-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy pathgraph_contractor.cpp
769 lines (696 loc) · 28.4 KB
/
graph_contractor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
#include "contractor/graph_contractor.hpp"
#include "contractor/contractor_graph.hpp"
#include "contractor/contractor_search.hpp"
#include "contractor/query_edge.hpp"
#include "util/deallocating_vector.hpp"
#include "util/integer_range.hpp"
#include "util/log.hpp"
#include "util/percent.hpp"
#include "util/timing_util.hpp"
#include "util/typedefs.hpp"
#include "util/xor_fast_hash.hpp"
#include <boost/assert.hpp>
#include <tbb/enumerable_thread_specific.h>
#include <tbb/parallel_for.h>
#include <tbb/parallel_invoke.h>
#include <tbb/parallel_sort.h>
#include <algorithm>
#include <limits>
#include <memory>
#include <vector>
namespace osrm
{
namespace contractor
{
namespace
{
struct ContractorThreadData
{
ContractorHeap heap;
std::vector<ContractorEdge> inserted_edges;
std::vector<NodeID> neighbours;
explicit ContractorThreadData(NodeID nodes) : heap(nodes) {}
};
struct ContractorNodeData
{
using NodeDepth = int;
using NodePriority = float;
using NodeLevel = float;
ContractorNodeData(std::size_t number_of_nodes,
std::vector<bool> uncontracted_nodes_,
std::vector<bool> contractable_,
std::vector<EdgeWeight> weights_)
: is_core(std::move(uncontracted_nodes_)), contractable(std::move(contractable_)),
priorities(number_of_nodes), weights(std::move(weights_)), depths(number_of_nodes, 0)
{
if (contractable.empty())
{
contractable.resize(number_of_nodes, true);
}
if (is_core.empty())
{
is_core.resize(number_of_nodes, true);
}
}
void Renumber(const std::vector<NodeID> &old_to_new)
{
tbb::parallel_invoke(
[&] { util::inplacePermutation(priorities.begin(), priorities.end(), old_to_new); },
[&] { util::inplacePermutation(weights.begin(), weights.end(), old_to_new); },
[&] { util::inplacePermutation(is_core.begin(), is_core.end(), old_to_new); },
[&] { util::inplacePermutation(contractable.begin(), contractable.end(), old_to_new); },
[&] { util::inplacePermutation(depths.begin(), depths.end(), old_to_new); });
}
std::vector<bool> is_core;
std::vector<bool> contractable;
std::vector<NodePriority> priorities;
std::vector<EdgeWeight> weights;
std::vector<NodeDepth> depths;
};
struct ContractionStats
{
int edges_deleted_count;
int edges_added_count;
int original_edges_deleted_count;
int original_edges_added_count;
ContractionStats()
: edges_deleted_count(0), edges_added_count(0), original_edges_deleted_count(0),
original_edges_added_count(0)
{
}
};
struct RemainingNodeData
{
RemainingNodeData() = default;
RemainingNodeData(NodeID id, bool is_independent) : id(id), is_independent(is_independent) {}
NodeID id : 31;
bool is_independent : 1;
};
struct ThreadDataContainer
{
explicit ThreadDataContainer(int number_of_nodes) : number_of_nodes(number_of_nodes) {}
inline ContractorThreadData *GetThreadData()
{
bool exists = false;
auto &ref = data.local(exists);
if (!exists)
{
ref = std::make_shared<ContractorThreadData>(number_of_nodes);
}
return ref.get();
}
int number_of_nodes;
using EnumerableThreadData =
tbb::enumerable_thread_specific<std::shared_ptr<ContractorThreadData>>;
EnumerableThreadData data;
};
// This bias function takes up 22 assembly instructions in total on X86
inline bool Bias(const util::XORFastHash<> &fast_hash, const NodeID a, const NodeID b)
{
const unsigned short hasha = fast_hash(a);
const unsigned short hashb = fast_hash(b);
// The compiler optimizes that to conditional register flags but without branching
// statements!
if (hasha != hashb)
{
return hasha < hashb;
}
return a < b;
}
template <bool RUNSIMULATION, typename ContractorGraph>
void ContractNode(ContractorThreadData *data,
const ContractorGraph &graph,
const NodeID node,
std::vector<EdgeWeight> &node_weights,
ContractionStats *stats = nullptr)
{
auto &heap = data->heap;
std::size_t inserted_edges_size = data->inserted_edges.size();
std::vector<ContractorEdge> &inserted_edges = data->inserted_edges;
constexpr bool SHORTCUT_ARC = true;
constexpr bool FORWARD_DIRECTION_ENABLED = true;
constexpr bool FORWARD_DIRECTION_DISABLED = false;
constexpr bool REVERSE_DIRECTION_ENABLED = true;
constexpr bool REVERSE_DIRECTION_DISABLED = false;
for (auto in_edge : graph.GetAdjacentEdgeRange(node))
{
const ContractorEdgeData &in_data = graph.GetEdgeData(in_edge);
const NodeID source = graph.GetTarget(in_edge);
if (source == node)
continue;
if (RUNSIMULATION)
{
BOOST_ASSERT(stats != nullptr);
++stats->edges_deleted_count;
stats->original_edges_deleted_count += in_data.originalEdges;
}
if (!in_data.backward)
{
continue;
}
heap.Clear();
heap.Insert(source, 0, ContractorHeapData{});
EdgeWeight max_weight = 0;
unsigned number_of_targets = 0;
for (auto out_edge : graph.GetAdjacentEdgeRange(node))
{
const ContractorEdgeData &out_data = graph.GetEdgeData(out_edge);
if (!out_data.forward)
{
continue;
}
const NodeID target = graph.GetTarget(out_edge);
if (node == target)
{
continue;
}
const EdgeWeight path_weight = in_data.weight + out_data.weight;
if (target == source)
{
if (path_weight < node_weights[node])
{
if (RUNSIMULATION)
{
// make sure to prune better, but keep inserting this loop if it should
// still be the best
// CAREFUL: This only works due to the independent node-setting. This
// guarantees that source is not connected to another node that is
// contracted
node_weights[source] = path_weight + 1;
BOOST_ASSERT(stats != nullptr);
stats->edges_added_count += 2;
stats->original_edges_added_count +=
2 * (out_data.originalEdges + in_data.originalEdges);
}
else
{
// CAREFUL: This only works due to the independent node-setting. This
// guarantees that source is not connected to another node that is
// contracted
node_weights[source] = path_weight; // make sure to prune better
inserted_edges.emplace_back(source,
target,
path_weight,
in_data.duration + out_data.duration,
out_data.originalEdges + in_data.originalEdges,
node,
SHORTCUT_ARC,
FORWARD_DIRECTION_ENABLED,
REVERSE_DIRECTION_DISABLED);
inserted_edges.emplace_back(target,
source,
path_weight,
in_data.duration + out_data.duration,
out_data.originalEdges + in_data.originalEdges,
node,
SHORTCUT_ARC,
FORWARD_DIRECTION_DISABLED,
REVERSE_DIRECTION_ENABLED);
}
}
continue;
}
max_weight = std::max(max_weight, path_weight);
if (!heap.WasInserted(target))
{
heap.Insert(target, INVALID_EDGE_WEIGHT, ContractorHeapData{0, true});
++number_of_targets;
}
}
if (RUNSIMULATION)
{
const int constexpr SIMULATION_SEARCH_SPACE_SIZE = 1000;
search(heap, graph, number_of_targets, SIMULATION_SEARCH_SPACE_SIZE, max_weight, node);
}
else
{
const int constexpr FULL_SEARCH_SPACE_SIZE = 2000;
search(heap, graph, number_of_targets, FULL_SEARCH_SPACE_SIZE, max_weight, node);
}
for (auto out_edge : graph.GetAdjacentEdgeRange(node))
{
const ContractorEdgeData &out_data = graph.GetEdgeData(out_edge);
if (!out_data.forward)
{
continue;
}
const NodeID target = graph.GetTarget(out_edge);
if (target == node)
continue;
const EdgeWeight path_weight = in_data.weight + out_data.weight;
const EdgeWeight weight = heap.GetKey(target);
if (path_weight < weight)
{
if (RUNSIMULATION)
{
BOOST_ASSERT(stats != nullptr);
stats->edges_added_count += 2;
stats->original_edges_added_count +=
2 * (out_data.originalEdges + in_data.originalEdges);
}
else
{
inserted_edges.emplace_back(source,
target,
path_weight,
in_data.duration + out_data.duration,
out_data.originalEdges + in_data.originalEdges,
node,
SHORTCUT_ARC,
FORWARD_DIRECTION_ENABLED,
REVERSE_DIRECTION_DISABLED);
inserted_edges.emplace_back(target,
source,
path_weight,
in_data.duration + out_data.duration,
out_data.originalEdges + in_data.originalEdges,
node,
SHORTCUT_ARC,
FORWARD_DIRECTION_DISABLED,
REVERSE_DIRECTION_ENABLED);
}
}
}
}
// Check For One-Way Streets to decide on the creation of self-loops
if (!RUNSIMULATION)
{
std::size_t iend = inserted_edges.size();
for (std::size_t i = inserted_edges_size; i < iend; ++i)
{
bool found = false;
for (std::size_t other = i + 1; other < iend; ++other)
{
if (inserted_edges[other].source != inserted_edges[i].source)
{
continue;
}
if (inserted_edges[other].target != inserted_edges[i].target)
{
continue;
}
if (inserted_edges[other].data.weight != inserted_edges[i].data.weight)
{
continue;
}
if (inserted_edges[other].data.shortcut != inserted_edges[i].data.shortcut)
{
continue;
}
inserted_edges[other].data.forward |= inserted_edges[i].data.forward;
inserted_edges[other].data.backward |= inserted_edges[i].data.backward;
found = true;
break;
}
if (!found)
{
inserted_edges[inserted_edges_size++] = inserted_edges[i];
}
}
inserted_edges.resize(inserted_edges_size);
}
}
void ContractNode(ContractorThreadData *data,
const ContractorGraph &graph,
const NodeID node,
std::vector<EdgeWeight> &node_weights)
{
ContractNode<false>(data, graph, node, node_weights, nullptr);
}
ContractionStats SimulateNodeContraction(ContractorThreadData *data,
const ContractorGraph &graph,
const NodeID node,
std::vector<EdgeWeight> &node_weights)
{
ContractionStats stats;
ContractNode<true>(data, graph, node, node_weights, &stats);
return stats;
}
void RenumberGraph(ContractorGraph &graph, const std::vector<NodeID> &old_to_new)
{
graph.Renumber(old_to_new);
// Renumber all shortcut node IDs
for (const auto node : util::irange<NodeID>(0, graph.GetNumberOfNodes()))
{
for (const auto edge : graph.GetAdjacentEdgeRange(node))
{
auto &data = graph.GetEdgeData(edge);
if (data.shortcut)
{
data.id = old_to_new[data.id];
}
}
}
}
/* Reorder nodes for better locality during contraction */
void RenumberData(std::vector<RemainingNodeData> &remaining_nodes,
std::vector<NodeID> &new_to_old_node_id,
ContractorNodeData &node_data,
ContractorGraph &graph)
{
std::vector<NodeID> current_to_new_node_id(graph.GetNumberOfNodes(), SPECIAL_NODEID);
// we need to make a copy here because we are going to modify it
auto to_orig = new_to_old_node_id;
auto new_node_id = 0;
// All remaining nodes get the low IDs
for (auto &remaining : remaining_nodes)
{
auto id = new_node_id++;
current_to_new_node_id[remaining.id] = id;
new_to_old_node_id[id] = to_orig[remaining.id];
remaining.id = id;
}
// Already contracted nodes get the high IDs
for (const auto current_id : util::irange<std::size_t>(0, graph.GetNumberOfNodes()))
{
if (current_to_new_node_id[current_id] == SPECIAL_NODEID)
{
auto id = new_node_id++;
current_to_new_node_id[current_id] = id;
new_to_old_node_id[id] = to_orig[current_id];
}
}
BOOST_ASSERT(new_node_id == graph.GetNumberOfNodes());
node_data.Renumber(current_to_new_node_id);
RenumberGraph(graph, current_to_new_node_id);
}
float EvaluateNodePriority(const ContractionStats &stats,
const ContractorNodeData::NodeDepth node_depth)
{
// Result will contain the priority
float result;
if (0 == (stats.edges_deleted_count * stats.original_edges_deleted_count))
{
result = 1.f * node_depth;
}
else
{
result =
2.f * (((float)stats.edges_added_count) / stats.edges_deleted_count) +
4.f * (((float)stats.original_edges_added_count) / stats.original_edges_deleted_count) +
1.f * node_depth;
}
BOOST_ASSERT(result >= 0);
return result;
}
void DeleteIncomingEdges(ContractorThreadData *data, ContractorGraph &graph, const NodeID node)
{
std::vector<NodeID> &neighbours = data->neighbours;
neighbours.clear();
// find all neighbours
for (auto e : graph.GetAdjacentEdgeRange(node))
{
const NodeID u = graph.GetTarget(e);
if (u != node)
{
neighbours.push_back(u);
}
}
// eliminate duplicate entries ( forward + backward edges )
std::sort(neighbours.begin(), neighbours.end());
neighbours.resize(std::unique(neighbours.begin(), neighbours.end()) - neighbours.begin());
for (const auto i : util::irange<std::size_t>(0, neighbours.size()))
{
graph.DeleteEdgesTo(neighbours[i], node);
}
}
bool UpdateNodeNeighbours(ContractorNodeData &node_data,
ContractorThreadData *data,
const ContractorGraph &graph,
const NodeID node)
{
std::vector<NodeID> &neighbours = data->neighbours;
neighbours.clear();
// find all neighbours
for (auto e : graph.GetAdjacentEdgeRange(node))
{
const NodeID u = graph.GetTarget(e);
if (u == node)
{
continue;
}
neighbours.push_back(u);
node_data.depths[u] = std::max(node_data.depths[node] + 1, node_data.depths[u]);
}
// eliminate duplicate entries ( forward + backward edges )
std::sort(neighbours.begin(), neighbours.end());
neighbours.resize(std::unique(neighbours.begin(), neighbours.end()) - neighbours.begin());
// re-evaluate priorities of neighboring nodes
for (const NodeID u : neighbours)
{
if (node_data.contractable[u])
{
node_data.priorities[u] = EvaluateNodePriority(
SimulateNodeContraction(data, graph, u, node_data.weights), node_data.depths[u]);
}
}
return true;
}
bool IsNodeIndependent(const util::XORFastHash<> &hash,
const std::vector<float> &priorities,
const std::vector<NodeID> &new_to_old_node_id,
const ContractorGraph &graph,
ContractorThreadData *const data,
const NodeID node)
{
const float priority = priorities[node];
std::vector<NodeID> &neighbours = data->neighbours;
neighbours.clear();
for (auto e : graph.GetAdjacentEdgeRange(node))
{
const NodeID target = graph.GetTarget(e);
if (node == target)
{
continue;
}
const float target_priority = priorities[target];
BOOST_ASSERT(target_priority >= 0);
// found a neighbour with lower priority?
if (priority > target_priority)
{
return false;
}
// tie breaking
if (std::abs(priority - target_priority) < std::numeric_limits<float>::epsilon() &&
Bias(hash, new_to_old_node_id[node], new_to_old_node_id[target]))
{
return false;
}
neighbours.push_back(target);
}
std::sort(neighbours.begin(), neighbours.end());
neighbours.resize(std::unique(neighbours.begin(), neighbours.end()) - neighbours.begin());
// examine all neighbours that are at most 2 hops away
for (const NodeID u : neighbours)
{
for (auto e : graph.GetAdjacentEdgeRange(u))
{
const NodeID target = graph.GetTarget(e);
if (node == target)
{
continue;
}
const float target_priority = priorities[target];
BOOST_ASSERT(target_priority >= 0);
// found a neighbour with lower priority?
if (priority > target_priority)
{
return false;
}
// tie breaking
if (std::abs(priority - target_priority) < std::numeric_limits<float>::epsilon() &&
Bias(hash, new_to_old_node_id[node], new_to_old_node_id[target]))
{
return false;
}
}
}
return true;
}
}
std::vector<bool> contractGraph(ContractorGraph &graph,
std::vector<bool> node_is_uncontracted_,
std::vector<bool> node_is_contractable_,
std::vector<EdgeWeight> node_weights_,
double core_factor)
{
BOOST_ASSERT(node_weights_.size() == graph.GetNumberOfNodes());
util::XORFastHash<> fast_hash;
// for the preperation we can use a big grain size, which is much faster (probably cache)
const constexpr size_t PQGrainSize = 100000;
// auto_partitioner will automatically increase the blocksize if we have
// a lot of data. It is *important* for the last loop iterations
// (which have a very small dataset) that it is devisible.
const constexpr size_t IndependentGrainSize = 1;
const constexpr size_t ContractGrainSize = 1;
const constexpr size_t NeighboursGrainSize = 1;
const constexpr size_t DeleteGrainSize = 1;
const NodeID number_of_nodes = graph.GetNumberOfNodes();
ThreadDataContainer thread_data_list(number_of_nodes);
NodeID number_of_contracted_nodes = 0;
std::vector<NodeID> new_to_old_node_id(number_of_nodes);
// Fill the map with an identiy mapping
std::iota(new_to_old_node_id.begin(), new_to_old_node_id.end(), 0);
ContractorNodeData node_data{graph.GetNumberOfNodes(),
std::move(node_is_uncontracted_),
std::move(node_is_contractable_),
std::move(node_weights_)};
std::vector<RemainingNodeData> remaining_nodes;
remaining_nodes.reserve(number_of_nodes);
for (auto node : util::irange<NodeID>(0, number_of_nodes))
{
if (node_data.is_core[node])
{
if (node_data.contractable[node])
{
remaining_nodes.emplace_back(node, false);
}
else
{
node_data.priorities[node] =
std::numeric_limits<ContractorNodeData::NodePriority>::max();
}
}
else
{
node_data.priorities[node] = 0;
}
}
{
util::UnbufferedLog log;
log << "initializing node priorities...";
tbb::parallel_for(tbb::blocked_range<std::size_t>(0, remaining_nodes.size(), PQGrainSize),
[&](const auto &range) {
ContractorThreadData *data = thread_data_list.GetThreadData();
for (auto x = range.begin(), end = range.end(); x != end; ++x)
{
auto node = remaining_nodes[x].id;
BOOST_ASSERT(node_data.contractable[node]);
node_data.priorities[node] = EvaluateNodePriority(
SimulateNodeContraction(data, graph, node, node_data.weights),
node_data.depths[node]);
}
});
log << " ok.";
}
auto number_of_core_nodes = std::max<std::size_t>(0, (1 - core_factor) * number_of_nodes);
auto number_of_nodes_to_contract = remaining_nodes.size() - number_of_core_nodes;
util::Log() << "preprocessing " << number_of_nodes_to_contract << " ("
<< (number_of_nodes_to_contract / (float)number_of_nodes * 100.) << "%) nodes...";
util::UnbufferedLog log;
util::Percent p(log, remaining_nodes.size());
const util::XORFastHash<> hash;
unsigned current_level = 0;
std::size_t next_renumbering = number_of_nodes * 0.35;
while (remaining_nodes.size() > number_of_core_nodes)
{
if (remaining_nodes.size() < next_renumbering)
{
RenumberData(remaining_nodes, new_to_old_node_id, node_data, graph);
log << "[renumbered]";
// only one renumbering for now
next_renumbering = 0;
}
tbb::parallel_for(
tbb::blocked_range<NodeID>(0, remaining_nodes.size(), IndependentGrainSize),
[&](const auto &range) {
ContractorThreadData *data = thread_data_list.GetThreadData();
// determine independent node set
for (auto i = range.begin(), end = range.end(); i != end; ++i)
{
const NodeID node = remaining_nodes[i].id;
remaining_nodes[i].is_independent = IsNodeIndependent(
hash, node_data.priorities, new_to_old_node_id, graph, data, node);
}
});
// sort all remaining nodes to the beginning of the sequence
const auto begin_independent_nodes =
stable_partition(remaining_nodes.begin(),
remaining_nodes.end(),
[](RemainingNodeData node_data) { return !node_data.is_independent; });
auto begin_independent_nodes_idx =
std::distance(remaining_nodes.begin(), begin_independent_nodes);
auto end_independent_nodes_idx = remaining_nodes.size();
// contract independent nodes
tbb::parallel_for(
tbb::blocked_range<NodeID>(
begin_independent_nodes_idx, end_independent_nodes_idx, ContractGrainSize),
[&](const auto &range) {
ContractorThreadData *data = thread_data_list.GetThreadData();
for (auto position = range.begin(), end = range.end(); position != end; ++position)
{
const NodeID node = remaining_nodes[position].id;
ContractNode(data, graph, node, node_data.weights);
}
});
// core flags need to be set in serial since vector<bool> is not thread safe
for (auto position :
util::irange<std::size_t>(begin_independent_nodes_idx, end_independent_nodes_idx))
{
node_data.is_core[remaining_nodes[position].id] = false;
}
tbb::parallel_for(
tbb::blocked_range<NodeID>(
begin_independent_nodes_idx, end_independent_nodes_idx, DeleteGrainSize),
[&](const auto &range) {
ContractorThreadData *data = thread_data_list.GetThreadData();
for (auto position = range.begin(), end = range.end(); position != end; ++position)
{
const NodeID node = remaining_nodes[position].id;
DeleteIncomingEdges(data, graph, node);
}
});
// make sure we really sort each block
tbb::parallel_for(thread_data_list.data.range(), [&](const auto &range) {
for (auto &data : range)
tbb::parallel_sort(data->inserted_edges.begin(), data->inserted_edges.end());
});
// insert new edges
for (auto &data : thread_data_list.data)
{
for (const ContractorEdge &edge : data->inserted_edges)
{
const EdgeID current_edge_ID = graph.FindEdge(edge.source, edge.target);
if (current_edge_ID != SPECIAL_EDGEID)
{
auto ¤t_data = graph.GetEdgeData(current_edge_ID);
if (current_data.shortcut && edge.data.forward == current_data.forward &&
edge.data.backward == current_data.backward)
{
// found a duplicate edge with smaller weight, update it.
if (edge.data.weight < current_data.weight)
{
current_data = edge.data;
}
// don't insert duplicates
continue;
}
}
graph.InsertEdge(edge.source, edge.target, edge.data);
}
data->inserted_edges.clear();
}
tbb::parallel_for(
tbb::blocked_range<NodeID>(
begin_independent_nodes_idx, end_independent_nodes_idx, NeighboursGrainSize),
[&](const auto &range) {
ContractorThreadData *data = thread_data_list.GetThreadData();
for (auto position = range.begin(), end = range.end(); position != end; ++position)
{
NodeID node = remaining_nodes[position].id;
UpdateNodeNeighbours(node_data, data, graph, node);
}
});
// remove contracted nodes from the pool
BOOST_ASSERT(end_independent_nodes_idx - begin_independent_nodes_idx > 0);
number_of_contracted_nodes += end_independent_nodes_idx - begin_independent_nodes_idx;
remaining_nodes.resize(begin_independent_nodes_idx);
p.PrintStatus(number_of_contracted_nodes);
++current_level;
}
node_data.Renumber(new_to_old_node_id);
RenumberGraph(graph, new_to_old_node_id);
return std::move(node_data.is_core);
}
} // namespace contractor
} // namespace osrm