBS_256BIT];
limb_t D[NUM_LIMBS_256BIT];
limb_t E[NUM_LIMBS_256BIT];
limb_t AA[NUM_LIMBS_256BIT];
limb_t BB[NUM_LIMBS_256BIT];
limb_t DA[NUM_LIMBS_256BIT];
limb_t CB[NUM_LIMBS_256BIT];
uint8_t mask;
uint8_t sposn;
uint8_t select;
uint8_t swap;
bool retval;
// Unpack the "x" argument into the limb representation
// which also masks off the high bit. NULL means 9.
if (x) {
// x1 = x
BigNumberUtil::unpackLE(x_1, NUM_LIMBS_256BIT, x, 32);
x_1[NUM_LIMBS_256BIT - 1] &= ((((limb_t)1) << (LIMB_BITS - 1)) - 1);
} else {
memset(x_1, 0, sizeof(x_1)); // x_1 = 9
x_1[0] = 9;
}
// Check that "x" is within the range of the modulo field.
// We can do this with a reduction - if there was no borrow
// then the value of "x" was out of range. Timing is sensitive
// here so that we don't reveal anything about the value of "x".
// If there was a reduction, then continue executing the rest
// of this function with the (now) in-range "x" value and
// report the failure at the end.
retval = (bool)(reduceQuick(x_1) & 0x01);
// Initialize the other temporary variables.
memset(x_2, 0, sizeof(x_2)); // x_2 = 1
x_2[0] = 1;
memset(z_2, 0, sizeof(z_2)); // z_2 = 0
memcpy(x_3, x_1, sizeof(x_1)); // x_3 = x
memcpy(z_3, x_2, sizeof(x_2)); // z_3 = 1
// Iterate over all 255 bits of "s" from the highest to the lowest.
// We ignore the high bit of the 256-bit representation of "s".
mask = 0x40;
sposn = 31;
swap = 0;
for (uint8_t t = 255; t > 0; --t) {
// Conditional swaps on entry to this bit but only if we
// didn't swap on the previous bit.
select = s[sposn] & mask;
swap ^= select;
cswap(swap, x_2, x_3);
cswap(swap, z_2, z_3);
// Evaluate the curve.
add(A, x_2, z_2); // A = x_2 + z_2
square(AA, A); // AA = A^2
sub(B, x_2, z_2); // B = x_2 - z_2
square(BB, B); // BB = B^2
sub(E, AA, BB); // E = AA - BB
add(C, x_3, z_3); // C = x_3 + z_3
sub(D, x_3, z_3); // D = x_3 - z_3
mul(DA, D, A); // DA = D * A
mul(CB, C, B); // CB = C * B
add(x_3, DA, CB); // x_3 = (DA + CB)^2
square(x_3, x_3);
sub(z_3, DA, CB); // z_3 = x_1 * (DA - CB)^2
square(z_3, z_3);
mul(z_3, z_3, x_1);
mul(x_2, AA, BB); // x_2 = AA * BB
mulA24(z_2, E); // z_2 = E * (AA + a24 * E)
add(z_2, z_2, AA);
mul(z_2, z_2, E);
// Move onto the next lower bit of "s".
mask >>= 1;
if (!mask) {
--sposn;
mask = 0x80;
swap = select << 7;
} else {
swap = select >> 1;
}
}
// Final conditional swaps.
cswap(swap, x_2, x_3);
cswap(swap, z_2, z_3);
// Compute x_2 * (z_2 ^ (p - 2)) where p = 2^255 - 19.
recip(z_3, z_2);
mul(x_2, x_2, z_3);
// Pack the result into the return array.
BigNumberUtil::packLE(result, 32, x_2, NUM_LIMBS_256BIT);
// Clean up and exit.
clean(x_1);
clean(x_2);
clean(x_3);
clean(z_2);
clean(z_3);
clean(A);
clean(B);
clean(C);
clean(D);
clean(E);
clean(AA);
clean(BB);
clean(DA);
clean(CB);
return retval;
}
/**
* \brief Performs phase 1 of a Diffie-Hellman key exchange using Curve25519.
*
* \param k The key value to send to the other party as part of the exchange.
* \param f The generated secret value for this party. This must not be
* transmitted to any party or stored in permanent storage. It only needs
* to be kept in memory until dh2() is called.
*
* The \a f value is generated with \link RNGClass::rand() RNG.rand()\endlink.
* It is the caller's responsibility to ensure that the global random number
* pool has sufficient entropy to generate the 32 bytes of \a f safely
* before calling this function.
*
* The following example demonstrates how to perform a full Diffie-Hellman
* key exchange using dh1() and dh2():
*
* \code
* uint8_t f[32];
* uint8_t k[32];
*
* // Generate the secret value "f" and the public value "k".
* Curve25519::dh1(k, f);
*
* // Send "k" to the other party.
* ...
*
* // Read the "k" value that the other party sent to us.
* ...
*
* // Generate the shared secret in "k" using the previous secret value "f".
* if (!Curve25519::dh2(k, f)) {
* // The received "k" value was invalid - abort the session.
* ...
* }
*
* // The "k" value can now be used to generate session keys for encryption.
* ...
* \endcode
*
* Reference: <a href="http://tools.ietf.org/html/rfc7748">RFC 7748</a>
*
* \sa dh2()
*/
void Curve25519::dh1(uint8_t k[32], uint8_t f[32])
{
do {
// Generate a random "f" value and then adjust the value to make
// it valid as an "s" value for eval(). According to the specification
// we need to mask off the 3 right-most bits of f[0], mask off the
// left-most bit of f[31], and set the second to left-most bit of f[31].
RNG.rand(f, 32);
f[0] &= 0xF8;
f[31] = (f[31] & 0x7F) | 0x40;
// Evaluate the curve function: k = Curve25519::eval(f, 9).
// We pass NULL to eval() to indicate the value 9. There is no
// need to check the return value from eval() because we know
// that 9 is a valid field element.
eval(k, f, 0);
// If "k" is weak for contributory behaviour then reject it,
// generate another "f" value, and try again. This case is
// highly unlikely but we still perform the check just in case.
} while (isWeakPoint(k));
}
/**
* \brief Performs phase 2 of a Diffie-Hellman key exchange using Curve25519.
*
* \param k On entry, this is the key value that was received from the other
* party as part of the exchange. On exit, this will be the shared secret.
* \param f The secret value for this party that was generated by dh1().
* The \a f value will be destroyed by this function.
*
* \return Returns true if the key exchange was successful, or false if
* the \a k value is invalid.
*
* Reference: <a href="http://tools.ietf.org/html/rfc7748">RFC 7748</a>
*
* \sa dh1()
*/
bool Curve25519::dh2(uint8_t k[32], uint8_t f[32])
{
uint8_t weak;
// Evaluate the curve function: k = Curve25519::eval(f, k).
// If "k" is weak for contributory behaviour before or after
// the curve evaluation, then fail the exchange. For safety
// we perform every phase of the weak checks even if we could
// bail out earlier so that the execution takes the same
// amount of time for weak and non-weak "k" values.
weak = isWeakPoint(k); // Is "k" weak before?
weak |= ((eval(k, f, k) ^ 0x01) & 0x01); // Is "k" weak during?
weak |= isWeakPoint(k); // Is "k" weak after?
clean(f, 32);
return (bool)((weak ^ 0x01) & 0x01);
}
/**
* \brief Determines if a Curve25519 point is weak for contributory behaviour.
*
* \param k The point to check.
* \return Returns 1 if \a k is weak for contributory behavior or
* returns zero if \a k is not weak.
*/
uint8_t Curve25519::isWeakPoint(const uint8_t k[32])
{
// List of weak points from http://cr.yp.to/ecdh.html
// That page lists some others but they are variants on these
// of the form "point + i * (2^255 - 19)" for i = 0, 1, 2.
// Here we mask off the high bit and eval() catches the rest.
static const uint8_t points[5][32] PROGMEM = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0xE0, 0xEB, 0x7A, 0x7C, 0x3B, 0x41, 0xB8, 0xAE,
0x16, 0x56, 0xE3, 0xFA, 0xF1, 0x9F, 0xC4, 0x6A,
0xDA, 0x09, 0x8D, 0xEB, 0x9C, 0x32, 0xB1, 0xFD,
0x86, 0x62, 0x05, 0x16, 0x5F, 0x49, 0xB8, 0x00},
{0x5F, 0x9C, 0x95, 0xBC, 0xA3, 0x50, 0x8C, 0x24,
0xB1, 0xD0, 0xB1, 0x55, 0x9C, 0x83, 0xEF, 0x5B,
0x04, 0x44, 0x5C, 0xC4, 0x58, 0x1C, 0x8E, 0x86,
0xD8, 0x22, 0x4E, 0xDD, 0xD0, 0x9F, 0x11, 0x57},
{0xEC, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x7F}
};
// Check each of the weak points in turn. We perform the
// comparisons carefully so as not to reveal the value of "k"
// in the instruction timing. If "k" is indeed weak then
// we still check everything so as not to reveal which
// weak point it is.
uint8_t result = 0;
for (uint8_t posn = 0; posn < 5; ++posn) {
const uint8_t *point = points[posn];
uint8_t check = (pgm_read_byte(&(point[31])) ^ k[31]) & 0x7F;
for (uint8_t index = 31; index > 0; --index)
check |= (pgm_read_byte(&(point[index - 1])) ^ k[index - 1]);
result |= (uint8_t)((((uint16_t)0x0100) - check) >> 8);
}
// The "result" variable will be non-zero if there was a match.
return result;
}
/**
* \brief Reduces a number modulo 2^255 - 19.
*
* \param result The array that will contain the result when the
* function exits. Must be NUM_LIMBS_256BIT limbs in size.
* \param x The number to be reduced, which must be NUM_LIMBS_512BIT
* limbs in size and less than or equal to square(2^255 - 19 - 1).
* This array will be modified by the reduction process.
* \param size The size of the high order half of \a x. This indicates
* the size of \a x in limbs. If it is shorter than NUM_LIMBS_256BIT
* then the reduction can be performed quicker.
*/
void Curve25519::reduce(limb_t *result, limb_t *x, uint8_t size)
{
/*
Note: This explaination is best viewed with a UTF-8 text viewer.
To help explain what this function is doing, the following describes
how to efficiently compute reductions modulo a base of the form (2ⁿ - b)
where b is greater than zero and (b + 1)² <= 2ⁿ.
Here we are interested in reducing the result of multiplying two
numbers that are less than or equal to (2ⁿ - b - 1). That is,
multiplying numbers that have already been reduced.
Given some x less than or equal to (2ⁿ - b - 1)², we want to find a
y less than (2ⁿ - b) such that:
y ≡ x mod (2ⁿ - b)
We know that for all integer values of k >= 0:
y ≡ x - k * (2ⁿ - b)
≡ x - k * 2ⁿ + k * b
In our case we choose k = ⌊x / 2ⁿ⌋ and then let:
w = (x mod 2ⁿ) + ⌊x / 2ⁿ⌋ * b
The value w will either be the answer y or y can be obtained by
repeatedly subtracting (2ⁿ - b) from w until it is less than (2ⁿ - b).
At most b subtractions will be required.
In our case b is 19 which is more subtractions than we would like to do,
but we can handle that by performing the above reduction twice and then
performing a single trial subtraction:
w = (x mod 2ⁿ) + ⌊x / 2ⁿ⌋ * b
y = (w mod 2ⁿ) + ⌊w / 2ⁿ⌋ * b
if y >= (2ⁿ - b)
y -= (2ⁿ - b)
The value y is the answer we want for reducing x modulo (2ⁿ - b).
*/
#if !defined(CURVE25519_ASM_AVR)
dlimb_t carry;
uint8_t posn;
// Calculate (x mod 2^255) + ((x / 2^255) * 19) which will
// either produce the answer we want or it will produce a
// value of the form "answer + j * (2^255 - 19)".
carry = ((dlimb_t)(x[NUM_LIMBS_256BIT - 1] >> (LIMB_BITS - 1))) * 19U;
x[NUM_LIMBS_256BIT - 1] &= ((((limb_t)1) << (LIMB_BITS - 1)) - 1);
for (posn = 0; posn < size; ++posn) {
carry += ((dlimb_t)(x[posn + NUM_LIMBS_256BIT])) * 38U;
carry += x[posn];
x[posn] = (limb_t)carry;
carry >>= LIMB_BITS;
}
if (size < NUM_LIMBS_256BIT) {
// The high order half of the number is short; e.g. for mulA24().
// Propagate the carry through the rest of the low order part.
for (posn = size; posn < NUM_LIMBS_256BIT; ++posn) {
carry += x[posn];
x[posn] = (limb_t)carry;
carry >>= LIMB_BITS;
}
}
// The "j" value may still be too large due to the final carry-out.
// We must repeat the reduction. If we already have the answer,
// then this won't do any harm but we must still do the calculation
// to preserve the overall timing.
carry *= 38U;
carry += ((dlimb_t)(x[NUM_LIMBS_256BIT - 1] >> (LIMB_BITS - 1))) * 19U;
x[NUM_LIMBS_256BIT - 1] &= ((((limb_t)1) << (LIMB_BITS - 1)) - 1);
for (posn = 0; posn < NUM_LIMBS_256BIT; ++posn) {
carry += x[posn];
x[posn] = (limb_t)carry;
carry >>= LIMB_BITS;
}
// At this point "x" will either be the answer or it will be the
// answer plus (2^255 - 19). Perform a trial subtraction which
// is equivalent to adding 19 and subtracting 2^255. We put the
// trial answer into the top-most limbs of the original "x" array.
// We add 19 here; the subtraction of 2^255 occurs in the next step.
carry = 19U;
for (posn = 0; posn < NUM_LIMBS_256BIT; ++posn) {
carry += x[posn];
x[posn + NUM_LIMBS_256BIT] = (limb_t)carry;
carry >>= LIMB_BITS;
}
// If there was a borrow, then the bottom-most limbs of "x" are the
// correct answer. If there was no borrow, then the top-most limbs
// of "x" are the correct answer. Select the correct answer but do
// it in a way that instruction timing will not reveal which value
// was selected. Borrow will occur if the high bit of the previous
// result is 0: turn the high bit into a selection mask.
limb_t mask = (limb_t)(((slimb_t)(x[NUM_LIMBS_512BIT - 1])) >> (LIMB_BITS - 1));
limb_t nmask = ~mask;
x[NUM_LIMBS_512BIT - 1] &= ((((limb_t)1) << (LIMB_BITS - 1)) - 1);
for (posn = 0; posn < NUM_LIMBS_256BIT; ++posn) {
result[posn] = (x[posn] & nmask) | (x[posn + NUM_LIMBS_256BIT] & mask);
}
#else
__asm__ __volatile__ (
// Calculate (x mod 2^255) + ((x / 2^255) * 19) which will
// either produce the answer we want or it will produce a
// value of the form "answer + j * (2^255 - 19)".
"ldd r24,Z+31\n" // Extract the high bit of x[31]
"mov r25,r24\n" // and mask it off
"andi r25,0x7F\n"
"std Z+31,r25\n"
"lsl r24\n" // carry = high bit * 19
"mov r24,__zero_reg__\n"
"sbc r24,__zero_reg__\n"
"andi r24,19\n"
"mov r25,%1\n" // load "size" into r25
"ldi r23,38\n" // r23 = 38
"mov r22,__zero_reg__\n" // r22 = 0 (we're about to destroy r1)
"1:\n"
"ld r16,Z\n" // r16 = x[0]
"ldd r17,Z+32\n" // r17 = x[32]
"mul r17,r23\n" // r0:r1 = r17 * 38
"add r0,r24\n" // r0:r1 += carry
"adc r1,r22\n"
"add r0,r16\n" // r0:r1 += r16
"adc r1,r22\n"
"st Z+,r0\n" // *x++ = r0
"mov r24,r1\n" // carry = r1
"dec r25\n" // if (--r25 != 0) loop
"brne 1b\n"
// If the size is short, then we need to continue propagating carries.
"ldi r25,32\n"
"cp %1,r25\n"
"breq 3f\n"
"sub r25,%1\n"
"ld __tmp_reg__,Z\n"
"add __tmp_reg__,r24\n"
"st Z+,__tmp_reg__\n"
"dec r25\n"
"2:\n"
"ld __tmp_reg__,Z\n" // *x++ += carry
"adc __tmp_reg__,r22\n"
"st Z+,__tmp_reg__\n"
"dec r25\n"
"brne 2b\n"
"mov r24,r22\n" // put the carry back into r24
"adc r24,r22\n"
"3:\n"
"sbiw r30,32\n" // Point Z back to the start of "x"
// The "j" value may still be too large due to the final carry-out.
// We must repeat the reduction. If we already have the answer,
// then this won't do any harm but we must still do the calculation
// to preserve the overall timing.
"mul r24,r23\n" // carry *= 38
"ldd r24,Z+31\n" // Extract the high bit of x[31]
"mov r25,r24\n" // and mask it off
"andi r25,0x7F\n"
"std Z+31,r25\n"
"lsl r24\n" // carry += high bit * 19
"mov r24,r22\n"
"sbc r24,r22\n"
"andi r24,19\n"
"add r0,r24\n"
"adc r1,r22\n" // 9-bit carry is now in r0:r1
// Propagate the carry through the rest of x.
"ld r24,Z\n" // x[0]
"add r0,r24\n"
"adc r1,r22\n"
"st Z+,r0\n"
"ld r24,Z\n" // x[1]
"add r1,r24\n"
"st Z+,r1\n"
"ldi r25,30\n" // x[2..31]
"4:\n"
"ld r24,Z\n"
"adc r24,r22\n"
"st Z+,r24\n"
"dec r25\n"
"brne 4b\n"
"sbiw r30,32\n" // Point Z back to the start of "x"
// We destroyed __zero_reg__ (r1) above, so restore its zero value.
"mov __zero_reg__,r22\n"
// At this point "x" will either be the answer or it will be the
// answer plus (2^255 - 19). Perform a trial subtraction which
// is equivalent to adding 19 and subtracting 2^255. We put the
// trial answer into the top-most limbs of the original "x" array.
// We add 19 here; the subtraction of 2^255 occurs in the next step.
"ldi r24,8\n" // Loop counter.
"ldi r25,19\n" // carry = 19
"5:\n"
"ld r16,Z+\n" // r16:r19:carry = *xx++ + carry
"ld r17,Z+\n"
"ld r18,Z+\n"
"ld r19,Z+\n"
"add r16,r25\n" // r16:r19:carry += carry
"adc r17,__zero_reg__\n"
"adc r18,__zero_reg__\n"
"adc r19,__zero_reg__\n"
"mov r25,__zero_reg__\n"
"adc r25,r25\n"
"std Z+28,r16\n" // *tt++ = r16:r19
"std Z+29,r17\n"
"std Z+30,r18\n"
"std Z+31,r19\n"
"dec r24\n"
"brne 5b\n"
// Subtract 2^255 from x[32..63] which is equivalent to extracting
// the top bit and then masking it off. If the top bit is zero
// then a borrow has occurred and this isn't the answer we want.
"mov r25,r19\n"
"andi r19,0x7F\n"
"std Z+31,r19\n"
"lsl r25\n"
"mov r25,__zero_reg__\n"
"sbc r25,__zero_reg__\n"
// At this point, r25 is 0 if the original x[0..31] is the answer
// we want, or 0xFF if x[32..63] is the answer we want. Essentially
// we need to do a conditional move of either x[0..31] or x[32..63]
// into "result".
"sbiw r30,32\n" // Point Z back to x[0].
"ldi r24,8\n"
"6:\n"
"ldd r16,Z+32\n"
"ldd r17,Z+33\n"
"ldd r18,Z+34\n"
"ldd r19,Z+35\n"
"ld r20,Z+\n"
"ld r21,Z+\n"
"ld r22,Z+\n"
"ld r23,Z+\n"
"eor r16,r20\n"
"eor r17,r21\n"
"eor r18,r22\n"
"eor r19,r23\n"
"and r16,r25\n"
"and r17,r25\n"
"and r18,r25\n"
"and r19,r25\n"
"eor r20,r16\n"
"eor r21,r17\n"
"eor r22,r18\n"
"eor r23,r19\n"
"st X+,r20\n"
"st X+,r21\n"
"st X+,r22\n"
"st X+,r23\n"
"dec r24\n"
"brne 6b\n"
: : "z"(x), "r"((uint8_t)(size * sizeof(limb_t))), "x"(result)
: "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25"
);
#endif
}
/**
* \brief Quickly reduces a number modulo 2^255 - 19.
*
* \param x The number to be reduced, which must be NUM_LIMBS_256BIT
* limbs in size and less than or equal to 2 * (2^255 - 19 - 1).
* \return Zero if \a x was greater than or equal to (2^255 - 19).
*
* The answer is also put into \a x and will consist of NUM_LIMBS_256BIT limbs.
*
* This function is intended for reducing the result of additions where
* the caller knows that \a x is within the described range. A single
* trial subtraction is all that is needed to reduce the number.
*/
limb_t Curve25519::reduceQuick(limb_t *x)
{
#if !defined(CURVE25519_ASM_AVR)
limb_t temp[NUM_LIMBS_256BIT];
dlimb_t carry;
uint8_t posn;
limb_t *xx;
limb_t *tt;
// Perform a trial subtraction of (2^255 - 19) from "x" which is
// equivalent to adding 19 and subtracting 2^255. We add 19 here;
// the subtraction of 2^255 occurs in the next step.
carry = 19U;
xx = x;
tt = temp;
for (posn = 0; posn < NUM_LIMBS_256BIT; ++posn) {
carry += *xx++;
*tt++ = (limb_t)carry;
carry >>= LIMB_BITS;
}
// If there was a borrow, then the original "x" is the correct answer.
// If there was no borrow, then "temp" is the correct answer. Select the
// correct answer but do it in a way that instruction timing will not
// reveal which value was selected. Borrow will occur if the high bit
// of "temp" is 0: turn the high bit into a selection mask.
limb_t mask = (limb_t)(((slimb_t)(temp[NUM_LIMBS_256BIT - 1])) >> (LIMB_BITS - 1));
limb_t nmask = ~mask;
temp[NUM_LIMBS_256BIT - 1] &= ((((limb_t)1) << (LIMB_BITS - 1)) - 1);
xx = x;
tt = temp;
for (posn = 0; posn < NUM_LIMBS_256BIT; ++posn) {
*xx = ((*xx) & nmask) | ((*tt++) & mask);
++xx;
}
// Clean up "temp".
strict_clean(temp);
// Return a zero value if we actually subtracted (2^255 - 19) from "x".
return nmask;
#else // CURVE25519_ASM_AVR
limb_t temp[NUM_LIMBS_256BIT];
uint8_t result;
__asm__ __volatile__ (
// Subtract (2^255 - 19) from "x", which is the same as adding 19
// and then subtracting 2^255.
"ldi r24,8\n" // Loop counter.
"ldi r25,19\n" // carry = 19
"1:\n"
"ld r16,Z+\n" // r16:r19:carry = *xx++ + carry
"ld r17,Z+\n"
"ld r18,Z+\n"
"ld r19,Z+\n"
"add r16,r25\n" // r16:r19:carry += carry
"adc r17,__zero_reg__\n"
"adc r18,__zero_reg__\n"
"adc r19,__zero_reg__\n"
"mov r25,__zero_reg__\n"
"adc r25,r25\n"
"st X+,r16\n" // *tt++ = r16:r19
"st X+,r17\n"
"st X+,r18\n"
"st X+,r19\n"
"dec r24\n"
"brne 1b\n"
// Subtract 2^255 from "temp" which is equivalent to extracting
// the top bit and then masking it off. If the top bit is zero
// then a borrow has occurred and this isn't the answer we want.
"mov r25,r19\n"
"andi r19,0x7F\n"
"st -X,r19\n"
"lsl r25\n"
"mov r25,__zero_reg__\n"
"sbc r25,__zero_reg__\n"
// At this point, r25 is 0 if the original "x" is the answer
// we want, or 0xFF if "temp" is the answer we want. Essentially
// we need to do a conditional move of "temp" into "x".
"sbiw r26,31\n" // Point X back to the start of "temp".
"sbiw r30,32\n" // Point Z back to the start of "x".
"ldi r24,8\n"
"2:\n"
"ld r16,X+\n"
"ld r17,X+\n"
"ld r18,X+\n"
"ld r19,X+\n"
"ld r20,Z\n"
"ldd r21,Z+1\n"
"ldd r22,Z+2\n"
"ldd r23,Z+3\n"
"eor r16,r20\n"
"eor r17,r21\n"
"eor r18,r22\n"
"eor r19,r23\n"
"and r16,r25\n"
"and r17,r25\n"
"and r18,r25\n"
"and r19,r25\n"
"eor r20,r16\n"
"eor r21,r17\n"
"eor r22,r18\n"
"eor r23,r19\n"
"st Z+,r20\n"
"st Z+,r21\n"
"st Z+,r22\n"
"st Z+,r23\n"
"dec r24\n"
"brne 2b\n"
"mov %0,r25\n"
: "=r"(result)
: "x"(temp), "z"(x)
: "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25"
);
strict_clean(temp);
return result;
#endif // CURVE25519_ASM_AVR
}
/**
* \brief Multiplies two 256-bit values to produce a 512-bit result.
*
* \param result The result, which must be NUM_LIMBS_512BIT limbs in size
* and must not overlap with \a x or \a y.
* \param x The first value to multiply, which must be NUM_LIMBS_256BIT
* limbs in size.
* \param y The second value to multiply, which must be NUM_LIMBS_256BIT
* limbs in size.
*
* \sa mul()
*/
void Curve25519::mulNoReduce(limb_t *result, const limb_t *x, const limb_t *y)
{
#if !defined(CURVE25519_ASM_AVR)
uint8_t i, j;
dlimb_t carry;
limb_t word;
const limb_t *yy;
limb_t *rr;
// Multiply the lowest word of x by y.
carry = 0;
word = x[0];
yy = y;
rr = result;
for (i = 0; i < NUM_LIMBS_256BIT; ++i) {
carry += ((dlimb_t)(*yy++)) * word;
*rr++ = (limb_t)carry;
carry >>= LIMB_BITS;
}
*rr = (limb_t)carry;
// Multiply and add the remaining words of x by y.
for (i = 1; i < NUM_LIMBS_256BIT; ++i) {
word = x[i];
carry = 0;
yy = y;
rr = result + i;
for (j = 0; j < NUM_LIMBS_256BIT; ++j) {
carry += ((dlimb_t)(*yy++)) * word;
carry += *rr;
*rr++ = (limb_t)carry;
carry >>= LIMB_BITS;
}
*rr = (limb_t)carry;
}
#else
__asm__ __volatile__ (
// Save Y and copy the "result" pointer into it.
"push r28\n"
"push r29\n"
"mov r28,%A2\n"
"mov r29,%B2\n"
// Multiply the first byte of "x" by y[0..31].
"ldi r25,8\n" // loop 8 times: 4 bytes of y each time
"clr r24\n" // carry = 0
"clr r22\n" // r22 = 0 to replace __zero_reg__
"ld r23,X+\n" // r23 = *x++
"1:\n"
"ld r16,Z\n" // r16 = y[0]
"mul r16,r23\n" // r8:r9 = y[0] * r23
"movw r8,r0\n"
"ldd r16,Z+2\n" // r16 = y[2]
"mul r16,r23\n" // r10:r11 = y[2] * r23
"movw r10,r0\n"
"ldd r16,Z+1\n" // r16 = y[1]
"mul r16,r23\n" // r9:r10:r11 += y[1] * r23
"add r9,r0\n"
"adc r10,r1\n"
"adc r11,r22\n"
"ldd r16,Z+3\n" // r16 = y[3]
"mul r16,r23\n" // r11:r1 += y[3] * r23
"add r11,r0\n"
"adc r1,r22\n"
"add r8,r24\n" // r8:r9:r10:r11:r1 += carry
"adc r9,r22\n"
"adc r10,r22\n"
"adc r11,r22\n"
"adc r1,r22\n"
"mov r24,r1\n" // carry = r1
"st Y+,r8\n" // *rr++ = r8:r9:r10:r11
"st Y+,r9\n"
"st Y+,r10\n"
"st Y+,r11\n"
"adiw r30,4\n"
"dec r25\n"
"brne 1b\n"
"st Y+,r24\n" // *rr++ = carry
"sbiw r28,32\n" // rr -= 32
"sbiw r30,32\n" // Point Z back to the start of y
// Multiply and add the remaining bytes of "x" by y[0..31].
"ldi r21,31\n" // 31 more bytes of x to go.
"2:\n"
"ldi r25,8\n" // loop 8 times: 4 bytes of y each time
"clr r24\n" // carry = 0
"ld r23,X+\n" // r23 = *x++
"3:\n"
"ld r16,Z\n" // r16 = y[0]
"mul r16,r23\n" // r8:r9 = y[0] * r23
"movw r8,r0\n"
"ldd r16,Z+2\n" // r16 = y[2]
"mul r16,r23\n" // r10:r11 = y[2] * r23
"movw r10,r0\n"
"ldd r16,Z+1\n" // r16 = y[1]
"mul r16,r23\n" // r9:r10:r11 += y[1] * r23
"add r9,r0\n"
"adc r10,r1\n"
"adc r11,r22\n"
"ldd r16,Z+3\n" // r16 = y[3]
"mul r16,r23\n" // r11:r1 += y[3] * r23
"add r11,r0\n"
"adc r1,r22\n"
"add r8,r24\n" // r8:r9:r10:r11:r1 += carry
"adc r9,r22\n"
"adc r10,r22\n"
"adc r11,r22\n"
"adc r1,r22\n"
"ld r16,Y\n" // r8:r9:r10:r11:r1 += rr[0..3]
"add r8,r16\n"
"ldd r16,Y+1\n"
"adc r9,r16\n"
"ldd r16,Y+2\n"
"adc r10,r16\n"
"ldd r16,Y+3\n"
"adc r11,r16\n"
"adc r1,r22\n"
"mov r24,r1\n" // carry = r1
"st Y+,r8\n" // *rr++ = r8:r9:r10:r11
"st Y+,r9\n"
"st Y+,r10\n"
"st Y+,r11\n"
"adiw r30,4\n"
"dec r25\n"
"brne 3b\n"
"st Y+,r24\n" // *r++ = carry
"sbiw r28,32\n" // rr -= 32
"sbiw r30,32\n" // Point Z back to the start of y
"dec r21\n"
"brne 2b\n"
// Restore Y and __zero_reg__.
"pop r29\n"
"pop r28\n"
"clr __zero_reg__\n"
: : "x"(x), "z"(y), "r"(result)
: "r8", "r9", "r10", "r11", "r16", "r20", "r21", "r22",
"r23", "r24", "r25"
);
#endif
}
/**
* \brief Multiplies two values and then reduces the result modulo 2^255 - 19.
*
* \param result The result, which must be NUM_LIMBS_256BIT limbs in size
* and can be the same array as \a x or \a y.
* \param x The first value to multiply, which must be NUM_LIMBS_256BIT limbs
* in size and less than 2^255 - 19.
* \param y The second value to multiply, which must be NUM_LIMBS_256BIT limbs
* in size and less than 2^255 - 19. This can be the same array as \a x.
*/
void Curve25519::mul(limb_t *result, const limb_t *x, const limb_t *y)
{
limb_t temp[NUM_LIMBS_512BIT];
mulNoReduce(temp, x, y);
reduce(result, temp, NUM_LIMBS_256BIT);
strict_clean(temp);
crypto_feed_watchdog();
}
/**
* \fn void Curve25519::square(limb_t *result, const limb_t *x)
* \brief Squares a value and then reduces it modulo 2^255 - 19.
*
* \param result The result, which must be NUM_LIMBS_256BIT limbs in size and
* can be the same array as \a x.
* \param x The value to square, which must be NUM_LIMBS_256BIT limbs in size
* and less than 2^255 - 19.
*/
/**
* \brief Multiplies a value by the a24 constant and then reduces the result
* modulo 2^255 - 19.
*
* \param result The result, which must be NUM_LIMBS_256BIT limbs in size
* and can be the same array as \a x.
* \param x The value to multiply by a24, which must be NUM_LIMBS_256BIT
* limbs in size and less than 2^255 - 19.
*/
void Curve25519::mulA24(limb_t *result, const limb_t *x)
{
#if !defined(CURVE25519_ASM_AVR)
// The constant a24 = 121665 (0x1DB41) as a limb array.
#if BIGNUMBER_LIMB_8BIT
static limb_t const a24[3] PROGMEM = {0x41, 0xDB, 0x01};
#elif BIGNUMBER_LIMB_16BIT
static limb_t const a24[2] PROGMEM = {0xDB41, 0x0001};
#elif BIGNUMBER_LIMB_32BIT || BIGNUMBER_LIMB_64BIT
static limb_t const a24[1] PROGMEM = {0x0001DB41};
#else
#error "limb_t must be 8, 16, 32, or 64 bits in size"
#endif
#define NUM_A24_LIMBS (sizeof(a24) / sizeof(limb_t))
// Multiply the lowest limb of a24 by x and zero-extend into the result.
limb_t temp[NUM_LIMBS_512BIT];
uint8_t i, j;
dlimb_t carry = 0;
limb_t word = pgm_read_limb(&(a24[0]));
const limb_t *xx = x;
limb_t *tt = temp;
for (i = 0; i < NUM_LIMBS_256BIT; ++i) {
carry += ((dlimb_t)(*xx++)) * word;
*tt++ = (limb_t)carry;
carry >>= LIMB_BITS;
}
*tt = (limb_t)carry;
// Multiply and add the remaining limbs of a24.
for (i = 1; i < NUM_A24_LIMBS; ++i) {
word = pgm_read_limb(&(a24[i]));
carry = 0;
xx = x;
tt = temp + i;
for (j = 0; j < NUM_LIMBS_256BIT; ++j) {
carry += ((dlimb_t)(*xx++)) * word;
carry += *tt;
*tt++ = (limb_t)carry;
carry >>= LIMB_BITS;
}
*tt = (limb_t)carry;