-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
assemble_steps.hpp
366 lines (331 loc) · 19.2 KB
/
assemble_steps.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
#ifndef ENGINE_GUIDANCE_ASSEMBLE_STEPS_HPP_
#define ENGINE_GUIDANCE_ASSEMBLE_STEPS_HPP_
#include "extractor/travel_mode.hpp"
#include "extractor/turn_lane_types.hpp"
#include "guidance/turn_instruction.hpp"
#include "engine/datafacade/datafacade_base.hpp"
#include "engine/guidance/leg_geometry.hpp"
#include "engine/guidance/route_step.hpp"
#include "engine/guidance/step_maneuver.hpp"
#include "engine/internal_route_result.hpp"
#include "engine/phantom_node.hpp"
#include "util/bearing.hpp"
#include "util/coordinate.hpp"
#include "util/coordinate_calculation.hpp"
#include "util/guidance/entry_class.hpp"
#include "util/guidance/turn_lanes.hpp"
#include "util/typedefs.hpp"
#include <cstddef>
#include <guidance/turn_bearing.hpp>
#include <optional>
#include <vector>
namespace osrm::engine::guidance
{
namespace detail
{
std::pair<short, short> getDepartBearings(const LegGeometry &leg_geometry,
const PhantomNode &source_node,
const bool traversed_in_reverse);
std::pair<short, short> getArriveBearings(const LegGeometry &leg_geometry,
const PhantomNode &target_node,
const bool traversed_in_reverse);
} // namespace detail
inline std::vector<RouteStep> assembleSteps(const datafacade::BaseDataFacade &facade,
const std::vector<PathData> &leg_data,
const LegGeometry &leg_geometry,
const PhantomNode &source_node,
const PhantomNode &target_node,
const bool source_traversed_in_reverse,
const bool target_traversed_in_reverse)
{
const double weight_multiplier = facade.GetWeightMultiplier();
const double constexpr ZERO_DURATION = 0., ZERO_DISTANCE = 0., ZERO_WEIGHT = 0;
const constexpr char *NO_ROTARY_NAME = "";
const EdgeWeight source_weight =
source_traversed_in_reverse ? source_node.reverse_weight : source_node.forward_weight;
const EdgeDuration source_duration =
source_traversed_in_reverse ? source_node.reverse_duration : source_node.forward_duration;
const auto source_node_id = source_traversed_in_reverse ? source_node.reverse_segment_id.id
: source_node.forward_segment_id.id;
const auto source_name_id = facade.GetNameIndex(source_node_id);
bool is_segregated = facade.IsSegregated(source_node_id);
const auto source_mode = facade.GetTravelMode(source_node_id);
auto source_classes = facade.GetClasses(facade.GetClassData(source_node_id));
const EdgeDuration target_duration =
target_traversed_in_reverse ? target_node.reverse_duration : target_node.forward_duration;
const EdgeWeight target_weight =
target_traversed_in_reverse ? target_node.reverse_weight : target_node.forward_weight;
const auto target_node_id = target_traversed_in_reverse ? target_node.reverse_segment_id.id
: target_node.forward_segment_id.id;
const auto target_name_id = facade.GetNameIndex(target_node_id);
const auto target_mode = facade.GetTravelMode(target_node_id);
const auto number_of_segments = leg_geometry.GetNumberOfSegments();
std::vector<RouteStep> steps;
steps.reserve(number_of_segments);
std::size_t segment_index = 0;
BOOST_ASSERT(leg_geometry.locations.size() >= 2);
auto bearings =
detail::getDepartBearings(leg_geometry, source_node, source_traversed_in_reverse);
StepManeuver maneuver{source_node.location,
bearings.first,
bearings.second,
osrm::guidance::TurnInstruction::NO_TURN(),
WaypointType::Depart,
0};
IntermediateIntersection intersection{source_node.location,
std::vector<short>({bearings.second}),
std::vector<bool>({true}),
IntermediateIntersection::NO_INDEX,
0,
util::guidance::LaneTuple(),
{},
source_classes};
if (!leg_data.empty())
{
// PathData saves the information we need of the segment _before_ the turn,
// but a RouteStep is with regard to the segment after the turn.
// We need to skip the first segment because it is already covered by the
// initial start of a route
EdgeDuration segment_duration = {0};
EdgeWeight segment_weight = {0};
// some name changes are not announced in our processing. For these, we have to keep the
// first name on the segment
auto step_name_id = source_name_id;
for (std::size_t leg_data_index = 0; leg_data_index < leg_data.size(); ++leg_data_index)
{
const auto &path_point = leg_data[leg_data_index];
segment_duration += path_point.duration_until_turn;
segment_weight += path_point.weight_until_turn;
// all changes to this check have to be matched with assemble_geometry
const auto turn_instruction =
path_point.turn_edge ? facade.GetTurnInstructionForEdgeID(*path_point.turn_edge)
: osrm::guidance::TurnInstruction::NO_TURN();
if (turn_instruction.type != osrm::guidance::TurnType::NoTurn)
{
BOOST_ASSERT(segment_weight >= EdgeWeight{0});
const auto name = facade.GetNameForID(step_name_id);
const auto ref = facade.GetRefForID(step_name_id);
const auto pronunciation = facade.GetPronunciationForID(step_name_id);
const auto destinations = facade.GetDestinationsForID(step_name_id);
const auto exits = facade.GetExitsForID(step_name_id);
const auto distance = leg_geometry.segment_distances[segment_index];
// intersections contain the classes of exiting road
intersection.classes =
facade.GetClasses(facade.GetClassData(path_point.from_edge_based_node));
const auto is_left_hand_driving =
facade.IsLeftHandDriving(path_point.from_edge_based_node);
const auto travel_mode = facade.GetTravelMode(path_point.from_edge_based_node);
BOOST_ASSERT(travel_mode > 0);
steps.push_back(RouteStep{path_point.from_edge_based_node,
step_name_id,
is_segregated,
std::string(name),
std::string(ref),
std::string(pronunciation),
std::string(destinations),
std::string(exits),
NO_ROTARY_NAME,
NO_ROTARY_NAME,
from_alias<double>(segment_duration) / 10.,
distance,
from_alias<double>(segment_weight) / weight_multiplier,
travel_mode,
maneuver,
leg_geometry.FrontIndex(segment_index),
leg_geometry.BackIndex(segment_index) + 1,
{intersection},
is_left_hand_driving});
if (leg_data_index + 1 < leg_data.size())
{
step_name_id =
facade.GetNameIndex(leg_data[leg_data_index + 1].from_edge_based_node);
is_segregated =
facade.IsSegregated(leg_data[leg_data_index + 1].from_edge_based_node);
}
else
{
step_name_id = facade.GetNameIndex(target_node_id);
is_segregated = facade.IsSegregated(target_node_id);
}
// extract bearings
auto pre_turn_bearing = path_point.turn_edge
? facade.PreTurnBearing(*path_point.turn_edge)
: osrm::guidance::TurnBearing(0);
auto post_turn_bearing = path_point.turn_edge
? facade.PostTurnBearing(*path_point.turn_edge)
: osrm::guidance::TurnBearing(0);
bearings = std::make_pair<std::uint16_t, std::uint16_t>(pre_turn_bearing.Get(),
post_turn_bearing.Get());
const auto bearing_class = facade.GetBearingClass(path_point.turn_via_node);
auto bearing_data = bearing_class.getAvailableBearings();
util::guidance::LaneTupleIdPair lane_data = {{0, INVALID_LANEID},
INVALID_LANE_DESCRIPTIONID};
if (path_point.turn_edge && facade.HasLaneData(*path_point.turn_edge))
{
lane_data = facade.GetLaneData(*path_point.turn_edge);
}
intersection.in = bearing_class.findMatchingBearing(bearings.first);
intersection.out = bearing_class.findMatchingBearing(bearings.second);
intersection.location = facade.GetCoordinateOfNode(path_point.turn_via_node);
intersection.bearings.clear();
intersection.bearings.reserve(bearing_data.size());
intersection.lanes = lane_data.first;
intersection.lane_description = lane_data.second != INVALID_LANE_DESCRIPTIONID
? facade.GetTurnDescription(lane_data.second)
: extractor::TurnLaneDescription();
// Lanes in turn are bound by total number of lanes at the location
BOOST_ASSERT(intersection.lanes.lanes_in_turn <=
intersection.lane_description.size());
// No lanes at location and no turn lane or lanes at location and lanes in turn
BOOST_ASSERT((intersection.lane_description.empty() &&
intersection.lanes.lanes_in_turn == 0) ||
(!intersection.lane_description.empty() &&
intersection.lanes.lanes_in_turn != 0));
auto entry_class = path_point.turn_edge
? facade.GetEntryClass(*path_point.turn_edge)
: EMPTY_ENTRY_CLASS;
std::copy(bearing_data.begin(),
bearing_data.end(),
std::back_inserter(intersection.bearings));
intersection.entry.clear();
for (auto idx : util::irange<std::size_t>(0, intersection.bearings.size()))
{
intersection.entry.push_back(entry_class.allowsEntry(idx));
}
std::int16_t bearing_in_driving_direction =
util::bearing::reverse(std::round(bearings.first));
maneuver = {intersection.location,
bearing_in_driving_direction,
bearings.second,
turn_instruction,
WaypointType::None,
0};
segment_index++;
segment_duration = {0};
segment_weight = {0};
}
}
const auto distance = leg_geometry.segment_distances[segment_index];
const EdgeDuration duration = segment_duration + target_duration;
const EdgeWeight weight = segment_weight + target_weight;
// intersections contain the classes of exiting road
intersection.classes = facade.GetClasses(facade.GetClassData(target_node_id));
BOOST_ASSERT(duration >= EdgeDuration{0});
steps.push_back(RouteStep{leg_data[leg_data.size() - 1].from_edge_based_node,
step_name_id,
is_segregated,
std::string(facade.GetNameForID(step_name_id)),
std::string(facade.GetRefForID(step_name_id)),
std::string(facade.GetPronunciationForID(step_name_id)),
std::string(facade.GetDestinationsForID(step_name_id)),
std::string(facade.GetExitsForID(step_name_id)),
NO_ROTARY_NAME,
NO_ROTARY_NAME,
from_alias<double>(duration) / 10.,
distance,
from_alias<double>(weight) / weight_multiplier,
target_mode,
maneuver,
leg_geometry.FrontIndex(segment_index),
leg_geometry.BackIndex(segment_index) + 1,
{intersection},
facade.IsLeftHandDriving(target_node_id)});
}
// In this case the source + target are on the same edge segment
else
{
BOOST_ASSERT(source_node.fwd_segment_position == target_node.fwd_segment_position);
BOOST_ASSERT(source_traversed_in_reverse == target_traversed_in_reverse);
// The difference (target-source) should handle
// all variants for similar directions u-v and s-t (and opposite)
// s(t) t(s) source_traversed_in_reverse = target_traversed_in_reverse = false
// u-------------v
// |---| source_weight
// |---------| target_weight
// s(t) t(s) source_traversed_in_reverse = target_traversed_in_reverse = true
// u-------------v
// | |---------| source_weight
// | |---| target_weight
BOOST_ASSERT(target_weight >= source_weight);
const EdgeWeight weight = target_weight - source_weight;
// use rectified linear unit function to avoid negative duration values
// due to flooring errors in phantom snapping
BOOST_ASSERT(target_duration >= source_duration || weight == EdgeWeight{0});
const EdgeDuration duration =
std::max<EdgeDuration>({0}, target_duration - source_duration);
steps.push_back(RouteStep{source_node_id,
source_name_id,
is_segregated,
std::string(facade.GetNameForID(source_name_id)),
std::string(facade.GetRefForID(source_name_id)),
std::string(facade.GetPronunciationForID(source_name_id)),
std::string(facade.GetDestinationsForID(source_name_id)),
std::string(facade.GetExitsForID(source_name_id)),
NO_ROTARY_NAME,
NO_ROTARY_NAME,
from_alias<double>(duration) / 10.,
leg_geometry.segment_distances[segment_index],
from_alias<double>(weight) / weight_multiplier,
source_mode,
maneuver,
leg_geometry.FrontIndex(segment_index),
leg_geometry.BackIndex(segment_index) + 1,
{intersection},
facade.IsLeftHandDriving(source_node_id)});
}
BOOST_ASSERT(segment_index == number_of_segments - 1);
bearings = detail::getArriveBearings(leg_geometry, target_node, target_traversed_in_reverse);
intersection = {
target_node.location,
std::vector<short>({static_cast<short>(util::bearing::reverse(bearings.first))}),
std::vector<bool>({true}),
0,
IntermediateIntersection::NO_INDEX,
util::guidance::LaneTuple(),
{},
{}};
// This step has length zero, the only reason we need it is the target location
maneuver = {intersection.location,
bearings.first,
bearings.second,
osrm::guidance::TurnInstruction::NO_TURN(),
WaypointType::Arrive,
0};
BOOST_ASSERT(!leg_geometry.locations.empty());
steps.push_back(RouteStep{target_node_id,
target_name_id,
facade.IsSegregated(target_node_id),
std::string(facade.GetNameForID(target_name_id)),
std::string(facade.GetRefForID(target_name_id)),
std::string(facade.GetPronunciationForID(target_name_id)),
std::string(facade.GetDestinationsForID(target_name_id)),
std::string(facade.GetExitsForID(target_name_id)),
NO_ROTARY_NAME,
NO_ROTARY_NAME,
ZERO_DURATION,
ZERO_DISTANCE,
ZERO_WEIGHT,
target_mode,
maneuver,
leg_geometry.locations.size() - 1,
leg_geometry.locations.size(),
{intersection},
facade.IsLeftHandDriving(target_node_id)});
BOOST_ASSERT(steps.front().intersections.size() == 1);
BOOST_ASSERT(steps.front().intersections.front().bearings.size() == 1);
BOOST_ASSERT(steps.front().intersections.front().entry.size() == 1);
BOOST_ASSERT(steps.front().maneuver.waypoint_type == WaypointType::Depart);
BOOST_ASSERT(steps.back().intersections.size() == 1);
BOOST_ASSERT(steps.back().intersections.front().bearings.size() == 1);
BOOST_ASSERT(steps.back().intersections.front().entry.size() == 1);
BOOST_ASSERT(steps.back().maneuver.waypoint_type == WaypointType::Arrive);
BOOST_ASSERT(steps.back().intersections.front().lanes.lanes_in_turn == 0);
BOOST_ASSERT(steps.back().intersections.front().lanes.first_lane_from_the_right ==
INVALID_LANEID);
BOOST_ASSERT(steps.back().intersections.front().lane_description.empty());
// depart and arrive need to be trivial
BOOST_ASSERT(steps.front().maneuver.exit == 0 && steps.back().maneuver.exit == 0);
return steps;
}
} // namespace osrm::engine::guidance
#endif // ENGINE_GUIDANCE_SEGMENT_LIST_HPP_