From d002139f608c6e2e3ba9e7433e33419e1df50a8e Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Wed, 12 Aug 2020 13:39:26 +0800 Subject: [PATCH 01/37] [DLMED] Add LoadImage transform --- examples/notebooks/IO_factory_test.ipynb | 173 +++++++++++++++++++++++ monai/data/__init__.py | 1 + monai/data/image_reader.py | 49 +++++++ monai/transforms/io/array.py | 73 ++++++++++ 4 files changed, 296 insertions(+) create mode 100644 examples/notebooks/IO_factory_test.ipynb create mode 100644 monai/data/image_reader.py diff --git a/examples/notebooks/IO_factory_test.ipynb b/examples/notebooks/IO_factory_test.ipynb new file mode 100644 index 0000000000..cbb1582c08 --- /dev/null +++ b/examples/notebooks/IO_factory_test.ipynb @@ -0,0 +1,173 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Multi GPU Test\n", + "\n", + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Project-MONAI/MONAI/blob/master/examples/notebooks/multi_gpu_test.ipynb)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup environment" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "%pip install -qU \"monai[itk]\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "%pip install -qU itk" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup imports" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MONAI version: 0.1.0+317.gd00d0f5.dirty\n", + "Python version: 3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 19:07:31) [GCC 7.3.0]\n", + "Numpy version: 1.18.1\n", + "Pytorch version: 1.6.0\n", + "\n", + "Optional dependencies:\n", + "Pytorch Ignite version: 0.3.0\n", + "Nibabel version: 3.1.1\n", + "scikit-image version: 0.15.0\n", + "Pillow version: 7.0.0\n", + "Tensorboard version: 2.1.0\n", + "\n", + "For details about installing the optional dependencies, please visit:\n", + " https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies\n", + "\n" + ] + } + ], + "source": [ + "# Copyright 2020 MONAI Consortium\n", + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "# http://www.apache.org/licenses/LICENSE-2.0\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License.\n", + "\n", + "import torch\n", + "\n", + "from monai.config import print_config\n", + "from monai.transforms import LoadImage\n", + "\n", + "print_config()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Test loading Nifti files" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "ename": "RuntimeError", + "evalue": "Can't downcast to a specialization of MetaDataObject", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mfilename\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"/workspace/data/medical/Task09_Spleen/imagesTr/spleen_10.nii.gz\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mloader\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mLoadImage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmeta\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mloader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m/workspace/data/medical/MONAI/monai/transforms/io/array.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, filename)\u001b[0m\n\u001b[1;32m 88\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mcompatible_meta\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 89\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mmeta_key\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mheader\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGetKeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 90\u001b[0;31m \u001b[0mmeta_datum\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mheader\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mmeta_key\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 91\u001b[0m if (\n\u001b[1;32m 92\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmeta_datum\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/itk/ITKCommonBasePython.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 887\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mitk\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 888\u001b[0m \u001b[0mobj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGet\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 889\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mitk\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdown_cast\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGetMetaDataObjectValue\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 890\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__len__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 891\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGetKeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/itkExtras.py\u001b[0m in \u001b[0;36mdown_cast\u001b[0;34m(obj)\u001b[0m\n\u001b[1;32m 1198\u001b[0m raise RuntimeError(\n\u001b[1;32m 1199\u001b[0m \u001b[0;34m\"Can't downcast to a specialization of %s\"\u001b[0m \u001b[0;34m%\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1200\u001b[0;31m className)\n\u001b[0m\u001b[1;32m 1201\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1202\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcast\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mRuntimeError\u001b[0m: Can't downcast to a specialization of MetaDataObject" + ] + } + ], + "source": [ + "filename = \"/workspace/data/medical/Task09_Spleen/imagesTr/spleen_10.nii.gz\"\n", + "loader = LoadImage()\n", + "data, meta = loader(filename)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.9" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/monai/data/__init__.py b/monai/data/__init__.py index 42c76c7cb4..6106ca11ff 100644 --- a/monai/data/__init__.py +++ b/monai/data/__init__.py @@ -14,6 +14,7 @@ from .dataset import ArrayDataset, CacheDataset, Dataset, PersistentDataset, ZipDataset from .decathalon_datalist import load_decathalon_datalist from .grid_dataset import GridPatchDataset +from .image_reader import * from .nifti_reader import NiftiDataset from .nifti_saver import NiftiSaver from .nifti_writer import write_nifti diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py new file mode 100644 index 0000000000..0b9746bd07 --- /dev/null +++ b/monai/data/image_reader.py @@ -0,0 +1,49 @@ +# Copyright 2020 MONAI Consortium +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# http://www.apache.org/licenses/LICENSE-2.0 +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import Any, Dict +from abc import ABC, abstractmethod +import numpy as np +import itk + + +class ImageReader(ABC): + """Abstract class to define interface APIs to load image files. + + """ + def __init__(self, img: Any = None): + self._img = None + + @abstractmethod + def read_image(self, filename: str): + raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") + + @abstractmethod + def get_meta_data(self) -> Dict: + raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") + + @abstractmethod + def get_array_data(self) -> np.ndarray: + raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") + + def uncache(self): + self._img = None + + +class ITKReader(ImageReader): + def read_image(self, filename: str): + self._img = itk.imread(filename) + + def get_meta_data(self) -> Dict: + return self._img.GetMetaDataDictionary() + + def get_array_data(self) -> np.ndarray: + return itk.array_from_image(self._img) diff --git a/monai/transforms/io/array.py b/monai/transforms/io/array.py index 132ccd5df8..637b0219eb 100644 --- a/monai/transforms/io/array.py +++ b/monai/transforms/io/array.py @@ -21,6 +21,7 @@ from monai.config import KeysCollection from monai.data.utils import correct_nifti_header_if_necessary +from monai.data.image_reader import ImageReader, ITKReader from monai.transforms.compose import Transform from monai.utils import ensure_tuple, optional_import @@ -28,6 +29,78 @@ Image, _ = optional_import("PIL.Image") +class LoadImage(Transform): + """ + Load image file or files from provided path based on reader, default reader is ITK. + All the supported image formats of ITK: + https://github.com/InsightSoftwareConsortium/ITK/tree/master/Modules/IO + If loading a list of files, stack them together and add a new dimension as first dimension, + and use the meta data of the first image to represent the stacked result. + + """ + + def __init__( + self, + reader: ImageReader = None, + suffixes: Optional[Union[str, Sequence[str]]] = None, + image_only: bool = False, + dtype: Optional[np.dtype] = np.float32, + ) -> None: + """ + Args: + reader: use reader to load image file and meta data, default is ITK. + suffixes: file suffixes that supported by the reader, if None, support all kinds of files. + image_only: if True return only the image volume, otherwise return image data array and header dict. + dtype: if not None convert the loaded image to this data type. + + Note: + The transform returns image data array if `image_only` is True, + or a tuple of two elements containing the data array, and the meta data in a dict format otherwise. + + """ + if reader is None: + reader = ITKReader() + self.reader = reader + self.suffixes = suffixes + self.image_only = image_only + self.dtype = dtype + + def __call__(self, filename: Union[Sequence[Union[Path, str]], Path, str]): + """ + Args: + filename: path file or file-like object or a list of files. + """ + filename = ensure_tuple(filename) + img_array = list() + compatible_meta: Dict = dict() + for name in filename: + if self.suffixes is not None and name.split(".")[-1] not in self.suffixes: + raise RuntimeError("unsupported file format.") + img = self.reader.read_image(name) + header = self.reader.get_meta_data() + header["filename_or_obj"] = name + + img_array.append(self.reader.get_array_data().astype(dtype=self.dtype)) + + if self.image_only: + continue + + if not compatible_meta: + for meta_key in header.GetKeys(): + meta_datum = header[meta_key] + if ( + isinstance(meta_datum, np.ndarray) + and np_str_obj_array_pattern.search(meta_datum.dtype.str) is not None + ): + continue + compatible_meta[meta_key] = meta_datum + + img_array = np.stack(img_array, axis=0) if len(img_array) > 1 else img_array[0] + if self.image_only: + return img_array + return img_array, compatible_meta + + class LoadNifti(Transform): """ Load Nifti format file or files from provided path. If loading a list of From 496c3905a46f85198a9256c3faa6b24e4dfc62ae Mon Sep 17 00:00:00 2001 From: monai-bot Date: Wed, 12 Aug 2020 05:46:43 +0000 Subject: [PATCH 02/37] [MONAI] python code formatting --- monai/data/image_reader.py | 6 ++++-- monai/transforms/io/array.py | 2 +- 2 files changed, 5 insertions(+), 3 deletions(-) diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index 0b9746bd07..8b6236fec7 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -9,16 +9,18 @@ # See the License for the specific language governing permissions and # limitations under the License. -from typing import Any, Dict from abc import ABC, abstractmethod -import numpy as np +from typing import Any, Dict + import itk +import numpy as np class ImageReader(ABC): """Abstract class to define interface APIs to load image files. """ + def __init__(self, img: Any = None): self._img = None diff --git a/monai/transforms/io/array.py b/monai/transforms/io/array.py index 637b0219eb..842e26e4cd 100644 --- a/monai/transforms/io/array.py +++ b/monai/transforms/io/array.py @@ -20,8 +20,8 @@ from torch.utils.data._utils.collate import np_str_obj_array_pattern from monai.config import KeysCollection -from monai.data.utils import correct_nifti_header_if_necessary from monai.data.image_reader import ImageReader, ITKReader +from monai.data.utils import correct_nifti_header_if_necessary from monai.transforms.compose import Transform from monai.utils import ensure_tuple, optional_import From 46ee38ce8c2f6a5ebd907e46e393112f9b14fe99 Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Fri, 14 Aug 2020 15:54:06 +0800 Subject: [PATCH 03/37] [DLMED] add logic to load affine --- examples/notebooks/IO_factory_test.ipynb | 20 ++++---- monai/data/image_reader.py | 63 +++++++++++++++++++----- monai/transforms/io/array.py | 32 ++++++------ 3 files changed, 79 insertions(+), 36 deletions(-) diff --git a/examples/notebooks/IO_factory_test.ipynb b/examples/notebooks/IO_factory_test.ipynb index cbb1582c08..6401d78768 100644 --- a/examples/notebooks/IO_factory_test.ipynb +++ b/examples/notebooks/IO_factory_test.ipynb @@ -70,7 +70,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "MONAI version: 0.1.0+317.gd00d0f5.dirty\n", + "MONAI version: 0.1.0+319.g496c390.dirty\n", "Python version: 3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 19:07:31) [GCC 7.3.0]\n", "Numpy version: 1.18.1\n", "Pytorch version: 1.6.0\n", @@ -120,6 +120,13 @@ "execution_count": 2, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "!!!!!!!!!!!!!data shape: (55, 512, 512)\n" + ] + }, { "ename": "RuntimeError", "evalue": "Can't downcast to a specialization of MetaDataObject", @@ -128,7 +135,9 @@ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mfilename\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"/workspace/data/medical/Task09_Spleen/imagesTr/spleen_10.nii.gz\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mloader\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mLoadImage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmeta\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mloader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m/workspace/data/medical/MONAI/monai/transforms/io/array.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, filename)\u001b[0m\n\u001b[1;32m 88\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mcompatible_meta\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 89\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mmeta_key\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mheader\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGetKeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 90\u001b[0;31m \u001b[0mmeta_datum\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mheader\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mmeta_key\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 91\u001b[0m if (\n\u001b[1;32m 92\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmeta_datum\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/workspace/data/medical/MONAI/monai/transforms/io/array.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, filename)\u001b[0m\n\u001b[1;32m 82\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 83\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 84\u001b[0;31m \u001b[0mheader\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreader\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_meta_dict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 85\u001b[0m \u001b[0mheader\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"filename_or_obj\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 86\u001b[0m \u001b[0mheader\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"affine\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreader\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_affine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/workspace/data/medical/MONAI/monai/data/image_reader.py\u001b[0m in \u001b[0;36mget_meta_dict\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_meta_dict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mList\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 63\u001b[0m \u001b[0mmeta_dict\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGetMetaDataDictionary\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 64\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mmeta_dict\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mkey\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mmeta_dict\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGetKeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 65\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_affine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mList\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/workspace/data/medical/MONAI/monai/data/image_reader.py\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_meta_dict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mList\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 63\u001b[0m \u001b[0mmeta_dict\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGetMetaDataDictionary\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 64\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mmeta_dict\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mkey\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mmeta_dict\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGetKeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 65\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_affine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mList\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/itk/ITKCommonBasePython.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 887\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mitk\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 888\u001b[0m \u001b[0mobj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGet\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 889\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mitk\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdown_cast\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGetMetaDataObjectValue\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 890\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__len__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 891\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGetKeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/itkExtras.py\u001b[0m in \u001b[0;36mdown_cast\u001b[0;34m(obj)\u001b[0m\n\u001b[1;32m 1198\u001b[0m raise RuntimeError(\n\u001b[1;32m 1199\u001b[0m \u001b[0;34m\"Can't downcast to a specialization of %s\"\u001b[0m \u001b[0;34m%\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1200\u001b[0;31m className)\n\u001b[0m\u001b[1;32m 1201\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1202\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcast\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mRuntimeError\u001b[0m: Can't downcast to a specialization of MetaDataObject" @@ -140,13 +149,6 @@ "loader = LoadImage()\n", "data, meta = loader(filename)" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index 8b6236fec7..f936dbd187 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -10,7 +10,7 @@ # limitations under the License. from abc import ABC, abstractmethod -from typing import Any, Dict +from typing import Any, List, Optional, Union, Sequence import itk import numpy as np @@ -20,32 +20,73 @@ class ImageReader(ABC): """Abstract class to define interface APIs to load image files. """ + def __init__( + self, + suffixes: Optional[Union[str, Sequence[str]]] = None, + img: Any = None + ): + self.suffixes = suffixes + self.img = img - def __init__(self, img: Any = None): - self._img = None + def verify_suffix(self, suffix: str): + return False if self.suffixes is not None and suffix not in self.suffixes else True + + def uncache(self): + self.img = None @abstractmethod def read_image(self, filename: str): raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") @abstractmethod - def get_meta_data(self) -> Dict: + def get_meta_dict(self) -> List: raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") @abstractmethod - def get_array_data(self) -> np.ndarray: + def get_affine(self) -> List: raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") - def uncache(self): - self._img = None + @abstractmethod + def get_spatial_shape(self) -> List: + raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") + + @abstractmethod + def get_array_data(self) -> np.ndarray: + raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") class ITKReader(ImageReader): def read_image(self, filename: str): - self._img = itk.imread(filename) + self.img = itk.imread(filename) + + def get_meta_dict(self) -> List: + meta_dict = self.img.GetMetaDataDictionary() + return {key: meta_dict[key] for key in meta_dict.GetKeys()} + + def get_affine(self) -> List: + """ + Construct Affine matrix based on direction, spacing, origin information. + Refer to: https://github.com/RSIP-Vision/medio + + """ + direction = itk.array_from_vnl_matrix(self.img.GetDirection().GetVnlMatrix().as_matrix()) + spacing = itk.array_from_vnl_vector(self.img.GetSpacing().GetVnlVector()) + origin = itk.array_from_vnl_vector(self.img.GetOrigin().GetVnlVector()) + + direction = np.asarray(direction) + affine = np.eye(direction.shape[0] + 1) + affine[(slice(-1), slice(-1))] = direction @ np.diag(spacing) + affine[(slice(-1), -1)] = origin + return affine - def get_meta_data(self) -> Dict: - return self._img.GetMetaDataDictionary() + def get_spatial_shape(self) -> List: + # don't support spatial dims greater than 3 + spatial_rank = min(self.img.GetImageDimension(), 3) + meta_dict = self.img.GetMetaDataDictionary() + spatial_shape = list() + for i in range(1, spatial_rank + 1): + spatial_shape.append(int(meta_dict[f"dim[{i}]"])) + return spatial_shape def get_array_data(self) -> np.ndarray: - return itk.array_from_image(self._img) + return itk.array_from_image(self.img) diff --git a/monai/transforms/io/array.py b/monai/transforms/io/array.py index 842e26e4cd..4075b1d8e9 100644 --- a/monai/transforms/io/array.py +++ b/monai/transforms/io/array.py @@ -72,30 +72,30 @@ def __call__(self, filename: Union[Sequence[Union[Path, str]], Path, str]): """ filename = ensure_tuple(filename) img_array = list() - compatible_meta: Dict = dict() + compatible_meta: Dict = None for name in filename: - if self.suffixes is not None and name.split(".")[-1] not in self.suffixes: + if not self.reader.verify_suffix(name.split(".")[-1]): raise RuntimeError("unsupported file format.") - img = self.reader.read_image(name) - header = self.reader.get_meta_data() - header["filename_or_obj"] = name - + self.reader.read_image(name) img_array.append(self.reader.get_array_data().astype(dtype=self.dtype)) - if self.image_only: continue - if not compatible_meta: - for meta_key in header.GetKeys(): - meta_datum = header[meta_key] - if ( - isinstance(meta_datum, np.ndarray) - and np_str_obj_array_pattern.search(meta_datum.dtype.str) is not None - ): - continue - compatible_meta[meta_key] = meta_datum + header = self.reader.get_meta_dict() + header["filename_or_obj"] = name + header["affine"] = self.reader.get_affine() + header["original_affine"] = header["affine"].copy() + header["spatial_shape"] = self.reader.get_spatial_shape() + + if compatible_meta is None: + compatible_meta = header + else: + assert np.allclose( + header["affine"], compatible_meta["affine"] + ), "affine data of all images should be same." img_array = np.stack(img_array, axis=0) if len(img_array) > 1 else img_array[0] + self.reader.uncache() if self.image_only: return img_array return img_array, compatible_meta From 7de36759f96c2db5425a7291dc05cf747a41cd38 Mon Sep 17 00:00:00 2001 From: monai-bot Date: Fri, 14 Aug 2020 08:00:47 +0000 Subject: [PATCH 04/37] [MONAI] python code formatting --- monai/data/image_reader.py | 9 +++------ 1 file changed, 3 insertions(+), 6 deletions(-) diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index f936dbd187..03b10a9f3b 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -10,7 +10,7 @@ # limitations under the License. from abc import ABC, abstractmethod -from typing import Any, List, Optional, Union, Sequence +from typing import Any, List, Optional, Sequence, Union import itk import numpy as np @@ -20,11 +20,8 @@ class ImageReader(ABC): """Abstract class to define interface APIs to load image files. """ - def __init__( - self, - suffixes: Optional[Union[str, Sequence[str]]] = None, - img: Any = None - ): + + def __init__(self, suffixes: Optional[Union[str, Sequence[str]]] = None, img: Any = None): self.suffixes = suffixes self.img = img From f39ba1f730d305f1785b8c525f152f51ee64639d Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Sat, 15 Aug 2020 00:34:06 +0800 Subject: [PATCH 05/37] [DLMED] update according to comments --- examples/notebooks/IO_factory_test.ipynb | 56 ++++++++++++++++-------- monai/data/image_reader.py | 29 +++++++----- 2 files changed, 54 insertions(+), 31 deletions(-) diff --git a/examples/notebooks/IO_factory_test.ipynb b/examples/notebooks/IO_factory_test.ipynb index 6401d78768..fec0aebd46 100644 --- a/examples/notebooks/IO_factory_test.ipynb +++ b/examples/notebooks/IO_factory_test.ipynb @@ -70,7 +70,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "MONAI version: 0.1.0+319.g496c390.dirty\n", + "MONAI version: 0.1.0+325.g7de3675.dirty\n", "Python version: 3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 19:07:31) [GCC 7.3.0]\n", "Numpy version: 1.18.1\n", "Pytorch version: 1.6.0\n", @@ -119,35 +119,53 @@ "cell_type": "code", "execution_count": 2, "metadata": {}, + "outputs": [], + "source": [ + "filename = \"/workspace/data/medical/Task09_Spleen/imagesTr/spleen_10.nii.gz\"\n", + "loader = LoadImage()\n", + "data, meta = loader(filename)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "!!!!!!!!!!!!!data shape: (55, 512, 512)\n" + "{'ITK_FileNotes': '5.0.10', 'aux_file': '', 'bitpix': '32', 'cal_max': '0', 'cal_min': '0', 'datatype': '16', 'descrip': '5.0.10', 'dim[0]': '3', 'dim[1]': '512', 'dim[2]': '512', 'dim[3]': '55', 'dim[4]': '1', 'dim[5]': '1', 'dim[6]': '1', 'dim[7]': '1', 'dim_info': '0', 'intent_code': '0', 'intent_name': '', 'intent_p1': '0', 'intent_p2': '0', 'intent_p3': '0', 'nifti_type': '1', 'pixdim[0]': '0', 'pixdim[1]': '0.976562', 'pixdim[2]': '0.976562', 'pixdim[3]': '5', 'pixdim[4]': '0', 'pixdim[5]': '0', 'pixdim[6]': '0', 'pixdim[7]': '0', 'qform_code': '1', 'qform_code_name': 'NIFTI_XFORM_SCANNER_ANAT', 'qoffset_x': '-499.023', 'qoffset_y': '-499.023', 'qoffset_z': '0', 'quatern_b': '0', 'quatern_c': '0', 'quatern_d': '0', 'scl_inter': '0', 'scl_slope': '1', 'sform_code': '1', 'sform_code_name': 'NIFTI_XFORM_SCANNER_ANAT', 'slice_code': '0', 'slice_duration': '0', 'slice_end': '0', 'slice_start': '0', 'srow_x': '0.976562 0 0 -499.023', 'srow_y': '0 0.976562 0 -499.023', 'srow_z': '0 0 5 0', 'toffset': '0', 'vox_offset': '352', 'xyzt_units': '10', 'origin': array([499.02319336, 499.02319336, 0. ]), 'spacing': array([0.97656202, 0.97656202, 5. ]), 'direction': array([[-1., 0., 0.],\n", + " [ 0., -1., 0.],\n", + " [ 0., 0., 1.]]), 'filename_or_obj': '/workspace/data/medical/Task09_Spleen/imagesTr/spleen_10.nii.gz', 'affine': array([[ -0.97656202, 0. , 0. , 499.02319336],\n", + " [ 0. , -0.97656202, 0. , 499.02319336],\n", + " [ 0. , 0. , 5. , 0. ],\n", + " [ 0. , 0. , 0. , 1. ]]), 'original_affine': array([[ -0.97656202, 0. , 0. , 499.02319336],\n", + " [ 0. , -0.97656202, 0. , 499.02319336],\n", + " [ 0. , 0. , 5. , 0. ],\n", + " [ 0. , 0. , 0. , 1. ]]), 'spatial_shape': [55, 512, 512]}\n" ] - }, + } + ], + "source": [ + "print(meta)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ { - "ename": "RuntimeError", - "evalue": "Can't downcast to a specialization of MetaDataObject", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mfilename\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"/workspace/data/medical/Task09_Spleen/imagesTr/spleen_10.nii.gz\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mloader\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mLoadImage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmeta\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mloader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m/workspace/data/medical/MONAI/monai/transforms/io/array.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, filename)\u001b[0m\n\u001b[1;32m 82\u001b[0m \u001b[0;32mcontinue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 83\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 84\u001b[0;31m \u001b[0mheader\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreader\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_meta_dict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 85\u001b[0m \u001b[0mheader\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"filename_or_obj\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 86\u001b[0m \u001b[0mheader\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"affine\"\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreader\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_affine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/workspace/data/medical/MONAI/monai/data/image_reader.py\u001b[0m in \u001b[0;36mget_meta_dict\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_meta_dict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mList\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 63\u001b[0m \u001b[0mmeta_dict\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGetMetaDataDictionary\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 64\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mmeta_dict\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mkey\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mmeta_dict\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGetKeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 65\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_affine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mList\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/workspace/data/medical/MONAI/monai/data/image_reader.py\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_meta_dict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mList\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 63\u001b[0m \u001b[0mmeta_dict\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGetMetaDataDictionary\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 64\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mmeta_dict\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mkey\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mmeta_dict\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGetKeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 65\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_affine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mList\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/itk/ITKCommonBasePython.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 887\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mitk\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 888\u001b[0m \u001b[0mobj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGet\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 889\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mitk\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdown_cast\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGetMetaDataObjectValue\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 890\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__len__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 891\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mGetKeys\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/itkExtras.py\u001b[0m in \u001b[0;36mdown_cast\u001b[0;34m(obj)\u001b[0m\n\u001b[1;32m 1198\u001b[0m raise RuntimeError(\n\u001b[1;32m 1199\u001b[0m \u001b[0;34m\"Can't downcast to a specialization of %s\"\u001b[0m \u001b[0;34m%\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1200\u001b[0;31m className)\n\u001b[0m\u001b[1;32m 1201\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1202\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcast\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mRuntimeError\u001b[0m: Can't downcast to a specialization of MetaDataObject" + "name": "stdout", + "output_type": "stream", + "text": [ + "(55, 512, 512)\n" ] } ], "source": [ - "filename = \"/workspace/data/medical/Task09_Spleen/imagesTr/spleen_10.nii.gz\"\n", - "loader = LoadImage()\n", - "data, meta = loader(filename)" + "print(data.shape)" ] } ], diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index 03b10a9f3b..05dbce01db 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -57,8 +57,17 @@ def read_image(self, filename: str): self.img = itk.imread(filename) def get_meta_dict(self) -> List: - meta_dict = self.img.GetMetaDataDictionary() - return {key: meta_dict[key] for key in meta_dict.GetKeys()} + img_meta_dict = self.img.GetMetaDataDictionary() + meta_dict = dict() + for key in img_meta_dict.GetKeys(): + # ignore deprecated, legacy members that cause issues + if key.startswith('ITK_original_'): + continue + meta_dict[key] = img_meta_dict[key] + meta_dict['origin'] = np.asarray(self.img.GetOrigin()) + meta_dict['spacing'] = np.asarray(self.img.GetSpacing()) + meta_dict['direction'] = itk.array_from_matrix(self.img.GetDirection()) + return meta_dict def get_affine(self) -> List: """ @@ -66,9 +75,9 @@ def get_affine(self) -> List: Refer to: https://github.com/RSIP-Vision/medio """ - direction = itk.array_from_vnl_matrix(self.img.GetDirection().GetVnlMatrix().as_matrix()) - spacing = itk.array_from_vnl_vector(self.img.GetSpacing().GetVnlVector()) - origin = itk.array_from_vnl_vector(self.img.GetOrigin().GetVnlVector()) + direction = itk.array_from_matrix(self.img.GetDirection()) + spacing = np.asarray(self.img.GetSpacing()) + origin = np.asarray(self.img.GetOrigin()) direction = np.asarray(direction) affine = np.eye(direction.shape[0] + 1) @@ -77,13 +86,9 @@ def get_affine(self) -> List: return affine def get_spatial_shape(self) -> List: - # don't support spatial dims greater than 3 - spatial_rank = min(self.img.GetImageDimension(), 3) - meta_dict = self.img.GetMetaDataDictionary() - spatial_shape = list() - for i in range(1, spatial_rank + 1): - spatial_shape.append(int(meta_dict[f"dim[{i}]"])) + spatial_shape = list(itk.size(self.img)) + spatial_shape.reverse() return spatial_shape def get_array_data(self) -> np.ndarray: - return itk.array_from_image(self.img) + return itk.array_view_from_image(self.img) From a9acc9fe874ee54d677cb23c69c4d8d9e6105fba Mon Sep 17 00:00:00 2001 From: monai-bot Date: Fri, 14 Aug 2020 16:38:38 +0000 Subject: [PATCH 06/37] [MONAI] python code formatting --- monai/data/image_reader.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index 05dbce01db..f4ea928819 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -61,12 +61,12 @@ def get_meta_dict(self) -> List: meta_dict = dict() for key in img_meta_dict.GetKeys(): # ignore deprecated, legacy members that cause issues - if key.startswith('ITK_original_'): + if key.startswith("ITK_original_"): continue meta_dict[key] = img_meta_dict[key] - meta_dict['origin'] = np.asarray(self.img.GetOrigin()) - meta_dict['spacing'] = np.asarray(self.img.GetSpacing()) - meta_dict['direction'] = itk.array_from_matrix(self.img.GetDirection()) + meta_dict["origin"] = np.asarray(self.img.GetOrigin()) + meta_dict["spacing"] = np.asarray(self.img.GetSpacing()) + meta_dict["direction"] = itk.array_from_matrix(self.img.GetDirection()) return meta_dict def get_affine(self) -> List: From 46867245ac0c95fe3a25cf5edf6b5528dc149150 Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Sun, 16 Aug 2020 08:21:18 +0800 Subject: [PATCH 07/37] [DLMED] update axis --- .../{IO_factory_test.ipynb => io_factory_test.ipynb} | 11 ++++++----- monai/data/image_reader.py | 6 ++---- 2 files changed, 8 insertions(+), 9 deletions(-) rename examples/notebooks/{IO_factory_test.ipynb => io_factory_test.ipynb} (94%) diff --git a/examples/notebooks/IO_factory_test.ipynb b/examples/notebooks/io_factory_test.ipynb similarity index 94% rename from examples/notebooks/IO_factory_test.ipynb rename to examples/notebooks/io_factory_test.ipynb index fec0aebd46..920e027b4c 100644 --- a/examples/notebooks/IO_factory_test.ipynb +++ b/examples/notebooks/io_factory_test.ipynb @@ -4,9 +4,10 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Multi GPU Test\n", + "# IO factory test notebook\n", + "This notebook shows the basic usage of `ImageLoad`, `ITKReader` and `NibabelReader` for Nifti and PNG data.\n", "\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Project-MONAI/MONAI/blob/master/examples/notebooks/multi_gpu_test.ipynb)" + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Project-MONAI/MONAI/blob/master/examples/notebooks/io_factory_test.ipynb)" ] }, { @@ -70,7 +71,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "MONAI version: 0.1.0+325.g7de3675.dirty\n", + "MONAI version: 0.1.0+327.ga9acc9f.dirty\n", "Python version: 3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 19:07:31) [GCC 7.3.0]\n", "Numpy version: 1.18.1\n", "Pytorch version: 1.6.0\n", @@ -143,7 +144,7 @@ " [ 0. , 0. , 0. , 1. ]]), 'original_affine': array([[ -0.97656202, 0. , 0. , 499.02319336],\n", " [ 0. , -0.97656202, 0. , 499.02319336],\n", " [ 0. , 0. , 5. , 0. ],\n", - " [ 0. , 0. , 0. , 1. ]]), 'spatial_shape': [55, 512, 512]}\n" + " [ 0. , 0. , 0. , 1. ]]), 'spatial_shape': [512, 512, 55]}\n" ] } ], @@ -160,7 +161,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "(55, 512, 512)\n" + "(512, 512, 55)\n" ] } ], diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index f4ea928819..259800c237 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -86,9 +86,7 @@ def get_affine(self) -> List: return affine def get_spatial_shape(self) -> List: - spatial_shape = list(itk.size(self.img)) - spatial_shape.reverse() - return spatial_shape + return list(itk.size(self.img)) def get_array_data(self) -> np.ndarray: - return itk.array_view_from_image(self.img) + return itk.array_view_from_image(self.img, keep_axes=True) From 162c2e807ce10c903de8c0183bc9dfdbe6f549cf Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Sun, 16 Aug 2020 09:52:52 +0800 Subject: [PATCH 08/37] [DLMED] itk to optional import --- .github/workflows/pythonapp.yml | 2 +- docs/requirements.txt | 1 + docs/source/installation.md | 4 +- examples/notebooks/io_factory_test.ipynb | 41 +- examples/notebooks/mednist_GAN_workflow.ipynb | 4519 ++++++++++++++++- monai/data/image_reader.py | 4 +- requirements-dev.txt | 1 + setup.cfg | 3 + 8 files changed, 4526 insertions(+), 49 deletions(-) diff --git a/.github/workflows/pythonapp.yml b/.github/workflows/pythonapp.yml index 728c84d1ef..6dfe983694 100644 --- a/.github/workflows/pythonapp.yml +++ b/.github/workflows/pythonapp.yml @@ -76,7 +76,7 @@ jobs: python -m pip install torch==1.4 -f https://download.pytorch.org/whl/cpu/torch_stable.html python -m pip install torchvision==0.5.0 # min. requirements for windows instances - python -c "f=open('requirements-dev.txt', 'r'); txt=f.readlines(); f.close(); print(txt); f=open('requirements-dev.txt', 'w'); f.writelines(txt[1:11]); f.close()" + python -c "f=open('requirements-dev.txt', 'r'); txt=f.readlines(); f.close(); print(txt); f=open('requirements-dev.txt', 'w'); f.writelines(txt[1:12]); f.close()" - name: Install the dependencies run: | python -m pip install torch==1.4 diff --git a/docs/requirements.txt b/docs/requirements.txt index 93cc2b5845..3969823f8c 100644 --- a/docs/requirements.txt +++ b/docs/requirements.txt @@ -2,6 +2,7 @@ torch>=1.4.0 pytorch-ignite==0.3.0 numpy>=1.17 +itk nibabel parameterized scikit-image>=0.14.2 diff --git a/docs/source/installation.md b/docs/source/installation.md index 1148d7a7c6..1cc4ff511c 100644 --- a/docs/source/installation.md +++ b/docs/source/installation.md @@ -129,9 +129,9 @@ Since MONAI v0.2.0, the extras syntax such as `pip install 'monai[nibabel]'` is - The options are ``` -[nibabel, skimage, pillow, tensorboard, gdown, ignite] +[nibabel, skimage, pillow, tensorboard, gdown, ignite, itk] ``` which correspond to `nibabel`, `scikit-image`, `pillow`, `tensorboard`, -`gdown`, and `pytorch-ignite` respectively. +`gdown`, `pytorch-ignite`, and `itk` respectively. - `pip install 'monai[all]'` installs all the optional dependencies. diff --git a/examples/notebooks/io_factory_test.ipynb b/examples/notebooks/io_factory_test.ipynb index 920e027b4c..a81ee1a558 100644 --- a/examples/notebooks/io_factory_test.ipynb +++ b/examples/notebooks/io_factory_test.ipynb @@ -19,7 +19,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": { "tags": [] }, @@ -28,29 +28,24 @@ "name": "stdout", "output_type": "stream", "text": [ + "\u001b[33m WARNING: monai 0.2.0 does not provide the extra 'itk'\u001b[0m\n", "Note: you may need to restart the kernel to use updated packages.\n" ] } ], "source": [ - "%pip install -qU \"monai[itk]\"" + "%pip install -qU \"monai[itk, nibabel]\"" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Note: you may need to restart the kernel to use updated packages.\n" - ] - } - ], + "outputs": [], "source": [ - "%pip install -qU itk" + "# temporarily need this, FIXME remove when d93c0a6 released\n", + "%pip install -qU git+https://github.com/Project-MONAI/MONAI#egg=MONAI\n", + "%pip install itk" ] }, { @@ -71,7 +66,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "MONAI version: 0.1.0+327.ga9acc9f.dirty\n", + "MONAI version: 0.1.0+328.g4686724.dirty\n", "Python version: 3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 19:07:31) [GCC 7.3.0]\n", "Numpy version: 1.18.1\n", "Pytorch version: 1.6.0\n", @@ -120,7 +115,23 @@ "cell_type": "code", "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "AttributeError", + "evalue": "Optional import: import itk.\n\nFor details about installing the optional dependencies, please visit:\n https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mfilename\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"/workspace/data/medical/Task09_Spleen/imagesTr/spleen_10.nii.gz\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mloader\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mLoadImage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmeta\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mloader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m/workspace/data/medical/MONAI/monai/transforms/io/array.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, filename)\u001b[0m\n\u001b[1;32m 77\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreader\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mverify_suffix\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msplit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\".\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 78\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mRuntimeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"unsupported file format.\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 79\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreader\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_image\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 80\u001b[0m \u001b[0mimg_array\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreader\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_array_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 81\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimage_only\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/workspace/data/medical/MONAI/monai/data/image_reader.py\u001b[0m in \u001b[0;36mread_image\u001b[0;34m(self, filename)\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mclass\u001b[0m \u001b[0mITKReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mImageReader\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mread_image\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 59\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mitk\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 60\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_meta_dict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mList\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/workspace/data/medical/MONAI/monai/utils/module.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 184\u001b[0m \u001b[0mAttributeError\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mWhen\u001b[0m \u001b[0myou\u001b[0m \u001b[0mcall\u001b[0m \u001b[0mthis\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 185\u001b[0m \"\"\"\n\u001b[0;32m--> 186\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_exception\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 187\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 188\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0m_args\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0m_kwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/workspace/data/medical/MONAI/monai/utils/module.py\u001b[0m in \u001b[0;36moptional_import\u001b[0;34m(module, version, version_checker, name, descriptor, version_args, allow_namespace_pkg)\u001b[0m\n\u001b[1;32m 148\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mallow_namespace_pkg\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 149\u001b[0m \u001b[0mis_namespace\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mthe_module\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"__file__\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mthe_module\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"__path__\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 150\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mis_namespace\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 151\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# user specified to load class/function/... from the module\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 152\u001b[0m \u001b[0mthe_module\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mthe_module\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mAttributeError\u001b[0m: Optional import: import itk.\n\nFor details about installing the optional dependencies, please visit:\n https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies" + ] + } + ], "source": [ "filename = \"/workspace/data/medical/Task09_Spleen/imagesTr/spleen_10.nii.gz\"\n", "loader = LoadImage()\n", diff --git a/examples/notebooks/mednist_GAN_workflow.ipynb b/examples/notebooks/mednist_GAN_workflow.ipynb index e77a90c738..6065de5e2c 100644 --- a/examples/notebooks/mednist_GAN_workflow.ipynb +++ b/examples/notebooks/mednist_GAN_workflow.ipynb @@ -43,9 +43,11 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", - "text": "Note: you may need to restart the kernel to use updated packages.\n" + "output_type": "stream", + "text": [ + "Note: you may need to restart the kernel to use updated packages.\n" + ] } ], "source": [ @@ -60,9 +62,11 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", - "text": "Note: you may need to restart the kernel to use updated packages.\n" + "output_type": "stream", + "text": [ + "Note: you may need to restart the kernel to use updated packages.\n" + ] } ], "source": [ @@ -78,9 +82,11 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", - "text": "Note: you may need to restart the kernel to use updated packages.\n" + "output_type": "stream", + "text": [ + "Note: you may need to restart the kernel to use updated packages.\n" + ] } ], "source": [ @@ -103,9 +109,25 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", - "text": "MONAI version: 0.2.0+74.g8e5a53e\nPython version: 3.7.5 (default, Nov 7 2019, 10:50:52) [GCC 8.3.0]\nNumpy version: 1.19.1\nPytorch version: 1.6.0\n\nOptional dependencies:\nPytorch Ignite version: 0.3.0\nNibabel version: NOT INSTALLED or UNKNOWN VERSION.\nscikit-image version: NOT INSTALLED or UNKNOWN VERSION.\nPillow version: 7.2.0\nTensorboard version: NOT INSTALLED or UNKNOWN VERSION.\n\nFor details about installing the optional dependencies, please visit:\n https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies\n\n" + "output_type": "stream", + "text": [ + "MONAI version: 0.2.0+74.g8e5a53e\n", + "Python version: 3.7.5 (default, Nov 7 2019, 10:50:52) [GCC 8.3.0]\n", + "Numpy version: 1.19.1\n", + "Pytorch version: 1.6.0\n", + "\n", + "Optional dependencies:\n", + "Pytorch Ignite version: 0.3.0\n", + "Nibabel version: NOT INSTALLED or UNKNOWN VERSION.\n", + "scikit-image version: NOT INSTALLED or UNKNOWN VERSION.\n", + "Pillow version: 7.2.0\n", + "Tensorboard version: NOT INSTALLED or UNKNOWN VERSION.\n", + "\n", + "For details about installing the optional dependencies, please visit:\n", + " https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies\n", + "\n" + ] } ], "source": [ @@ -160,9 +182,11 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", - "text": "/home/bengorman/notebooks/\n" + "output_type": "stream", + "text": [ + "/home/bengorman/notebooks/\n" + ] } ], "source": [ @@ -199,9 +223,12 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", - "text": "file /home/bengorman/notebooks/MedNIST.tar.gz exists, skip downloading.\nextracted file /home/bengorman/notebooks/MedNIST exists, skip extracting.\n" + "output_type": "stream", + "text": [ + "file /home/bengorman/notebooks/MedNIST.tar.gz exists, skip downloading.\n", + "extracted file /home/bengorman/notebooks/MedNIST exists, skip extracting.\n" + ] } ], "source": [ @@ -235,9 +262,11 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", - "text": "[{'hand': '/home/bengorman/notebooks/MedNIST/Hand/003676.jpeg'}, {'hand': '/home/bengorman/notebooks/MedNIST/Hand/006548.jpeg'}, {'hand': '/home/bengorman/notebooks/MedNIST/Hand/002169.jpeg'}, {'hand': '/home/bengorman/notebooks/MedNIST/Hand/004081.jpeg'}, {'hand': '/home/bengorman/notebooks/MedNIST/Hand/004815.jpeg'}]\n" + "output_type": "stream", + "text": [ + "[{'hand': '/home/bengorman/notebooks/MedNIST/Hand/003676.jpeg'}, {'hand': '/home/bengorman/notebooks/MedNIST/Hand/006548.jpeg'}, {'hand': '/home/bengorman/notebooks/MedNIST/Hand/002169.jpeg'}, {'hand': '/home/bengorman/notebooks/MedNIST/Hand/004081.jpeg'}, {'hand': '/home/bengorman/notebooks/MedNIST/Hand/004815.jpeg'}]\n" + ] } ], "source": [ @@ -307,9 +336,11 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", - "text": "10000/10000 Load and cache transformed data: [==============================]\n" + "output_type": "stream", + "text": [ + "10000/10000 Load and cache transformed data: [==============================]\n" + ] } ], "source": [ @@ -494,10 +525,10 @@ "cell_type": "code", "execution_count": 16, "metadata": { - "scrolled": true, "pycharm": { "is_executing": true }, + "scrolled": true, "tags": [ "outputPrepend" ] @@ -535,22 +566,4322 @@ "cell_type": "code", "execution_count": 18, "metadata": { - "scrolled": true, "pycharm": { "is_executing": true - } + }, + "scrolled": true }, "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n 2020-08-05T18:23:17.519994\n image/svg+xml\n \n \n Matplotlib v3.3.0, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAswAAAEvCAYAAABR6ZerAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAACq4UlEQVR4nOyddXgUVxfG39mNO0kgQAIEdw9uQVpoKRVKlQrU+7W01KlThbpRd6deSrFii2vwEDTECEQIcd3d+f644ztr2ewmac/vefJkdvTOHXvvueecy/E8D4IgCIIgCIIg9DE0dgEIgiAIgiAIoilDgpkgCIIgCIIgHECCmSAIgiAIgiAcQIKZIAiCIAiCIBxAgpkgCIIgCIIgHECCmSAIgiAIgiAc4NfYBXBEbGwsn5iY6PPjVlRUIDQ01OfH/a9B9ex9qI59A9Wz96E69g1Uz76B6tn7uFvHKSkphTzPt7S3vEkL5sTEROzevdvnxzWZTEhOTvb5cf9rUD17H6pj30D17H2ojn0D1bNvoHr2Pu7WMcdxmY6Wk0sGQRAEQRAEQTiABDNBEARBEARBOIAEM0EQBEEQBEE4gAQzQRAEQRAEQTjAZ4KZ47hOHMd9znHcr746JkEQBEEQBEF4ikeCmeO4LziOy+c47pBm/hSO445yHHeC47h5AMDzfDrP87d6cjyCIAiCIAiC8DWeWpi/AjBFOYPjOCOA9wFcBKAXgOs4juvl4XEIgiAIgiAIolHwSDDzPL8RQJFm9lAAJwSLci2AxQAu8+Q4BEEQBEEQBNFYcDzPe7YDjksE8DfP832E3zMATOF5/jbh940AhgF4FsBLAC4A8BnP8wvs7O8OAHcAQFxc3ODFixd7VL76UF5ejrCwMJ8f978G1bP3oTr2DVTP3ofq2DdQPfsGqmfv424djx8/PoXn+SR7y3020h/P8+cA3OXCep8A+AQAkpKS+MYYCceTEXiOni1DZLA/WkcGNWyh/kXwPI/qOit2bN1EIx15GRpNyjdQPXsfqmPfQPXsG6ievU9D17E3BPNpAO0UvxOEef9qsosqcc8Pe3AgpwQAkLFwaiOXqOny4YaTeHXlUbw7IaSxi0IQBEEQBOEUb6SV2wWgK8dxHTmOCwBwLYC/vHCcJsWnm9IlsUw4ZsneXABASY1n7kAEQRAEQRC+wCMfZo7jfgSQDCAWQB6AZ3me/5zjuIsBvA3ACOALnudfcnO/0wBMi4+Pv/27776rd/nqS318i749XIO1WWbp91dTQhu6WP8antpciZxyHo8P5NE9jny4vAn5yfkGqmfvQ3XsG6iefQPVs/dpUj7MPM9fZ2f+cgDLPdjvUgBLk5KSbm8uPsym0lQgK0P6Tb5J9gnbtxEoL0NISAjVk5chPznfQPXsfaiOfQPVs2+gevY+DV3HNDR2A8FxjV2C5oenGVoIgiAIgiB8AQnmBsJAipkgCIIgCOJficd5mL1Bc/Jh5nkeHMdh8ZEarMwgH2ZXEH2Y5w3g0aM1+XB5E/KT8w1Uz96H6tg3UD37Bqpn79OkfJi9RXPxYc4vrcbQl9fi3esGokP7EiAjXVpGvkn2kX2Yg6mevAz5yfkGqmfvQ3XsG6iefQPVs/chH+YmRPb5SgDAs0sOAeSR4TZNr2+DIAiCIAjCFhLMHlBRYwEAnK+sQ6UwLVJdZ9HbhCAIgiAIgmhmkGD2gNLqOmn62+2ZqmVl1Wbt6gRBEARBEEQzhIL+dHDVUdyUXYevUmt1l93aJwDRQQb0jjU2dPGaPU9vqUJ2mRWPDuDRi4L+vAoFlvgGqmfvQ3XsG6iefQPVs/ehoD8fYM9RvNZsBccB/kZmmD+64SSQekR3H58fYkI6Y+FUr5WzuRK+fxNQVoqgYAr68zYUWOIbqJ69D9Wxb6B69g1Uz96Hgv4akT7zVyH5NRO+3ZaB7KJKLFjBxHLL8EC72xRX6lugCcDa9Do3/nvwPLD9I6CmvLFLQhAEQRBNFhLMblBrtuJ0cRWeXpKK+xbvBQDMGpmIXU9OwuoHxmJk5xibbQ6fKfV1MZsNTdAb6L/H8dXAyseAVU80dkkIgiAIoslCgrme7M0qBgDcOKIDAKBrXDjGdmtps971n+7wZbGaFWRhbgKYq9j/ynONWw6CIAiCaMI0SR9mRdAfTCaTz49fXl6uOu6RIgsW7qzWXffw3l3IDmBJmKMrrQCAQa2M2JMvp5UT95VVakHrUAMCjP/tpM0VFUykVVZVNcr1bQ7UmHlsyDFjUgc/j4Zd197LWmILDqMPgMKCAhyia1FvnNUz4TlUx76B6tk3UD17n4au4yYpmJtS0J/VymPWE8vtrnvxpGQYDbKgufpi4K/9udjz415pXpseg9EmKgiz5v+DS/q1waLrB3mt7M2BsAObgNJSBAZR0J89nl1yCD8cycTYpL6Y0qd1vffjLOghf1cRkApYA0LoWngABfB4H6pj30D17Buonr0PBf35mKUHcm3mvXplP2laKZZFLu3fFuseGif9nvz2Rikv88ZjBV4oZfOEXDLsU1zFcnxX1Xk3n3fGOWbtzyup8upxCIIgCKI50yQtzE2Jv/Yxwbz36QtQUlWH9tEhKK8149HfDjjcrmNsqOp31jk2jHaN2YpjeWWICQ1ATJj97Br/BZpiDvCmgq+cdqyCuwfH0bUgCIIgCHuQhdkBRRW1WHskH3eM7YQWoQFIjA2FwcAhPNB5O4PjOHx/2zDpd5qQLaPGbMWFb23EpDc3eK3cTR3RJdfqxjZnS/R9yP/teLtNwQvS3MC7czUIgiAI4r8FCWYHZJyrAAAM6xitms9xHOZP64W/7h3lcHtxgBMA+HjjSdWy85V1sPxHfRI4QaS5Kga3nijE8AVrsfzgGS+WqmnBce7VUX3hhVcAh//mvUgQBEEQrkCC2QEZhUwwd4gJsVk2a1RH9EuIcri9nyIbRl5pjc3y9UfyPSugm+SXVuPnXdlub3e+ohblNQ3vS+tqe0HMZZ2Seb7By9BUEe8cb8tYEswEQRCEK/A8j5TMov+sO2WT9GFuKmnl/jlSAz8DkHFoN3J0gvuckVFicbg8Zf9B+OWn1beYbvPc1iqcKrUioOg4ogJdbyvNWlmBqEAOb4+3bTjUh7IyFmBWVVXt0vU9lcEC4DKzsmEy+baR0ViUninCg35LcDTNCFPZiXrvx1landzsbIwCYK6toRRHHkAporwP1bFvoHr2Dc2xnrecrsOnB2txV/9ADG/TJOWjCkor5wPEVCQfH9uO3vEWTJrg2PXCHmlnSoFtmwAAb1zVH93iwnH1x9tQVceEdK9evZDcv22DldsZj21dA6AGQ4aNQHxUsOsbrlyG4hq+wdKzhB/cDJSWICAoyKV9Zm3LAI6konXbtkhO7tsgZdCl7Cxg8ANCY713DBcJ2H8jRvr9hR0RIzEs+c5678dZWp2NNYVADhAY4EcpjjyAUkR5H6pj30D17BuaYz2n/HMUwAmEtOqA5OSujV0cp1BaOR+Sea4CnTXZLtxB6cN85eAE9E2IxMD2UdI8q6JbI72gHEUVtarteZ7HH3tzUF3n2FLtKqLvcFVtw+zvZEE5TuSXu18OwVjvaq+OOHCHxQqsTctD4rxlyC/zQhDgG92B1zo3/H7rgZFnVnWD2bvBjqJLhoFcMggv8/aaY3jzn6ONXQyCIOqJ2M9u/Y+6ZJBgtkOt2YozpdVoF11/NwR/nRH93rl2IB6d0h0AVEF/E97YgMlvb1Stm5J5Hg/8tB/PLU2t1/GLKmolEb7hWAHOljLxVVnruj+yPbH+1J8HMfGNDR5l+3DVh9lPcIexWnl8vS0TAJCaW1rv4zYHrELnj4H3bh5m0ReN+4++AAn3Kamsg7UeActvrzmOd9fV372IIBqTf1LPYldGUWMXo3HxUTB6U4UEsx1OF1eB54H2HghmP6Nt9bYMD8QlfZkbhpUH9mSdR1k1syYWlNWgziKn9xIF9fG8cny2KR0n8suQW1yFxHnLsEEYAGXxzizsyy5WHWPFwTNInLcMg15YjUEvrEaN2YKbv9gpLa+stWDp/lyXrMPFlXWq32lnSpE4bxm+257lQg0Apwor8PLyNN0PrKuJzIwGDsMNh9GiKhNiG8TdDzbP880qK4mFY4KZs3pXMItvPs6tJH/Ef5Xiylr0f/4fvLGaLMXEf4s7vk3BVR9ta+xiNCoGqXe4+XxLGxISzHbIKmIDjbTXyZDhKnoWZgAwCLW+J+s8pn+wFZPfki3LXZ9cgQUr0pA4bxnWH2Wi+FxFLV5cloYrP9yGtWl5AICl+9mAKvN+P4jL39+CBcvTpJt47k/7VMe75atdqt+puaWY8+Ne3L+YDd+95UQhVh/O0y1rSZVaMK84dNZmnZ92ZUn7UmK18vjf93vwycZ0pAsZR5S4+tAZDRwWB7yIeSdvkEZWdFf8fr8jC52fWO4dVw4vYOVEC3OdkzU940Q+s9RTlgzCFcQG9NL9/50UjwRBMKSUsI1cjsaCBLMdRMHcroUHgtmgX72i6PthB7PS5moG5fh4QzoA4KMNLHfz6fMsq0RJVZ1Url9TcrDzlNw99PHGdLyy8ihOFVYgOjRAtb8tJ86pfi9cwTJznC5m+5352Q7c/s1uaXl5jRnrj+QjJbNIykUNANPe26x7Po/9dhBL9uWiuFLtg9372VWKAVssqLNY8f76E6gUfKjrY/AV8xPrbWu2WDHs5TVInLfMRlD/ticHAJBdVIn1R/Pr1aXsS6yShblh/M3tseEoayiRYK4fe7LO47wm9uDfTH0brETjklFYgVzhfU8Q9UUadMxLFuZ/Us/izdXHvLLvhqBJZsloCmnldh0/Cg7A4T3bcIRzP6UcAFSZ5ZtKeR7F1e51f9cq3DSOnZLzKN/6hbp76KMNJyWR7Yg6CytXcWUd3vp5jTR/3fr1MHAc3t1TjT35tkLt4OkShFrtu3EMemE1WodwmD8yGAFGTsoGAgBrtuzCXcfqkF0mn0tVtWupzFJz6jBdmC46V8jKcugQggqPqNbbcroOeaVMvKxZb0KgwsJfUsI+Fu8s3YWNOWbc2icAYxL8VdsnC/+bQqqfkkrWiDqXf8aj8jhLqyMKZXMdpZWrD7NWViAhjMO8Adb/RP3lV7Lnt6ratZSQetR3u+aYhsvXvL67Gr1iDLi4o9poMmslM3x8NcV5EHt96zmjxIK2YQYE2OlZ/bfQUPego3p+eUcVRsf7YazmG1VcbUVUUOPZOTMyaoX/WTCZbHubPeUO4T4d5J/bIPujtHI+wGQyIbJlLKLO5GLC+PH13k91nQVYsxIAVKlNCstrANMaO1s5ZkOO7NNa1gC99e/skQdUWV4YjRmDE1C48wCASt31t5+xb/G08kBuBY/Ht5rxyOTuAA5Ky95KsR24JSAw0KWUL7k7sgAhVqh1q1ZA3hn07NULyf3UKfmyt2cCBw8BAIaPGI3IEPll83bqFqCkGKVcGIBitOnQGcljOqkPZGL/mkKqn9WpfwBVQKvoKPTxoDzO0up89c8WAECgf8OklXv894OIjwrCvROafsohT7FaeWDlcuSU8wgLC7Nbf+fKa/D6P8fw7LReCPI3+raQDUx6QTmwcQP8/APcv19WLgNQ/+erOabh8iVWK49ZK5fjUKEFr86+UL3QjbqvTz2fLanGrAVrcXVSAl6d0d+tbX2B2WKFhecR6Of8+cs5X4kEvZ5lD+9fLSaTCQm9klBZa7YZBG3WymU4dr4Wz9xwgTRve/o5zP1kOz6YOQgX923jdP8pmUXgOA6D2rdokPICQCp/Ajh+FO3at0dyco8G26+EF+qY0sr5gOKqOkSFBDhf0QH+OkF/AGDUWKxnDmuP8d1benQsPf7430jcnSynSbuoT2vcOa6T3fV/TcnBtZ9sh9niWQDYuYpazPv9oNP1XO3VtVjl8og+yKcKbH2ic4pkkV9jYcL+2SWHsHR/ruRwIPpke3ptvY3FRz7MooW5obJk/LgzC6//03S71BqSOqtrz8nCFUfw484s/H2g+fv9moWH9r+aVqopc+vXu5yv5CUKy5lB5ODpppm96NJFW9D9qZVO1/v7QC5Gv7Iem48X+qBUwKQ3N+DSRVuk39V1Fmw5oX/sw0JmKKUrpiOu/HAbpn+w1fNCKpBSwjpx4eN5HpuPFzqNU6qoMSO7yNY456kG8RYkmO1QXFmLqBB/5ys6wGhndECDZv6Ll/dB5jl9i667JCqCFAe2b4G5k7qidUQQAKB32wjMm+K8Vaj1qVZyUZ/WePNqtQXhttEdpemObuStVgrmrScKkThvGRLnLcNZ4fg1ZgsS5y3DN0IqOQDYlcGGx35Dx8/p443p0rTodvL1tkzM+VEOSBTT7IUHNb3OFZ7n8fOubFTXWSQfZnjRh5nneRiE7BiUJcN9zBbXRKMoMhuqo7q6ztJoPsRiFh/yYXYdq5XHuXLbHraGRgwSF1m6Pxd5pfUPct55qkhXzOhRY2b3RaCfe5LiXHkNVqWqu/Yraswui0JXOXzGNSG/N6sYAKTYGz28mSHi2SWpmPnZDt1lop5ozMaqFPSnKcLWE4U4pQjsX3bwDG74fAe+3+E4m9bsL3dhzKvrbeq0soHGnmhoSDDbobiyDlHBnglme2iFNMdxuH5Ye4/3O6ZrLEyPMBeS6QPjAQCBfkbcOKIDAHaTcxyHkZ1jEBpgdPvlNqJTDD68YTCm9msjCfORnWPw5NSe0jpT+rR2eX+FVVbsyy7GV1tO4XrFS+LHnVnIPFeBo2fLAADH7aS/W7wzC5e8twnrj+ajRJP+rtZsVeeQFh5I0cIsPp+ni6tQY24aD+eq1LN49LcDeHvNcVg51nXIWb1nYa61WCURRwOXuI/ZRdEofuDsxAC7TY+nV+IBTSYcb3PkbCn+2p8rCWVXz10PTwTH3qzzOFPSvILX3l13HINfXOPTDD0VNWbM+XGvKp2oElcCVa/+eBvGvLrepeOJ71B3vym3fr0bd36bgtJq+T0358e9uPrjbTbvdGcs3Z+LbSfVAe48z7sU1yOvz/47Cluq1Vg/j+eV4davdjXIAGNH8srsLvNGwO2SfafR5YnlDst+8xc7sWA5SxQgvsu0z/D1n+3A+NdN0u/soirhv+MG104hr3V5jTp9amVN0/gmayHBbIey6jqEB3lHMOsZnm8b0wmnFlyM+ybq+34mtLAdyrpLqzDV7zcEy++pBRfjzWsGSPNnj0rErJGJmC1Ygr+/bRgOPTfZJWtwzzYRGJoYDQBoE8Us1YF+Rvw1ZzTCA/1w17jOUuYKAHj4wu7SwCxa7hjbCVcnJUi/V2aYcfn7WzB/6WHVeu+sPY5xr5lw93d7HJZt3u8Hceh0KWZ/uQsvLlPvo9ZsxTnFR2F/TolquZXnUWexYtTCdbjwrY1uvZyr65jl+wOTPAjDgZximxR87lJUwbYvrqxVWJi9KJjNVrIwe4CzbsPqOgtO5JdLPSkGzVf4660ZNjnUnSF+qP7a3zBBMa4y5e1NuO/HvVLPjSdZZl74O63e4uKKD7ZirIsibn92MeYu3utQYNRZrF63/oquOOcrGv5ZvvLDrXj01/0280UBomdhTskswsAXVmOlTopQV8kvrZZ6AgGgQhA4gW766IuW3AqFYNotiCity1NlrRn7sosx6IXVuhk/5vy4F9d9ul0172heGRaukIPDd2UUged5mI7m459U2/O352qgvIe0Yu7pJYew9kg+UjLP627rDo4ak+5YmO09XzVmi+oYr648CrOVx/G8crvidsOxAqn3VuxVUz5SGTopY6Uyutitlleqfga1ArqpQIJZy4m1aJP7DypqLQgN9E63vfbDKcJxHB6Y1BUTerSyWdYqPFCa7tkmArNGJiJY8XL6e85otAoPkvajJCTAD/Mv7Y0w4Xw4jgPHcfjmlqEOy2k0cFhx/xj8fNcIvHfdQDx/WR9pWUSQPw4+NxljuzHf62B/Iy7p1wZGA4cLe8Xp7q932wi3AkJOu5EGqaxa/YDVmq0oKrdvRTFbeSm9Xea5SvR//h+XjyX6630nuIoUVdTi0kVbcMUHWxxt5hSxu9vfaIBFsjDX78WRW1yF/32fglkrK+wKhr1ZxbIPs48tzBU1ZiTOW4Zvt2eq5tearQ1m8bdaeZe7lO2RX1ot5ETPt1nmzMr6yK8HMOnNDdLARNrn/tm/UnH5++7dM55YdhsC8V6yuGklVt6DX2w5hV92Z+uu54r1uc5FV5grP9yKP/flIr2gHE/9eRBVtbb31TNLDmHwi2vcuuf09uOIWsFdwZ6LniekZJ7Hz7tzbBowh04zA4E2jia/rBp/7mWNre3pamusM/ZmnZcaF0NfXovhC9ZKy8pr2D3uroVZdOUoV7y/q4V5Yr2JDHtpLS5/fwuKKmpVYnfIS2vw+eZTNvvOLqrEqkPq8QWu+mgbftyZjVlf7sId36bYbCPefqtSz2LloTPSAGHKAcW0Yk6sY63l2V1O5Je7lPrPbOHx5B8HMfOz7XbXKdLpQSgsr0H3p1biq60Z0jzxlTRt0WaXehPEeCLxeeZ5HskKy7IWe1pHi7Zh585oxL6EBLOW1N/RIXMxKmvMCAnwPKL99av64+85o1XzHL04OY7DF7OGoFucbD2+cXgHdG0VLv3+/rZhmH9pbwT5s8v3wKRu6BMf6XbZWkUEYVSXGNW8/gnyfpTlnNa/rSS49Uh7YQoWXT8IANAmUraGb3gkWZp2JUK5vhRorES1FgtyHXTdWq28/YfSid+w+MEMDjDiWF4ZPha6/NJ1AhHdQXwp+xk56cGsr0vG1Hc3YflB9lGx11q/6YudkisGx3tuYXanq11sdHys6S6d/PZGKTinus7CsjJo2HqyUBWUU2u24qTOeqvT8jDm1fX4c+9pl8ul5YDQMzH7y11InLcM+YoXe52TD6QYvCM2zFz9eDiixuz+dSqrrnPpA7T1ZCGSXlwtCXw9RBFjL97RYuXx6cZ0G1GpratXVx7FdEUDM7+sGhe8uQEdH1+Oae9txg87snSvvZbqOgsWrEiT3LeUiI2LR387gO+2Z2Hj8QKbdcSBmFztHdp0vAA9n1mJPVmuWxPFOjNrKu1MSZXufVsfOj2xXPX71q9ZXn2tYJ7w+gabRqoeymd5+gdbYLHyuOKDrZj+4Vbd3gXRYOGOYFbm273grY2os1jx2aZ0qb60grlM8R7zF45Ta7aioKwGL/wt9zBuOl6A31JycPn7W/DWGttYF0f+ySK7Ms7jru/2SC4tyoZqpebeDhDquE5T3vIaM15fddTl3pRJb25AoR0jz9dbM/C4EEhvsfL4fkcWtpw4h593Z0uNIyV6gvk5oSdX+T509510SAg8rLVYkV1Uicd+O6C7nnj/ONu7KDHySqvRd/4qaX4FuWQ0EwLCYLRUo7LOgtAGEMwzBifYiFltlgw9lA/oc5f2RqLCfaKFEIwoClA7yThcQmutWXT9ICy9lwl8v3paRJSW+Tgh4BCAJPCVfH/bMPw9ZzQ6tXQ9WFAPbXdYrZnHkTP2/cGUFmYbLI79+8TtQgL8cOFbG1XBhp4gXgt/o0Gy+PL1tCieV7iYVDjo3hKP48iHuaSqzqUPe32sn1qNrQwceeTXA5jwxgaV2Bvy0hpc/+kO3PC57PM+7/cDmPjGBhvRkyMM+LPsoOvZKarrLFI0OgBUayyPaQph5syXUHx6aoQPplYw1YcaN1wZiipqceRsKfrO/wfDXlrrdP23Vh9DYXktUnPtC4rj+ez87VmYRyxYi5eWp9m6SFlsxc+erGJJfP2x57QUq3DwdAme+OMgrv6YWdB+3pWNJfv0Gz1fbc3AxxvSMfntjbrLATmQSxRzPM9LgyyFBrB3VXFlHVYeOoM3/lEP+b3zVJHK91hsQC1xoxEmnvuGowX4ZluGNH/EgnWY+MYGl/dTH7QCVq/x/P76E+j9zEpkF1Vi1pc7sWhvteq7sCerWLIsZ56rRH6ZrQtLbjGro7BAP6cN539SzyJx3jK8u/a4av7inVl4cVma9NuRxVYUqXrvths/34mHftmvcslTUh93IKUYrqjVtzBXafb79dYMLFp/At9uy0RJZZ1HLnvP/pUqTSufvUd/PYBLhAHFrvxwKya+YQIA1bl/LViUxdGBjQYO+wVXMK0UEZ/HgrIam1iB08VVWHeE9bRV1pjx9JJD+Hl3jmodsadGzw3tmSWHsELxLj6eVyatl3O+StVL7Oib1ZiQYNYSEAqjpRo8zyPEWy4ZCiFqb/hs8WMcEeQHg4HD7WM6YuH0vljz4DjJ5UJ8GWpdMNxB+9FPaBGMYKGh4Iqwd4Yy72ywxr8tIoBDj9bh6BMfia9m6buHfHzjYLf8a+dP6wWAvWx/2GnfkmK18vYDC8zyB4HneZs6Eh9m7fm4i8XK47mlqfjQdBKfbz6FV1YyXzt/IyefcwNYfvU+kmIXmCyU7X/kpn+wxaUP+1kH2VW0aK1HeojR8/kK/7YCxcc6cd4ypBeUY5ngIypapMUPk3idNh0vwOKd6mjtGrMFzyw5ZGOJufeHvbj43U2SSNf61pUqPnrOXAPEx0dsYCnPWXtP5ZyvxCO/7LdbL0fOluLVlUfsWpi1FtySyjpc/M4mTHl7EwAmUPNKq3HkrFoM8zyPrSdZ+ifxWb32k+12syuIVip7jQVRTH2/IwsbjhUgcd4ynC6usnte5bUsI4KeABd7IR797QDuX7wPS0/aCiBlV774sc8uqsT760/YrCtavRfvysaA51fjRH45QgPZORdV1OKu7/bgvXUnJMHH8zyu/ngbrvxQTs0l1tGxPPsNyJ93ZePeH/ZIwkw89wUrjuCZJakora5D4rxldrdvSOylNlXyw44sVNRacCyvDKajBdidZ7FxUTmruB+UDQixzrOKWEN38a5sdNZYu0WeW5qKxHnLdF0hANvsTGK9rT6ch5RMddYMsfcz7axza7EWe89QRY0ZP2reEyJKf2rxvWK2WPHqyiOSgC6qqMUHphOorrPgdHGV9K56eUUa+j//D/o/J7v9Ld6ZJQ0m4y72svOkZJ7HSaGXs6hCfm99uildFW+xJ6sYl72/BYnzltlk5yoXzmXIS2swYsE6ySUFAEYtXCdNl1abEaTTY/zE74fwzJJDNsGTPM/jm22ZuPt7FpdksfK44C25kasV59pGSVOh6eXWamwCwmDgLQhEXYNYmJ1hz09afCiemdYbAOBnNODaoepMGgGCYPbEN058kOZP64VurcPBcZwkxI0ejNj0/W3DsEdj9dUO2vDuhBDEhDHf7GCdug70M2By79YwuiiY/3lgLGrq2LpnS6qQV1qD0AAjKnQsyRaet/9QWmRR9O32TDyzJBV7nr4AP+/OxpdbTuGe8V0AQDfqXezOthcwejCnBI/9dgBvXTMApdV1+HJLhs06fgaFhbkBBfOBnGK0Cg9C68ggbD3J3AVccck46aKricoHjueB8jwgnGVNsVqZr9v9E7viysEJqBauk70AFmVDJa+0WtXDoiQ1t1T6ANbUWTHhjQ3o1DIU6x5KRrFgZa+us2Le7wdVz8+yA2fwzbZM1NRZ8cqMftL8NWnM5zG9oALd4sJt7mHli91Vi7EomJUCWytwH/xpP3ZmFGHG4AQM66R2kwKAqz7chrIas24u59WH83D7N7uxcu4Y9GgdAauV1/XJH75gLXgeOPz8ZPA8sDvzPM6WVOGx3w7ivesGqlymtqefQ882EfhldzaeuLinzb5c4ZONzN1mb9Z5DGgXpbvO/L9S8fue07ikn/OBGH47bmuhUwrtWosV61PzpY+yFvE9sEFIv3Ysr0x6/4oWZ4C5d7UKD5LWzy6qwoTXTegQE4K+Qm/hCaHHpcbM8uZyHIftJ8/h8Yt74rmlqaioteDvA2eQ8tQkG0upNod8dZ3F7QFtCstr8PSfh5yuFxbk59SPX3Q9VDZG+85X3z/KxrCyAVtazcYrOH1efi60banbvt6FNWm2MQBaPjSp3bNE0X77N7tt1q0xW/HQz/vx254cm2XO0HPN+TUlBwtXOGqQyidVUcMC595dexwfKMr88YZ0nC2thsXCq9Ke6r3itOMUuBNEW6ZjAPljr7oeihQBpp1ahiFPp1dAj5LKOkQovl32sqysO5KPDooUtiLi9bhfSF5QY7ai77Or8NL0vurjaKztP+5UxzQ0VZeMJimYG3No7PicM+gKIATVyEo/DlNNhleP58ebdc+xooq9oE4eOwJTma21BAAKC4VBPNLTYeL1g2iccV4QAOb8dNTWGWHKBs4LQ3dbzXUe1X9fI2AynUarEA75lTz27EnB+ZNGdG9hQJAfpxq2stps+8K4ONEIk8nkUDDPHxGE+dtYPWSl7sbZCraf9SnMWhsfyuOYTs9c2pGjyAvSbxBs22xCTRALZvxqG6uf3/7ZhIU72HGeWcK6xzJ0cmdPeGU1Cqp4u0PQLkuvxeEzdXjl960Y0Ub/8Xtn7XE8G1UMAKgoL9O9Blaexx/H6zAmwQ+tQgwor+Uxd30lbusXiOGa/W7dmYLSdD/MWlmBAAPwyYWh+P0ge4GKlmyLzrU2W3nVx2/NuvUuu+mk/fQseh55BymDXkVZRHeU1/LIKqrEQ7/sR0zZCRw/z16IZ0qq8fPydWgVoraE/bhsvSSY1+/Yi6os/brKPC53/S/fwIaKTy+ogMlkwtFT6o+E8vwOZrMXdu6ZMzCZbHO+XvLeZoxoa8TRIvW9tz/tJExW9qxlllpwt/EvbLT2Q3l5B2n/56utKKnhUVvLjlFaye6h1CNHYapi7jtVivvdZDIhI5/dS2kH96EqiwmYc1VWrM0yY3pXf+kjmaUQP+LxvjrAzvOXNTswJsEfNXYsUOKHu9czqzCijRHbzljQryU71ta9qSgtlj9Sx46kYdUOK5afqsOAgDy93cFkMsFs5VFWyyOz1IoDBeqP3Ol81tjYtS8Vhaf0LZ0b01g3cfpp/WOsW68fiCSe+4cmWXz+75M1WJdt3zK1PzUNsWUncP4ce47v/3EPhHYbtu+VxeeSNVvQtYURBZXytU8vrEB6YQUMVeycispr8P3SdViXXYe1WfIxu3FnVA30t37baGNd37JTbWF95Ku16B1jRJARiA83wN/AMZexOiAiUP95++5wDdZkObfCpWSetxvMtf5QFpIjCmCuZvfnjgNHdNcDgE0pssDbnCL7rX60ZCOGt/HDWY0of/mHNYgJ4tAlyoA1afULvL3yw224tY/+AFOHDh/Fb0ecp8bTo1jhribeRw87sPaaTCZpSHgA2L73IL5euw/bzuhb4Y+etA1AFPn7n/VYlWHb8LvzY/2gc713/8ZjtoL/gZ/kTClXvrUSaefksvlVncfqDa4NYLJu8zZ0iNBvvLUM5lBQJb9bHI0dkZGRAQDYfSQTZTUWPPnrXmnZ7PdX2dlK5sDho2hb5bmrIw2N7W32ngZOAKFcDQb164NkF4agrBfCEJAto8KRnDzGZrHf5tVATS0G9e+LZDtZJ37J3QOcPYOuXXSGeXaR4L0bgbIyjBw2BL3aRgBgmQFgWotWUWFITh5Xr/0q+bp7KRasOIJrLxqM4AAjkpMBbHsf20paYkTyJdJ6//Qtw76sYjz62wE8NbUnbhPOybDyN9X+Xr+qPx7+ZT+uG9oesy7ri/nbWF1OmjCeBQpt2YCVwktpcNd4HNtp25go9o/FX0dsXzwAsKs8AiuPGrHsvtFIX8m6F1/a4Zq7gfhC0btveZ7HqqKDALKxLsuMK0f3A3boW8NOl1kAfyC33Irw1r1QLuRV/fSmJPRvF4nSqjosXbURWXWhWHLPKOzKKIJ53TZ8kVqHeddNku4vAOjcvTe7j1cuQ60VGDduHBbs3YSQgEpwwjfXz2hAcnIyzlfUYu5P+/DajH548s9DWH1YFjJDR45WWR+054aVclds10BmwR4cHwQMTmbXZR1z6+iTNAJ+Z8qAHcwP+VxIB1yd3Jl1Ya9kAX9PbJYtVq3bd0af/m0Fn3R1Uv8B/QcAu9m8hTvla5ScnIy3Dm0GIAfEjB4zFn5GA1JzS3D0eBqAc0iIb4vkZIX1Q1Fvh4o4gDcCkIVJTOu2iO6SgD5tI3HgdAlu3jMdj2ExTGFLpGve7ckVqLVY0TI8EKitQY3VgFUBD+Oc33UYmfwUACEoZ81qqazl61YCsKDvgIF4Z+0JjO0ai8Vp2TiRX4Xlp/R9H8Xj/Xl2L5Cbiz69eyJ5YALLsbt6te42IqVcKIBS1BpDAJShX6/u2LrhJAD2EUzo1A3HjuQDyMOQ4SOAtbY+0CNHj8XDv+y3m+KO9w8CUImvD9fiq9lDgG22I9EVCs+LX3A4lNdKJLBdX2ivOQCMGTuOCZSVcjexI7EMAPEdOiF5XGf8lb8POHtaEssAEBufCKQyq2Dbzr2Q3K8NDuaUABs3q/ZxtMwfgBkWHnhyi21Q8UMb1PMiW7cD0tSW07jE7sAuWeAsPVmHpSfZNb52SDssvLIf7v1hD/4+cAbDO0Vj8R0jbI7z25m9QJZ7qQU7xYYiXREjkFlqxfaq1jhVysoXFtsWOKF2Y7smqR1+2p2NiLh2wGG2XsuEjkAq8/U2RicgObkHrFvWAJAbqJ8caJhUfZ8f0hfFCYmdgCP2Bb6rfHYiWBhm2v7ItMnJyTiRXwZsZC4EX6U6FupdOiUC6cd1l927Tl9krs7Uv3eTk5OZpX2l81EKRVLymFiODQtEoJ8BUS2j0ad/e2DbNqfbdu3VHyO7xKregyJKsSwS5G9AWKCfTbDiOS4SQCFCI1sA+YWA0Q+oY+e43slzCgBt2iUiOVk/xa47NPTQ2E1SMDcqgSw7RSiqEOQDl4y3rtFPsyZaJfQC5UREh3qPXDKsYiozeR8twwPx+EU9XBqv3hV6tolQp7ArPQOsegJ9QzsAU66WZneLC0fXVmHo3CoUg9q3kOb/csdQ4Bs2ff2w9pgxOAEzBsv5nJVoXTs6xbLrGWA0qLpGHeWxXZKSiZN8PLZqkuC7w5J9pzG5d2upq7WwvAZJL65RrXPPD/bzTBskqzqP2V/tkgaKuf2b3YgK8cfnNycBYP50W08USkEhtWarjT9YWY1ZZeX6cWc2juaVoX+7KLw9qh/wJwv+qzVbcds3u5GSeR4LVxxRiWWA+YDaE8zagJefU3JxvR/wxO/7EXA6VfIVBWBTD8WVtTiWV4bfUvS7V+cvPYyFK49IbhxK7GWqKK6sxf6cEgT4GeSoe4sVfkYDbvp8pxQUo7zvtcFKgX4Gm8Chb7Zl4pttmXj/+kGIC9evC/E+E7u4a81WdA/KAY6/hgd/ugQPT+5uY3UU3Tau/WQ76iw8Nh4rcJiVBmAuBb/tyUGdYIkX3wfaQEU9xIBI0dpWVWtRWYwe//0gOguBuPb8j0uq6hw+R8ogHr2ofSUHcmzFMgC7o569s+YY3l2n3/Nmj8oa+5kclP6zoquVMkBPJOe866kuAeD99baDZmy2M/QxwNxknl96WHK92Z7ecCPe6bn/KQf10MueERXK7vGzJeo4ggCjASGBRukal1c7F0ENiRjvoYfymRe5dXRH3dRzm08UOrweAPNJ76rIWuUMV/zG3UF0gXn1yn548s+DLqdVLK6sRWJsKKpqLS7nNb75y53YOm+i3eWTesYhvbBcyghVXWdFoJ9tecQ63SRkM3J1VNSx3Vpi56lz5MPcbAhgH4lQVLudU7I+9GgdoTtfzEXpaPAUaZQ2D4LzokMDcLKgQuVDx3Ec7hzXud77dIqQKs3PbNva5jgOgztEq+b1aSO/rJ6a6tifskWIugsvTBgC+/KBbREbFogJPVphxkeOW9qBYOXbn1PscD1H3L94H2aNTMT8S5kP+nI3MjUAsm+x+F/p/lFcWScFoxk5TjVKIsCi75WUVtVJ0c0AsHAFi0Q/fb5SCiqsrq3DgKdWSOv8rpMFoKrWglqzFaaj+ThTUo2Zw9rDdLQASYktbPw0rUI8sQFWVd5PPX5NycHHG9MdNg71xDJgP4BHjBzvHheOg0LapcpaCzIKK1UimwMw8Pl/8My0XjZZVay8vv8hAJyvrEWs7VhCTjME/L73NNILK+wOWKL8GDr7yF33yXacq6jF8E7seREbzq5E44vriN3IxTrbiO4f9up+xAJbq7MSZYCkM8HsLu6KZQAoF/wi9QTND4ohfI/nl+PGz3dIH/v6EORvsFtvfzjIsGG18vhii1rYXfnhVnx2UxJ2ZRThnh/2YGKPuHrlKteLE3FGiD97fyqDQPNKqxEe5IeQQCOyiipRXWexaTC7Q6eWoR6n5FTtLzYUE3u2wvvrT+KBSd1w/yRmqdQTzK7w6G8HcMPw9vAzcAgP8lNlINJDL82bJ4gpDNtEBeGG4R104170MFt5hAQYUV5jxqwvbXt39Kiz8Bjy0hq7yx+/uAcig/1VRg9X3jeu3h/3T+yCO74pabJZMkgwa/ETRrPj6twOxGhIaiXBbP8SiTrZ4IGF+f3rB2F1Wh7aRds68HsNIc8x76rQVwRXhQTY1sfmx8YrLPLqayZWDc8Dj07p4dKgA/5CF/yrK486WRNoGxlkE90tcqqwAtV1Fjz0y34pk4OrcNJ//Y+uGGRz1MFQqiKvrDyiEmKlgjXo3WsHAqVMJLsyNPb1n25XneupwgpJDGvzeSsFszNEK649geGIbSf1RY1oCYwNkxtQs77ciUOn1VH1a9Lycb6yTuUDKOJI5JVVm3Hv9/shfoZmrazQ7cbUw93R/ewh1ptohRSz2oiZMdxBbyAR8Z5ZYaex5yyNoHJ5zvkqGDjbgDA9AowGXDagLZYdPGM/9WM9EIWHs3IrxXN9+XDmYMz+it0dgX4Gl/Nnp+uMmpaSeR4DX5BdbFamnkV0qL5vryPqM66A+P5U5i4+KwrmAD+YjhZg2MvOUxba47qh7TCqSyzu/WGv85Xt8NTUnqp0dG0igyQjkl5Q8aLrB7p9vO+2ZyE2LBCxYQFOBfMKD0ZQ1JKSeR73L94HgI1v8PTUXthwtED3PtEyolMMePBOLejDOkZjxynXejI6t2TGq/euG4g5P7I6/Gr2EGxLP4ePNzj3OR6S2AK7MthzOH1QPN68eoAqY0ygnxE3jlCPO9GUoLRyWowsa0MA9NOm+JpwB92ykkuGBxbmVhFBmDmsQ723rxeSYHaxfnnHH82EFiHo1FK/y0xMuSe+Ng0u3PEBcL11q5e9YRB3DO24PBw9W4YeT690WywDslDmwFxktLy0PM1mnj3sdeEN7xQDSCP9Of+gaxsGSsvxlhNq9xWL8GpxNcNJffl6m+NBGJTiSCuWAfdGk1TyysojqKp2zU/TWd2KHx5PcTb6nqN29RkHKQGXuDkM9/XD2tvM+3PfabSLDsH6h5OR1KGFzlYyy+4bjdeu6o/3rhvo1nGdsS+7GO+vP+FQEPdo7fxDHeBCl3uXVvL7SNmIf2BSN6fbukJRRS1GdIrBlnkTpHn3TezqsAfOkWC215vaPiYEPVqHq1yT8ktrEB7kj0ChR8iRhXGcMBKsPZK7t7Lr5qWkT7x+T+ynNyXhIo3rYGSwvyTsEmNtDUEjO8fiuqG29ygAzJ1k32+2sLxG911sj4k9WmHR9Z7dw2JKw9iwAHRuGQqDgZNijZTER6m7u24f0xHf3zYMIQF+ql6yTY+Ox6q5Y1Xrhgf549SCi90ql7IMyd1b4fGLerqUVUx5r0QGs+uudCkN8jdg7qRumOpC1pzGgASzFiO7iP4wO+wi9hWuuWT4piwNhjTcs4v1W8/hoUMDjFIdiZYGPxcUsz9n/3jPCnmeRVpHsh6Jcd1aYu6krpjUsxV+D5yPTYEPqHKXuotBMWT1mgfG4Ze7bAN/BjsRHk6PYeAklwxXLMzuwAs17+5+tf741yS186gcVwyM92h7R7jaGPBzst5SFwVpB+4sOnD2rVdHz5bppjoUcedjr+SEMKDIWCfiR6RvfKTNx7O4sg5nS6rRMTZUembsIboOxIa5Vt673HAfe22V416jRyZ3x9vXDHC4jiuDLCktwEpfdH+/hntZBwcYVULpwQu6qe53bUYbjuPw8IXdsHLuGNUIrAA772n920q/75vYFZ/elIRL+7e1Edqni6tw+EypS7nUn5raExf1aY1LFftWcmGvOLupVZWM6cruvcm91QHwLUL8bRowYUF+uGxAW/x0x3BcPsD2+TcaOLSoysQn/m8gEOpepPioYNydLN9PGQunStPPXNILr1/VH7eN7mgTQ7P4juHY9Oh41bxLB9jWnSOmOogZevqSXpLxp3uculE3f1ovbH5svJTKDQCuHJwAg4FDN826gf4Gm3RwBo7dGyM7xyAuQn7mkru3xK93jcC8i3rYlKe90COtTBcZFeK41+Ozm5LwuCJFpfhcKAd2q8/gV76k8RVhU8NPtDDXIbARXTJEHIl28QFqiCF3fYowkh7PuSqY3euWXf3AWPRoHY4vZg2RB3WRRh5Srxuh4/ISYrTgznH6WUe0LfkY4cPob+Qwd1I39G4bqbeZxOI7huOhC5xbmUSheUHPVogM8Ud3HctXfbpYP5g5SD2DFy3ZDfOieuMqFsRqceKSEeRvwHe3DrOZH6Ppar55ZKI0/fUtQ3H5AP0Pr5JebWTrR4eYEHx842Dp98jOtjmOlXTS6TEY2D4KgK2Vyw+O70vxXjM6Wc9VNgQ+iA2BD9oVbO+tO4GhOiP6iXWqdVdyVZCKtBIE94N27t9bRnXEZzcl4doh7ZCUGG2z/HXh3mireYYMHHDkhSnSb3FAIFfdxMRrOqJTDB6Z3F3KlXyP8U/cGcJSqrkaj8JxwOUD4/HznbYNVIAJwC9mDZF+L9DklxVRHq9nmwjMGpmIeRf1UIm7Q89Nttlu1shEjO3WEt/eqj+QkxK9gYJiFNf0wPwLsf7hZOn3dUPa494JXdGjdQTatVDXbWigH24eIfc0tgwLwAW94sBx+m+G28Z0tBm4qY3QEFI+J13jwvHhDYPxyOTu6Bgbio6a54vjOMntMC4iEMndbRtl0aEBGJLIjANaF52okABpPAIRs4UHx3EY1ilGd1AvfyOHy3LfwoXGFEyLVPs1t4sOwZiusTpnDFyVlIC4iCA8JQhnJf0Tomzu1/E9WiHYX/6+bHt8gkMLtiMX0FbhciNT+/yEBvqB4zh14L5wH2gbKsH+RptnQby+P9w+HDuemISf7hgOABjaMRpJidG4a1xndG4ZikHCexBgcQD7n70QXyuC+ZViW48x3WIxvnsrqYErNiq/nDUEN43ogAA/g8192dQgwazFyC4ic8lovOoRh792NIpfc9PJEsLAIC4LZicuGVq6xoVj5dyxGNYpBv0S2MdzkpCaT1mf1w5ph1/vHmmzvcFSi06xodj/zIU2olTrQx0WyK6TaLl2lrFkeKcYzJnYVWW50OPmEe2E/bL9hQf6Yeaw9vj6lqG4dXRHVs563AA2HwNBMCutpVdprCcr546RxNKNwzvApPgIaxG70mTBLH9uo0Lk3pJp/dpitM6HSeubKb6EO8SEYFy3lpJlQ4n2A/D5rCRpWvsRmtKntd2yA8DPGkv+l7OHSIMKXNRHbQHSszArL/+rXdNwJPBmBMO568aknvqpI0VRe4EiteTC6f0QExog3QfOEOuU59XX/4//2d77SrSNdfGdZDRwmNCjlc36oYFGTBJElvJai4gWzP8ld8bUvm0wS2gMdYwNVV0n8RlrobMPLVcNTpBG1AsJMOKe8V2k7D6P+P+Mx62f4pHJ3fH+9eqG4tvXDMAto2zrT3Rf0osd2fP0BbhtTCeVYBnfXa6H64e1x0c3DMJvd4+An0IYP39Zb8y/tDfuGtdZCjiMCvFHWKAfTA8nq+7pJ6f2xDe3DJUsqo4QhynX8sJlvfHhzEEICfBDjMKHX/m8GQyc6vsR6GdAUmI0xguCNS5CFmhKo1/Gwqk4teBiPH5RT9U9CQDf3TYMt43uiD//NwpfzErCX/eOkpaJ7jhto2x7F0RLY52Fx/vXD1KJfAC4Zkg76Z6oqrWoRGCLEH+b59/eKJUifgYDrEIPWESQUTjfQAT7G9EnPtJu48pR1hrts/LznSMQEeQvGVieuaQX2kQG486xndE6Qr+HRdxHj9bheOYSdU9mK4UYbRGqfi6mD2Lva2Uwqxj83kojYoP8jU5HBh7WKQb/PDBW9XysfSgZv/9vlGq9yGB/ya0CAAa0U/d4ai3TYmPx+qHtcc/4zpIraHRoAJ6/rA+OvXiRS70NjQkJZi2CYPbnzI0a9Ldy7lgsuWeUw3W07gbNBi9bmJV0iwvHkRem6KbIW3hlP5suKwDwhwXJ3Zll99D8yZKFEQD8NKMfRgTL1hGg/in+kru3xDvXDkCvNhG4fEBb2dIqnDvHcXjpir4Y162l4HvMxJkji+lzl/ZG9xYGlV+mzUufl10/RF5TWE96t41Aj9YRkvvHvIt6IDrMftdbkL8RD13QTXLJUIrKixRi1V7EfqC/ES9f0RftotmHJiYsEE9N7Ylvb2HW6B5tbP331j40TvWBUb50QwL8pICrqf3aOLRgfHzjYMSGBeJXhWju0jIMA4UUhz3byPXYMjwQnaJtLSptImUxdVHuIgRxdVgw2bk/nj3x2yEmBL/cNULVXT60YzRSnr5ANc8RkmAGj69nJWHGgFaYPigeCS1s03woeyCGdVTfW+LHP+d8Fb6YNQRXJ6kbVsr3pfJDCgA3DJd9RqNCAvD+zEF4eHJ3AMD9gl/vpJ6thP2w9wLHcbhvQhe75/XLXSPw8vS+ksVdbKzxGpvoPeO7YFKvOKmnIbl7S1w+MB7PTOuFH28fjpVzx+DhC1kZRLcVUTArY0j0Au0igv3wwKRuWHrvaLx8RV9M6dPGJsuPUmCL7w/RCp4YG4qVc+U8/ErRI57XTQrLr7JXRmwwX9ArTvVs3TgiUfLrdeRvvfZBOce++N4SraTKmBDxjSbeG6LgumNsJ/zxv5FYcf8YPH5RD3RuGYanLukFP6MBE3rEoV9ClM0x9QJ7RUt1ncWK0EA/lRV615OTMHdSV8lwUVlrwdvXDMB0wfUkMljtkhEV4o/bx+r3DgaiFvP8foC/pRJWXuydZcsu7NUaaS9MQVign2rES0BOPenYeKVeJlrb28eE4MgLU3CL8HwHBxjxxz36DdXBHVpg9qhEfHJjkrS+iNKdSvls3Tmuk3TtxHsnyN8gJQKI1rhJ6GWI0ZMP3eLC3dY//xvfGS9f0VeKPdD6r4t11D4mBI9M7mHTM9AcaNpyvjEQXDICUeeTtHL2iIsIUrXy9TBoAtqaDRbRb8xVC7NngWOuPPjKwKxArk6y7BkMnPSS+eiGwRjcoQWmD4yX0q5d2Ls1/AwcZgxmFuH6CuZ+8ZG4bEA8LhN97tYJkcM6/ttiA8lo4PDtrcNg5Xl0fZJlu0h7fgp6PsOS3NdZrHh8WDDGjRuDzzefwnC9LkpJMAO7n5qESiH11ryLemDhiiPSaHuvX9UfD1zQDaGBfrq5j0d0isHFgmCZM7Erft8TClTILhlxEYG4sFdraQhUe7UUGxqA64e1x5WD46Ucr7cpBuW5oFccPu60FYPbhyPJxLrDW4UHYfaoRDz/Nxv1L1TRCxDsb5R8LQONBnRrHY5YlCCKK8MJXi34JvdmokPpThAe5IcnLu6pcg0BgG3zJoArzgTeU5d/Ys9W6N02Ao/9dhBGowEwA1N6xgAb7JywgPIj6G/kJEvnI5O7Y0hitG5aQleCzwDZ2tSjdQQMv9+G14/8Dsxnqa9MDycj+XWTtK7ynfP0JT2x4U02uM+mR8dL3eFi16w2WEvZRR+lEcw3jUhUF6o4C2FR7VU9LYuuH4RzFbXg8g8DS+4Fbv4LD17YHRuOFWC/kKe5T3yEFLw5RLhOXVqF49Bzk53mrRaFj1IgjBAanF1bhWNUl1ipcSTeQ+FBfrpDEUeF+KO4sg5BfkYpbZkeIzTDnIvvEmXvkL3g8tdm9Mfba44hJpS9i24f01FlJRYbgp/elKS7PWDrx6xE+a4Se8ieuLgnEqx5qqDF16/qj/fWHbfpBeE4TtGY1A/K06JsdIh+7lEh/rh+WHtcrROvIApFpcXUYODw+lX9Mf+y3ipLPgDse+ZCu8e+wbgGd/n9DWx5W/pmihbmVuFKC65aZG54ZDwKy217iVpHBNnEqcRFBCKvtEb1HGm/P20ig7H03tGYtmgzLugVJ+W79zMa8Oy03jbH+fjGwapnTWyAXZ2UgMcvkn2C/QW9ouwFNRg4/HTHcJitPBs8SofOrZz75LtCbFigFPB7UZ/W8DMacOPwDrr5vZsrJJi1CEF/QZzZ5mFsaojxa83XwuxiC9YDC7OrKF0HWgSqPybihzY00Ah/owFvXjNAEsyBfgbcqBAD7mQsEQdTGdUlBhf00rgKiI0EHXeUwR1awGjgcPsYZl0wKuSnsmtwdNdYnD2SBY7jVKJT7ziBRiA8LBAQvpMTe7TCwhVHpCCM0EA/yRqvtVLcMbYTnlAEcwCQbk4jrDj8/GQYOA5B/kY8cXEPvLz8iCTcf7htmCqP9Csz+rHy+BkRGGZ7f/gbDZicuwjIBYAfAMDGUmE0cHjjqv74dFM6WoT6o6vw8R/TLRZtI4NgCnwAYVw1Eqt/wD8PjEWn2FC7GSZCA/3gbzSgY2yoNBAJwD5u2mvz3nUDkdy9JcIC/dA+OhSBf/izwc/qbLuIpw+Kx+975Hy8IQFGrHtoHNpEBmPgC/9IglnuTbC9r0RLaueWoTipyWP79jUDMPenfQBYL8HM4e1ZgM7C31XrKbO8TOjRSuUGIYqohBbBkuVx79MXSO4WIRqBqnTDiBAE8/juLfHJTUnqe+b4GuD7K4GrvwF6XSbNDvIXgth+eB7I3QOc2gT0uFhyCbitbwDmzhiBKW9vxNCOaiuuUixHBev3gIgB1Hq+lkaDLP7Ec3lgUjdM7dca58prbQIVl9wzCjtPFTlM6Zn63GSbZ0Vs5CjfL/b2MbhDC3x76zC8vYaNQKj1OXfFJcdRA14ZpCWuF+RvRLcW6ueuS6swvHNtw2QsefXKfljdMw8hgUb0i48CwIT3y1eofcE/umGwqmHeLjoE718/SEpfaTBwLmXXUCLFHJhrJJeMkZ2iETuwryqIT2uVbRsVbOM3DAB/3jMKwzW5yFfcPxZHzpQ6tZ72TYjErX0CcP+M/nhlxRF8vyMLxZX6aSyVjReACe6/7h1l0zvqL15D8dilrJE9rBMzZIzqIje2Zo9KxJq0PDx/WR+M6qzvs+0JonZ64fI+JJj/1Qhp5YKN3k2H1TDYWkyaBe66ZLjpw1wfVII5SP2REYWD3mhFNmJN8336695RuHTRFt1jLp0zGqsPn8W9E3QsVKJg1mksxIYF4uTLtmmA/AwcOI5TWe3O6gyIFeBnkC1PwnECNJdCFAjK7mA9Trx0kW7DkjOwV4uB41UWD6MmS0lnzcfAnUC0YFQjDPr+ilcOTsCVwkewf7so7HxyohQ4E8bJ24gfHXsvQknw1FUjMls9IIzW+q90kRjROQYQ7+9atWVn++MTERcRiLvGdcaMt5ajC5eL4ICJklVK73nWEz6i5XFSrzicFHKgXje0PbrFhakE5F3JnW27YnneJgjii1lDkF0kD5Ajil5lppIWOhZCEaWVXDwXs5W3PfaZfex/7l6VYJYQG9LCvSk2DBLC2DC8mx+bYLuNgmuGtMPHG08CmlS1SR1a4NUr+7mUsorjOMly3MXWXRsdYkLRIcaxZU7PH1OsC3f6oW4Z3RElVXWSlT4s0A/lNWangzgBjt0IIoP98diUHnhl5REbUeYtWoQG4OohzjPf6MUaeJpqjFdMiS4ZfpxtGkRXB3jRy/YSHRrAhpZ2gTEJ/ogI8kdy91b4fkcWuthJjap1bwKg6+4i3ltSsoI3BR/i+bYDqTw7rbeuNZtwDAlmLYIPc4ixaY40o0TSPI1bDPfxoQ+zqyizOUQHqK+9KC71XBG03eJ+nCaKW2Ht0vpAdm8drpv9AoCsmlx0R1n70DjbQKUNryLZ9BIw5hxglJftV3ZbSpZs9XHCg/wdBiZ2bRUmdbvpIX6op4ceUM0X/YAHdWgBpP2NoDg5yvpmJ+Jcy58hL6G79SSAmQDU3fValFHm9WL1MwjY+TEGcs9hLy80cBSC+clhOvsX7+86WYT2T4iUPrTd4sLxTcBCDDCko9T/fw4Pr1fNrSODsOnR8WgbFSwNGiBmbRAHmggTLOQ2WM1Sb9o71w6Q8tYqhXl0aAAOzr/QrqvD1H5t8N66EzAaOJRU1akEouiH6ii/s13ZKGW2Yc+SOG6Rq503RgOHG4d3ADQJQziOc0mseRM/F/xhtUQE+avEzdbHJ0iZIDzlrnGdcO2QdjZuCE2StKVA4mgg2Dad5p3jOmFgO9v5uvC8ZGFuCp3IF/SKw84nJqKVjgtmOy4P4YF2BPzWRazxeeVnAGSXDH+t1aYxsJiBXZ8CSbc0dkkalCYpmDmOmwZgWnx8PEwmk8+PPxYc/K01Xj32dwOOoGfubzCtD5Y/rG5yJpd1ER89egym6voN+9kYxJ3dj54ALBbepToOKzsB0UuvIa+Jcl/KoLfA6iLVsgtaWnGmwADrmTSYCtQm262bN6q6yzMz1NbEXTu3o0+sER0jDZiS6Ody+TtlZaI9gOLz57DPjXM+rJges/E1GAFsNK2F1ahvuU3IPoEuAKxWCza6cZwnBwHAGZhM+oOy1FaxemhXc8LmnF8bG4zYs9uAbbegLqo/gMcAAOMjC12qn2ThPxPL8nWc25uHpVeI032I2z8zIsjpuuLyvid2IwbAY/6LsST0aphMoQgrOyndl238q2z2NbymFkEADu/fBTEk8YE+ZtV6yQYmdHdvXg+DP/tgWhUjW4rrphaYMUEzT+Sk8L99uEFaViP0hpTXaI4n/N+0fg0sfqybORJAYTFwcNtOZATLwsyVa7FofCDmb61CSRWQdnAfqrOMquOPaVlrs5/2menoBCAzKwundI7R69x5tAKQeuggCvIjUVbOBpepqrStY3ucypC7txvjG2KPg2fNmGzYiZZ5kTCZbH1KXSlr6zOrURQ9GLWBzC3FYKlFeNlxlEQ5thi6Wg/l5eXO1+V59Ex7C2faXIDiFvqp9RqSwOoCjNh+G4paDMCB/s/ZLB8RDKAwDyaTTpeaQGSgAbAC2dnZCBZy7ZeeOaV7rjf0DEBMMOdyndXnHtPW82HN8se7nsad2Y/gxOJDyGl3qc32yaYn2bFjbgAAnD3PGpgFxRUwmUzSs65XtsDqQgTWFKI00jbHsjPic5aiPKwjSqL62F2nTe4qdD/2AU4dOQhgqt1yeBuX7mU3aJKCmef5pQCWJiUl3Z6cnOzz49eY/BHmz8Grx15wE1BTguThA3VbzK6wruQQkJ2Jrl27IlkTlNSk2ZMNHAEMfv6u1XFOOJDCJhvkmghDGEv7WrlM5ZKREBWAYZrjXKs1tgr7mDBenay+YMthIINN3zyiA66Y3BtXXlSPFn/NaiAbiAoPq/85b2LHHTtqOBBkJz/0lv3ASeaS0pD3+z8Hf4GYTU13v+czgG1ADC8Pyery8U3qn8ljRjML+voFwJm9wMyfXdr+lssm2l1lY99KlFbXyUn1cxYBRcBwQxqGVz0HJJcAp+X7MixM5zrtCwZqgF6dOwDCwIw26whlmTB6mPQeMKxZAVitmDmsPZKTmRjxO14IpNrZh1De6LAAhJmeBUJigOQHMS1/L6b2bY1kZTo84XhjRg4DQhR+wAVHgfdfQrce0wHMsHscPS6uPoIPTCcxdcIoZsk31wKV55Ax0U4X+oadwCmgQ4dEdNA7RuE3QAHQu0d3oF8yRhcdwI87s9EyMoSVqaYcMPgBQgMDObuBE2uA5HnSLk5vPSE9h43xDbFH5cEzePjIlUAl2D0kon0n2aM0F3jzMiBhKHCbMFz20vuBfV8B96YAsTpZRVzdt4DJZHK+bm0lsGED4gq3AM+cs79eTRnrIQyOcunYdik8AWwHormyel/Pkcb9wFqgXbt24MMswBFg1ICeQB/b/bl8BG3dVp0HzqUDCYPtbyPgrJ6TWxYD2UCXgHx00VvPBNWx+5TX4OUda1BaJ8zTLFfxQivAUqPrruGU+YIblaNttx4EjgEdW0fhm5FDUWO2IlmThlAFzwNrnwf6XQO0cl/E28Ole9kNmkCHRNPDDD8EG7zskiFF7NXfV1qUYc036K/xfJiHKjIhXNy3tcolI8LgIG/usVXA55PtDnfsrxik4rnL+jgMCnKI5JLRAOducXAvS64YDXsPdWjBLNpWYxBQVwWYtXUqdE03xL1bK+Sj3bAQOL7K9e0cuPq0jwlRjUCl6w/gzFVIvL8rC52XxWwb8DN7VKI07WyAyvYxIcx1YtsiYC2zwL133UBM6WNHtGqvh+A2Yiw6rr9+fhqQ+qfuoocu7I7tj8s+4vjrXuY/qXNOLiHWm3Bvzr+0N/6eMxoxwcL8BfHA+/LgIfhsImBaoHqXBnH2h2tuTIJL011bsaYcKDimPx8AquSGJgqE0Qsr8j0rnDtYhPvH2Sisb/QAXnHP1Uof4T3hgRuK5D7HK9xZ6jmKrF2+uxL4bIJH33UJ8d3s4ncyJjQAQztGY5ErQ8qL16+6BJgfCez6vJ6FtINUZh5ju7W0ydltQ+U5YPObwLdXNGw5GhgSzDrUwh9BDoZHbhCkwJb6CyLxoW9uetltn+QGfqkdfXEKfrhdzmf6/vWD8PbV/aTfIXyl3maMX28Bsrcj1E6wmR8aqqzCRW0I/22LA+Fix4e5XvA8UMsirbq3ZN39Bt4CvNQaeFczwqAweE2DHLe2wvk6ZXnsw7DnW3mejYh3hJ5gVlxrvYdQ/Gise9H57s2295MyQNIm+4qlDlj1JFDhwLrnCO09IbyPOHvvow+GA7/crLvIaODUAVCisLbYqV9eIX54njWolAgBo+K7MdDPqG68AEBxFvNprVA0Rmpki1cgX0+x3tCsexFI+Vr6OX61bbAuwEaB2/3UJHnGzzexRoH2+TcLdeWnqG8h7kbvHgKYj/rvTgapcYjVAnw4Ckj7W1EOF5+dWlu3k3ohvSc88c8Vt+XlZ9PRu9FFVD7+p4UupzoH3xCXEd8prp0zx3H4+c4RUg5ulyjNZf93fOxe0QBm9T93Un+ZptFrl8xtwIZX5XeCucrx+o0MCWYdLDAgwOBlFWoQBLMHgkgz6nPzwV2R1MBBf4F+RlWwGsdxMHByLQbwjkeKAoAkw1FkBF0PlJ1VzffnGqisDtLKuY3VgbWtIVtbn00C3hkgHNOiPnZpjnpd8UMlnOfk3k4sEI6o0XyU66qYy4eSYiG1UcqXtmVQkrUDWDzT1jqqFaz7FwNfXiT9TN5wue2+3IlNMNcwEbznW0SjBKMNB1mwqaUO2PEJ/HjNNTy2klmTVz3u+jGUaM9duE6cshFgrmUWnyPL1POytgPpJvY79Q8ge6d6X+I961RUccCeb1iDqjhLMduoX0YtP90A/HitXM/VsmDuf/hVJ8f2kHIXrbkbXwOW3ud0tTaRweoMMWL91miCWMV73U+xrjidu49dq6rzzBVC4LIB8RikSJnnNjVlQN4h4Pc75HluNTZdIHevqswS504Cx/6R7wV7FuYt7wBvO/GlVm0rTLsjmGsrgLMHVbP2P3Mhtj+h49rlSiPeGaf3sP+uWtVrK9jzVK93uovbKHsrFw0G3htkZ0V1Fia7fDkFWP+SfB0awjLvRUgw62CGseGEjz3El7wH1lNOSivXzCSzu24Avkgrp6jDQIvzl91dfoK15dQm1XwjGlgwe/QCEc7J4qJg9vQ+Or2bdQvzvPNrphDMx1+6CB/OVPj8HfwVKDqlth464oNh7IMr8uN1wDv91Q0tyQqn+NDrfSzXPgcc+Rs4tVGzQPPR2vKO7baVRUyo/3AtE29uCeZqJoD/uhfb/O7EdwELYOTrgK3vASseQctjP8jrKgWqKKB2fc6EvpKNrwGfJNs5Xo3+b+UHrjwPOLkOWHy9PK+qCPhiMvDNZewa/TIL+PwCxfJi+Z1mx+Kp6l5P+4tN56fJi0XLuiuirOiUbG2tKpZmt8v5W399Z1QUMp9oR5zaBLzeVW1xdYZCzNulqhjY+Sl7fkQRvP1D9TqiqNSzMK99jl2rVxLlhivA8oCXaBqsSo6ulHL26iJeh7oKWTApr02h4MZTlgf887RjFzA9aivZfboggZVFxGJmguyHq5wL29XPyI2udBPrTSqR85wj9U/5meWVFmY3XHd+vwP4aDR7zgUij/yIsHRFmcXeEVct6+Za1lMivnvL8uR3/rZF7H9VsWvfAdNC4K85wNEVrh0bkHt3lM99fpp9y7G9XiMtnOz+4hJiw7Ahehy9CAlmHZhg9rIIFa0ojqx/znYhNuKamV52WwD7OK1ccGWugzVZpfuLrhea1j/n6gvYamXuAfb8PF21MJ87aWvh02KpA/Z+J3/Y9I6jnXaV6hLggCbIzlLnvCEo1RPL0yv5evM88NutwLsDgNc6A4d+Y1az3V+wD/+Se/T3t/kteTp9Pfuv7BaVrJ4KEaf9CJ/PBDKFnNmFx5jFruS0vtgw6qTherUjsPYF4NgKZu2yJ5hz9wIfj1UJPJhr2MdSgb+5QurB8KtVWBq/uxIw+KvPYdmDTOgrWfciOxbPAxmb1ZZ47YdPEEAcb0E4KpmPvtZVAmC+hiKLFH7E8yOZ2FP6q4qi6uxBdm48D+z7QVGfnCz88tPYPnL3ye9G8fi1lcD8SLQ+s9q2PBwni0uFKK1uO9x2XUsdsOxh9fVc+QSw4xP59w/XMJ9oR2I9V7D8/XGX/vIdH7OGk9LKuOIx51bpFY8Cyx8GsrbJ99eGV9TriMIic4ssEJXWZhGl3/wvs4C3essfiqJTrK7P7GfvoR+vAT4ZZ7sPEWU3+TFBHCqfo0VCrpgVjwBb35Wt43qsX8CeESXK++zHa+TpbYphNKXBf5xYW821sjA+q0hp+cvNrAEIgLlkCPspVz9zAICT6217qAB2XQD2nIv8NQf4SdFQFe/dT8arxbi9j/T6l1hPydEV7F3zRjfmy6skfT2wi6WOkxoByjq2anp0zruRMUtsgCnL98Fw1lBRNjhEHD0XX14M/HY7m+ZctDCLVBS4t34jQYJZBzOM8Dc00IXL2qF/44lWFHdb48pdSC4ZzUwxCw+FywFfvniIhGOkWdsjuCKH+VY5IAD6wthidlEwp/7OgqOUQs9qYVbB6hKFhdnJ/fHeILWFT4/vZzChuSjJRpSp6tbRsXJSgKJ0tr3FzFwSvp3OXva/38782USqzju3cohCr7qUCYk/72EfBa1Iy0lhVrO/HwCytzPhL+IfopjWGUSitoJdx/mRcqPCkYU5L1WeXvU4ExFv9WJiQ/uMKT/GSs4JjZLqEsBPR1QfXcmsaWf2y8IeEIS6+hh+5gpJ2KpGxTTXKO4PO/fbTzfI04XHgK+mqj/02oadWC/mGmwJnINP/N/S98P8UOELqz326mf19/nRaCYEMrcAf94N7FX4kYuC+fAS9n/f97K7mijKBIHbPks9SiEA1igR91FdLM2WRjtTWmKzd7DcsO8lAccF8b39fSb0RMtekWBZEwPp9BDfW7Vltl3v5flM+L7TH3hZHsgGlUXAu06CscQelZoyKUc2ACBzqzytdNHY8y2QvYs1KvUw17KyHhOexeeiWO+N+Gzu/V6u4/I81qgqPYOAmvPq/ShHqhQtqFrhdGa/3Pi327MAFpi76XX1vCNL9ddVNmzyD8vlfLM3sNKOK1JdpSy+7KG0MG96Q31+hceBby9n7yMt4rkD7F2t/H4d+EVYR7h3a0rkcrzTX+79EZ87q4U9w6K4XXwdsP0DNn1kma0hJXcPexe+1Ys1Or9RDPgjvsfChBF2tI0AZTkLj6s1h9TIFOJPlD0Nb/WSt9/7HXtG9Hr9xG9K5hbg4M/sXEURz1vYtuVOrokkmL1vHPMEEsw6mHmDKtuBR3xxIfCeToqZBrAwzxrVEb3aROCKgQnOV25KuB3018AP0eKZzOIjcuh39N7JUlL9ahnLsnccW6m/rdBy7tlKfyAM3mGAHc8CtQqPyy8IpcUuYzOzCi6dK7/kPDl3cR8l2fI8ZXYBQP1ytXes/T+xyO93BzLhs+oJ4I87gZNrZdeFcoUv9593A2U6XbyiT17a30y8AEwQvt4V2PcdsOwhWXCKhMbYL5+/YrjaADuCWRQLR5ez/8q6cOanrETbpW6vEXf2kDztp3OP/KHwAz2naGSsedbGChWxZDaQ8hUAwChmAgFYnS2+Tpiu0/eXTFOIEPE4ynvTxiWDiQauLBcRXBUuMKZIx3aZOk05Co+yRpbISc1IiQVpsnVUfA9a6uTrLHZrVzEBZ/YLtTUwcAbZGqu02IsWVlGglOayRgPALKbfz1Dv541uzB86WMie8/EYuRyZ2+TgKEB97UVjCM8zVw17YvH4Kvvd9CufYIGB4nnUVjCrusiXF8kZM6oVgnnjq8DnikBBLS+2BBaqR7HD8kdkyzTHqRuo614E3uyBkdtmsXNJ/YM9q0rfYvH8tD0UH4+V3yXiMuX9rH12xd91VSwtnhKxcatsJC5/mP2vLmbxEKK41FJXJZ9TlUL4+yneFVpRtvdboFh4Lxz4SX0OSpSCueAo8L4cOC5ZtVUNW6GuzmcAR5exd/8LseyZeD4ayRuukBuKgOyCYfRXNf4AAGFxsrje/aV6mfhci++b8nx13VedZ4K1OJsZTdYoGrY/38j+8zzrzdD2NGx5hzW0ltzDnhHt90O5D5Ejf8v1l7uXbbviUXn52UNsv8oyikLcXA282QtNFRLMOjS4D7Ne5KfYEnXHh0pDfFQwlt8/Bi3DXR9OuEnQ2D7MR/4Gdnwk//51NmLyNgMAyhAMc1CMOm2TDn5W0QdXfQ5WpYVZvLZHVzLfvpJs9lL8/ip52aFfFTsVXniZWx27ZJw9aNvF56qvc3UJsOE1eXtlENzLbfS7jZUiT1tmEVGMAExI6/H3A+z/TzOl1Gc2fDxW/TtAMRLid9PVywwKK1xACGyoLZfX0ROV313JBMj5DGaxOZ+pXyZA3bBxhPJ6iY0CJUqRfkIjIDXX2pgvBxi1PmQnit1Sq+9PrUTpgyySvp75uYoBYnoZMFK+tJ3nDr/MAj5VDGOdsVm9/PASZlEGZIFYUyYfV2ykCI3LwJpzcre4hMKtQ9moET/AvAV4qy8Tis44vkq2MANMgK95jgUmrZynWFHx7IkNsHUvAF9f4l62gYpC1gDY/j4LDBStyr/Otm18fDUV+PN/9p8be2iDBquKgB0Kv2jlt0lZt19fwq7fTzOZVVi5/Yp5wB932x5LdFUpOsVcW95SDGyRd4gJcBHRevy5YtRRkc8vYO8zZzEAer7mdZWQ3DaqzrP83Dm71XmgS04DB3+Rfy9/GHi7D7OS7/6CzROPfewftp8z+4FSRU/xybWsQSid30FWZoNCMNdWqBskoiDOtz+4CgAmzLUNdHON/XeQ5FcuHKs8X60rXu0IvN5FbkQqRboEz9z7tNbp1c84LivAMoOc0fS4ie+5M/vZ/9Tf2f7nRwIfjWL7zVMYF5SW69LTHukib9IkBy5pbOp4A4I5L7sBSBbmpj8Ed4PTyFky5HLwNlZFHhyswdGqwA5dxAe6tpyJrqAIYb5CEFUVA2EtZb+8oYJ/V02ZbFGrPMderAGhcqu8tlyuo+Is9qKJ6cx+H13J9nfFx0D/a+Vj1ZbLZag6z7pe7fVerH8RiB8EdNGJ7j69B2jTD4hoy85R71q5Kh61GPzU3Z82cLBpRCmtRFqUVm090fjTjUC/q9l0rY57QWkOsFAxVLJNoJ+CQp2cuABzBdGKG0eoBMpW9TJ3gnVEcnaxP3cRXYHSlgJ2RoFsEJTXT68BISIKVWUPw+k9TGQJ3bmBtUVMyCkpywVEA6holbNa2HE5A7t/S7LYnxZnYqA8T/YnPbmePae/3qLuffpuOjDtXda1D7h3LV7rDAxT+EGLAZAiHUYJIuYsC6YVGxcNBsfErTNOrJGnxUavI9a9YDtP2xBe9hATnfa+BdXFavGpx2cTgSfPApsUPr91lXLDs6qYNYq1HLPznCnLmL0D+OcpFnTbZZK6DgD9Z/XoMiCqHXC2mP0uOgUEhuuv5whzte29UFvGxgAAbOtF/OaIVvLzGfoWePEdqOxlE+F5/V5BV7CaWY+MkvU6qTS1GTW+v0qe1rrRlGQD0Z3qVx4vQhZmDTzPow5G+NkZmKLBaAALc7PBYpbzUwKNb2EWqS236Za38gb415UxK7TYdfnH3cAXU4Q1BIEtdmn/PZeJLsFiG1ipeOlUF6vTzolisbJQ3aIWxblYFqtZbUF+b5BsFRCFmya9EfJSmXXr8F8sZ6rYhWmPI8vYulp+nQ282ZOV5eNxwIutHO/HHaqKbLvCVejcD6aX63+84kzmEw6w7n9nuNuQm3sQeNTFgSi0xOkMKytYsB4NW1C/ferhbBTRv+bY9iB4SmR75+vYQ7RIAcwC9css5mPsCtk7WbaQ0ykAeCBUce9yOuLLmWX+wxHydE0p80nWc9Var7hH9YLFHKHs6dISGA7EdnVvf24d+0O5ATJRp/Ew+kGgxyW28xuCE6sdP28rHpUtso5YOpe5poicOyFbZx01tgHnDcWtQtChnj+7GBys5Pg/7Hsu3nc/38jcMLQo4zD0KMtjo94pObFWdmnSGnNqyoDPJwN7hHzfRSfVbhfK8tmjOFPtduQLlAJd25ultVg3EUgwa6gxW2GGEX4N5cNsDymtnB3BnL3L+eg7PK/2mWyqbHiFdc2Kqb8Ei7HLQX8NYWFO3wAs7KD2AXytizoQCsAb1wyEoUx4cWx5l3Wz7f/BtitY6wOavRP4YAQmpD4hz1uUBLzRXf6dobBgKi0Ab/dhL0HRwmypUwsHgFmwsrbLmRC2LWJWGpEvp7CPzM83qrsO7XH2oOx7NnKOPF8M9HqxJZCfartdfYlIYL57GZucr+uMPgqrUdKtnu0rIEz9e6DCHy/MQW7osY8AUe3l4ZntMUhwdeAMQM9L2XSXSUC0cN/F9QFu/FNe3xiIx26+Ajw4YNjdwLU/SovO85qyukLnCc7X0XLB8/rz2w5Uu8jYY9id7h+zIcjYxLKFiEGwYQrB7M1gImU3tl7WBS0RLsac+AXpN6wcEdoKmFuPb0JLneGIY7sCI+51f19K9KyEYa2db6d0mRjjoPF/YLH69y+zZF92Z4LZUgNEd7adn3QL0F7RWNLk2tcNMAZYDuSCI+r7Tpu5xhW0OesBQVwKjcBCjYDf8zULiJbKp+OeBgBb3nZ83PpamL1BfXrbfAAJZg01ZissvLHh8unaw9nQnJ9PYi9/Rxz4mfkDHVnesGVraERfJSlARsyS4WIdN0SWDNMCZvFVZjcwV9sG4nAG4CbB8npyrXrQAWX6Nm1QyLdXyJHc9lAKXC0/3yT7mvIW5hOnpPAEy3+r7NYWUw3VB2VQiSNhKKIMmnEFg796vxFujD7ljMTRiuMovMouXSQHbUV1gEPuEixE0zRWxnGPAg8cBm5fB9y313Y7gLnDTHhK/q21wg26CbjxD9ZdLIpPYwDQIpFNh7cG2gxg09EdgYh4eduo9ohp2QbcU3nARQuBxFHSoo/M0+yfz1CNlVj8qMcPBhKG6m8zUWOFatkDeOa8XIdaZq9k7jp6tFIE6kTG66/jLeyJuvFPANf/Ite1kl6KLAMhscAoReBZuLv3qptZivQCVAHgf9uB7opYAP8Q4AKFz/L9LljdIuOZW4CWKz4BnioAHs9hLiTK8wdUPRFlYYKI5Iz2r3d8EtBzGjDuMWDKK+w/ADyQCjx8AogTBhFJfgK4dTV7JkTu3AhcLGTKaKvppk/UdO1zBvet7JJLhsYSG94W6KxxQ7vhVybI5yret616Ad0VIzJqjVpKF6yHjto2APpeBRtcaSRc+TnQdbLjdfSGP9da4juNl6cnzfe80eNOA0zpYuQJej0eTQASzBpqzBaYYfCBhVl0yfDAh7lACB5wJtQaG2lUQ+FcedHC7KIQdtfPe81zzHdNmatSjMZ3lPIIYAKs0zj24i5KV6fA+vwCefhd7X7c8WPVw5nl1dP9KwmMUGcUsPcBB5iVq+1A4KJXbJc9WwxMXgD0ng7MXgFco/CxfLpALUKcoZfX2B5KAaQse1R74A4Ts9jOPWD78VXSug8TD31nANcr8kiHxTHRET+Y7fvpQrWovuhVoO/V6n1d8x3SeswF2vRnv+uqmWXXP1gOSGs3DGghiHhzDdD7CvZh7nkp808fdBPrAr9RSJ0m3q+KbuMeVz6JsvuPAd2mAFd/I3+Ekx+XP7TRnYCn8oGHjrD6H3IbcNtqoL1maGSDPzDmQWCe4M8Y3AK4ZwdLd6kNkLz6W2Dyy8yabi/TQztFxgCtVVRprWs3jIlYl9FkLgmMZP+TbpHnDZ4NzNIxGrQfAXS7UPbtB4CWPdn/npcC/YUG6vgn1FZ1paVt1Fzb/WobGs644Tf1PSbeswlDgY6C3+z0z4BWPdXBaa37svsgtCX73aKDbQNPKXwnzQcueQs2zNkD9L+GpTkMDAcG3wxMWciElNg4MgYC1/4A3LYWlSFCOjyDkZX19vXsnhO5bx9w+1rgmu9Y3Q2/i92DT+QCkQksbmOAkMWl+xSg3VDg0vfYvXjBC0B4nCzQW/cBuijSYl77vdwTIxIYAacMvRPoqgkg1GZlMVepfYr9Q9nzMvFp9u4YLRioYroAITqNxuH/Y8+dyIh7WeP34aPA9E/l+cr7HWDf+nZ2Gq1K+s4ALnYyQuUMwXWhVW/NMRRSbrwi5d7oB5gvvEikojE1VuHqJK4jvluVgjWiLXC/psdTRCvGg6Lk6SfOAOOfBC55G4gVelrtWeeVTH3D941uFyHBrKGmzgoLjDB6Ox+gJCI98GEWrWtNPXBQW05JKLsqmN28FpvfZEEaylyVonBxNnqY2EWv7YZrSHo6sBQ2FB0UVti4vmqBEdNZtlT4hwADb1Jvq3z59r2KidDBN7MPiXL/HAeM+B9w1ZdAh5GyIATYMuV9qQy6u+Y7+YU8aT77f/mHstXJmd+k0poZ2lK+vwLDWRk6CxaWWX+zsl/3k3p7UVyKH89uk2XhoB0EwugPDJ4l/x52p5xDXYTjkNd6PDBS6I1Q+rH6BwG3CeJCtPz0ns6uwf+2saBEg5EJiknPsg+39vgCVwxqh/AWccD1P6mF0oCZcoOq7SB2DkERTASK59NS+GDN/BW4dzfwoNDIDooA5pcAjynKPOB6YOAN7EP3VD7Q61JghJCXVsw6cu9uZk0cPJv9vlAR6KW8T3peyq7t4zlAv2tYL0A3ncwIIo+eAh7LBK4S/DF7au6Fm5cw0TX1TWa5nPEFENtF7gZXWvJE8akUXEbhXgkIlVMWOhqFr/1wuSEkMuZB4O6twINpQK/L7W8LsIZRl0ns+RARBTNvlQWz+B2Y+CzQZwYT0KJry52bgP8JPUvKexFQC7jRD7DGrQpODhhWEtEWmPySLDJ5C9BjKpCQhPROs9i16iFYu+MHsXvu9vXMUi26E6kOw6kbryPuAZ4+pxaoU98ARgnPSPeLgXHzWEPsio9YPV77IxAUya79aCG4MKYLK6PSbeyC51mdKInuCMy00xC76FUm0CcvAAIVbk0Xv6Zeb9xjwnOaDIQI94bS9/3CF9lzd/lHwPinWP2JKK3K8YOA4ffIDQH/ELVgFoTq8S632QpRsRcKAO7Zyd5VymveZzp7XrX35COK7C6t+6qX9biY9Q71vQqYrWhYTniK9SjNywb6Cw2ci15lhhClu6TBKDfaxj7KehSU+3gsQ35/KoOaA0JYj13SbPl6Xq9wobk3hfXmKZmzhzWsmiiUJUNDjdmCOhhhgBtjzNcHycLsgWAWP6ZNPXBQFDRSqjR3XTIaoPEiCocaOxYyETE92aj7WEBUfYjpwgRiUITcC6Ck2xQ5T26fK1mKJbsZBHQyR7jCzUtZ6rDvprOXvDKfcVR72Z985q9MRMzZw/yqd33GLISi64rSsqwU0oN10pAprQuA+sU9+SWWlWDW3+yjCABjHmKNodhuchfooJuY/6LW969Nf2b17TCKidB7U1g0/sAbWNBVbZl+RLooIO7exuq86yTZyqjknp363Z0is1fqp4dU0vsKlhJwkKYBkiCMhBYUATxT5Dz6X4mjda/5Ftj2PhM/IdHsQzNeJ8gIAKYsYKKtyyTH+abFcl72vv6yKz9lg9bEdGH7uehVZl0MDGeirvQ0mz/6QSagxir8T6d/Yru/OzYwYRsQzjJeiJa93pcDCYeBnJ3qnNJtB8rXtN1QWYjEdmVd2u2HCwPNKGjdV76fxEfJP0QWRdqsL9M/ZSPWnT3IzuGGP1ggVUwX+R0WJxxDvD7xSaxRos1kMeFp9j8wnAnGZQ+xno+MTawwox5gLiGi4AqPA2ZoYlci2qhdmqI7q9Pf6TFqLvNZtSciRS55k90XCXJ+3ZqgWGCKzrWKH8T+XMXoQF4EhMiW0MBw4Oqv5WUGA2tIt+rFymb0Y2JVDMLT67kS74n4wSzoc9q7sjtdUJTcIBRT342cAwycqd6Hf5BszBANJ+2Gsm91zk75WovWcyWcEHOw9zv2XZ7yMrNwn1jN3k2i60lcH/aMtuqF3PxwdBUFcr9rbfcZ1gqYKfRMnDkglx2wTRcY3IJZe8VsE9M/VftSdxjB/rQYDOx5H3Qjq2uxcSW67IlGgIBQ5mLmFyRb7sc+ynrR/IOZMF45z34WpP7XsvdgbFfW2DT4s4YuwHpNdn7KXDf13uFNCBLMGqpFC7O3XTK0bgr2sFptLVo2+2gkwWy1MBHl7AOstTBbRcHsJQuzHqIPrrNAEDFgYtBNTFyvEl7qiWPYh1358bbHLavYx5jnged1shS0UFhoZnzBPsx/3G3rtwwwC+mer+X8oCLhbZnAAJi/brGQQ3jC00DHceye6TIRW0d8iZFjr2DLxJRQMYJPYPepso9sTGdm3QpvzbrNv57GXsJKq9Gl7zE/akA/sCQ0Vv1bGXDWYSRwl47bicEoW7IA1rAZMJOJk7MHWTCk6WXWAFF2N8d2kT+y/kHso6QcyERLXC/2Z4+wluzPHnofG71zueRN5+s0FErBGBDKBJk9/IPlFHueEN2JdcOL+AUwkQcArXqwP4BZy10htqt8jykbdQDrlg2+kFnZjq9yvq++QgaWoXeyhoHIiHtZDAMgN779Q1hDcs18OYg0KJJZm/tdLYsz/xBWLm3ZRC54gVnXJguZMhLHAH8Kfpz37FJbd4fcxiyp5zPYPc1bmRhMmu383JTcs5Pd7+J78aYlsHFdueA5tf+zPQJC9Ru/TQHt/fq/7bajcwLsvSUK/qu/ZetEd2QNhqJ09TUQXRL0/NqViIaTyATWQ+JKL+5FC9mfSGw3ebrtQPbenzSffS/7TAdvMrFlT57Vd0lTGiBu/Uf9HRxxD+tFnTSfNRI4Tm3xdvSsX/ujfmC4sp5GP8je/yMVjRPx/dplIovzUcaSSD24VczXXjnYDcDKJ/qix2katINnsV7OigK1yG+CkGDWwLJkGGDwtkuGqxZmax1gsJP+Ruwe9VaeYkfwPBsmN6qD3Aq2hzbntDeD/uxl3hAtzM5yCCsForK1O+NLliO2OBs4s8/+9vGDZeHIcawL8487gJm/sSGkq4psA+Ba9wXu3sySugPMAi2mr2o7gL14RcF8yyrmP/3PU7Jgju7EAmn8Am1EY21gtG2DZvAsllB/0I3q+UERrLtQTKOk9dVtP5x1/W1bpPZpFNETrN2nsryj7vgocxw7VvvhLP2e6WVbMa7koldYeqkQB+sQTRNnwaQBoez9UngCu7Zvgs44Y7Zo/UADw1jwWbuh8gAk/sHsuZmvcMf433Y53aPUm+LEGBAZD0xVDPU84DpmTas6r+8HGxrLXER6TmOW+fpg9FOnC+yUXL/9NDda6fQMGfyYi4yI0vf1svfZCJ/xg+V5I+5lBoEEJ3dS20Fs+56XMouxcqhyVwkXfMH9Q5kAv3+f/nr2GvrK97a2DB1GAk+5kJFFjx4XO18nJJr1ANqjk2ZEQPEc6qrUrnmuYjDIDe8mDAlmDTVmCywwel8wi1ZjZ9ZhS52tX6VIY7pkVBQwdwM9lwMtdoL+DK76XrvTIKjT6TavrZD3sfFV2+VKlJZTUTAHhMkWyDs3sC6pP+9hrfs/7pAtU4CcYUOk39VA+2HMN01shRv8WNCNjb+hwHWL2XCkIspR7OIHs+uuvOahsepgIWeEt2FdhvZo2Z25IOh9VEJjZb9jV7jqS2EQCSfCwx6hscynUekDqqXPlepUc/9GXMlk0pyY+CwbcMJe75mW2C6oCNNJt+UqyUIWB7HxbdD59EW0ZX8Asyye2ccs6O7CcfpiWcQvgPnKEp7xWIbj0QA7jLR9bxgM7H3sDI5j7l6eYDCwd7nS0uwK0z+VR0JsLnSbDLTupw4k/BfiM8HMcVwogA8A1AIw8Tzf0MMWNQg1daKF2cuBdKJ40hN4SvS6oEQkV4dGEMzK4Lmq844HSDBqLOHe9GHWDvtZW8EG4nAU2KNE18KsEXudJwAPCQNhtO7LRN3rQneTMqgEYC9eyU/tKjZYQkAYMFxnaFnlNgY//W5AqZEk3BfTP3McRKVk+P+Yn7Ij30IRV1wQ9Bg1l4kNEb9A5ubhCb0v92z75s69KY4FWHNkzINqy6CviIhng//YM0KIXPY+0P0i2wAqoungbFCepkD3i9zfpiFcp3xNcAt9l7t/GR5lyeA47guO4/I5jjukmT+F47ijHMed4DhO6APDdAC/8jx/O4BLbXbWRKgxW2DhfWBhFrswtCmctDiywjZmlgylSFcOBqKH1iVDGrikHhbmA06CWLQjbf14retiGdBYmIXoekcv5rhezO/qwSMsat4RE+cDj6TbFz9XfytHKz9yAnjIznDMgJx6qeskOYjOGVMWqLugvcEFz8lDgBMNQ6ydNFeE+1z5uf1MD0qCozy3MBIE8a/C07RyXwFQOTNyHGcE8D6AiwD0AnAdx3G9ACQAEAcxbwSnW9cQR/pz2fpZX0T/Y2eC2ZGFWezm9iSXc9lZFqHqLkoR68zHWBL2DWBhPuIk6E6bH/nURv31htwuB4A8eIRZXwGN5Unwh7YX8KMkoo3cnWsPg8HxvnpdylIsAUykK326gqLUQ7lOfIal4GoOVhaCaCqExrCcxARBEG7ikWDmeX4jAM1wOhgK4ATP8+k8z9cCWAzgMgA5YKLZ4+N6E+aSYXTd+llvBDHmVDA7cLcQBagnFuafbgCWP2xrmXWG8phOBbMmm4fkw+yiYFauV1EI/HUfYLbTkLDUMsuwsxGH4gcBDxxiFteINizK/RmNr23rfiy47bIP7O/HVzyYps6VazCS1ZEgCIIgfIQ3fJjjIVuSASaUhwF4F8AijuOmArBrJuQ47g4AdwBAXFwcTGLqFR9xILMOnWGApbYGmxrg2MnCf+159Mo7i1YAzmQex1Gd44jb7di+BVUhmbr7js85gq4A8s+exuF6lnXoudMIAVD0zc0IqC3B7iFvu7RdaPkpKWJ95/ZtqAzNtrtux5xcdACQfvI4sswmdD+TizYAwJtdur4dMk5C6kDN3AJkbsGBuvYIK89Ap1PfwjTuD4AzwGiuxJjtTNyezTgKR56zR9IO42yx82Oj7d1AWj77a4aUl5f7/Bn6L0L17H2ojn0D1bNvoHr2Pg1dxz4L+uN5vgKA04STPM9/AuATAEhKSuKTk5O9XDI1xzemw3zcCH8j0CDHNrF/NvvK+xwoANrERKCN3nGE7YYNHmibt1BkexpwAmgVG4NW9S3roXCgCog+v0+/nPbIjQR2s8mhQ5Lk/Kt6WLcAWUCnDu3RKTkZOL8YOAsYeItrx1u/FchQz+rXozOwhOXlTR7SF9j3HWCaLy1vffUbwHuKJPuDZwEpX0k/e3RJRI8hLhy7mWMymRrmPiYcQvXsfaiOfQPVs2+gevY+DV3H3nCNOA1AMWA5EoR5zQIxrZxHfsGuILoxeOSSoR1quh5o0/L8druci9QRKh9mJ64VWh9mKejPwXarn2WjzmmPJVJZJAfllZ9lAxAoienMRlUSmfA0MEmRyN+eSwdBEARBEIQGbwjmXQC6chzXkeO4AADXAvjLyTZNBinoz9uZJ8QBNuoqHa/32UR5IAktmiC6eqEdeezgz2yoYWcohbwzX2TRL1jyYRaC/sDrb2sxs1Galj3Ehho+/KccJClSUcAG2gDkEey05CmStwRFsWE+2wvp0iw1upsQBEEQBEFo8cglg+O4H8HcbWM5jssB8CzP859zHHcvgFUAjAC+4Hk+1c39TgMwLT4+3uc+PsfTa9CbMwC8Bab16+s/4IJAsvBfex59CvMRC6D4/Dnsc+DDDKsZBT/NQWqfJ2zWaZ95HJ0AFBYW4FA962lwRSW0o7efzs3FcSf7izp/EAOE6d27d6E8XB372f3IOzjfYiDy48Yi8dRJJALIysxEwV+fol3eGYgDYG5cvxZWzShwIRXZGCr++JLlsbQYAnCu5Wi0KtjM5otD3QJAzi6b8plMJqkOC2OG4tAmtl1HJKADgFMnjiLT7Pgc/w2Qn5xvoHr2PlTHvoHq2TdQPXufJuXDzPP8dXbmLwew3IP9LgWwNCkp6XZf+/isKzkEPpdZXZPHjnFtkAdHmNg/m/M4/QFwDogKD9X3sTHJky1btdZfZ8NO4BQQG91Cf/n5TAC8PHCGHscigXL1rPj4eMQ7q/eTPLCfTSYNGqAefhQATJehzdl16HXNM8yHORNoX3MU7ff8rlpt7IDO6jHsASB7F+unUGA0+qPV3X8xq3PKl47LBqG+TWw69u5lSBZH7ArPALJ+Qcdeg9FxqJNz/BdAfnK+gerZ+1Ad+waqZ99A9ex9moMPc7Omps5qO5RzfRHdLnSXWV0/ht4wrspt7e3jnX7AO/0d75szOl5uD6UrhdWJS4h4roU6A3F8foHtvNpy23kGI/ub9rbrA3WIKIe3HXgTMONLIOkW9/ZBEARBEMR/Fp9lyWgu9ImPQGCGH7O6WusABNV/Zy4JZhdyEdsTteK2jgIDnaH1YWYHdL6dozzMWgEtBvfpDeFdeU79++gKNjqflhrFaIJaf2aADXlbqoktvXsbUJylnmcwAH2m225PEARBEARhhyYpmBvTh7kdgJYtAJQDmzdugNk/rP474y12fZj7FZ1DNIDyshLs1jnHceBYUByAs/mFOKKzTqeMdLQHUFJUiL0O/KAd1eGA0jJEaebl5ObihJN6jy3YCzEHxd49u1GSXiUtM1hqMFZx7E6ZmWjvYF8b1q1BjyPvILPD1eh27COb8oiI5zHCzCNQs2xXt8cwZPd9NusCQcAZx+fyb4b85HwD1bP3oTr2DVTPvoHq2fs0KR9mb9GYPswAcOz0MgDA6JHDgdDY+u/IagE2sEmb88iMBM4DYcFB+j42G42SFbd123i01lundg2QDUSGBTv0g3ZYhxkxQIl6VkJ8PBKU26x9AYhqDwy+WZ6Xeh4QQjkH9u8HdBwjL6sqBjYpji2U0x7jukcDGzciji8Agv1sygMAaN1PPo99YUCtYJmObA9c9RWGJAwG+vcCMjYB7YcjucNI+wf8D0F+cr6B6tn7UB37Bqpn30D17H0auo6bpGBubHjRBcIXPsz2chEr8yOLPszmGpa3WRwSWXR90HN1cBVtHmY9Nr3O/isFsyoPs3guPLDuBaDbRertHdUDAPx8E/tfngfUVemvM0MR6KfMqtGiA5AgBBy2G8L+CIIgCIIgGhAK+tOhwQQzHAlm3vYYmVtlIaonmL+9Ani1ozxf3NYTH2ZXBLMeKh9mC7D7C+C5KGDTG8C3l8vLzDXO/bRLBPNzVRFg1hHMd5iA2C7yb6PCh3nATDcLThAEQRAE4R4kmHXwqYVZtBJnbGE5hzcK1lxloJ/BDygvADK3aPYhBv3Vc9Q6Sx2Qvt5O+YSyn96jv1xZN1arevAQZZaL1D+AHR/abp8w1HaeSO/pQExX+bc2yE9sQAyYCQzQzWxIEARBEATRYDRJl4zGDPoDgMgaZrHdsW0LqkIy6r0fzlqHccK09jwGFp9HJICaqgpsM5nQKs+EXgDyDm9CGoZhtNUqXZzs02dQ88dLEG2s4oAq3XKy0RZAdUUZttcj6K9F0T7oJZ2r3fszAnZ+gi0jv8aorbIbxrHvH0Vu/MUAgDa5h9FdmH/gwD70s1cJf9ypO7s27ygCdJcAu4LHge80HkPPzQEAbDqUCcsRebjupLIyhAFILzEgi4ImHEKBJb6B6tn7UB37Bqpn30D17H0o6M8HpP7MItaGJQ0GWvWo/47qqoGNbNLmPE6EAaVAoL+RLdt/FkgD4uLaIC45GdgeAFiYe0K7DolAdCfgJPPjTR7WH/APBkp+Bc4AQf4Gx0F/48axEQsrzrGguN6XswWZAcAB280C6ooBAKNiilXzux3/GN1mvsp+7DwOCGmV+/XpDRwOdGu46YC6EmQnXIp2Z1fLbhh3mIDwthgSHses3xVrgDEPYUwbjaw/6AdUAJ169ken/8DgI55AgSW+gerZ+1Ad+waqZ99A9ex9aOASH8BzQjvCqz7MmqA/8bfoU6z1YVbmIX61I/BaV0UeZicuGeLyX25mf+X5wn518hkrKTplf5lq4BIL4KdN9Oack11uBZ46K88IbwuEx7Fpoz9w9TeAViwDzC8aAAI8SPlHEARBEAThIk3SwtzY8KJY9eVIf6IAPbCYWY9VgtkIVGtyrdWWydkx6qodl8NcwwStOIhHTRkQ1sq5RfjI3/aXaYP+jPYcLOxw7Q+AqJUj27HAP/9g17Y1C+cbGO7eMQmCIAiCIOoBWZh1kIP+XBiFz/GeHCzSjPSnTC+X8qV63Q2vAKW5tvsQU7CZq4DaSjZ97iSwoB1QlC6vJ1pkRVGbdwg4s18WnvY4d0Kn3DxQnA3886T6XNwVzD2mytM3LwWmLASCIlzbVjyfQLIwEwRBEAThfZqkhbmxg/6CqpkLw56UnSg9UVbv/RjNVRCH89Cex+CyUoQDsJhrsclkQpvcI1IQHQDU1dZA6TBRkr4bkZr9n8vPRYwwfWDpRyiKGYTEU98jsaYUp/56FWICun2rf0Dfgy+D4y2shSTkPT7d9iLE2yk7rxhpUEneh5ehKHogeirmHTmQgh5lOoLeASaTSeOQ3xNw8Von1zBr+67DmajIcm2b/yoUWOIbqJ69D9Wxb6B69g1Uz96Hgv58wL4/WCTcoP59gcTR9d9RTRmwmU3anEdaKFAOGMGzZYogOgDwN5erVo8MMgKl6l3EhAUBRWy638HngCfzAMsmIBPo2KE9kMGWDajZCVhtrcnxuSvsFp0DD4S3AcrOqObH5W9A3LDpwBF5Xo/qvbY7mPIKsPIxu/tPTk6uv0N+3jQgbSmGTL2JBTMSdqHAEt9A9ex9qI59A9Wzb6B69j400p8PaJSR/sTf9qirtJ1XngcERcr+zVXn5WXKwUw0otcl4voCfgH62x74Wf1bb6TBmM7MTaO+OaIdcdXXbL8klgmCIAiC8AHkw6yDT0b6E4UkbwVy9wErHnW8q/MZtvPKzrCAOZHKc/K0UsSWKTJRuMrU15mFWcldm4GgKNsBVPT8qwMjvBeUZzC6HiBIEARBEAThISSYdWiwoD9HFmazwvKattT1fcYqPJ3rKoHIBPl3VZE8bVGIfaWgje7k2nGCooAIjYdzXB8gtqvtumVngZAYOfDvsveBdkPtC2a/INfKQBAEQRAE0QQglwwdJMFs0XE1aCiUrgp6Lg16BIQBrXoChUfleaGx8nRlkeymoNqnQrhHJgDVpUBlIRwS3AKIaCv/HiT4C0e1B3J2qde11gF+wcBta1n6OnE7rTC+cyMQHA0EhDo+NkEQBEEQRBOCLMw6NFgeZocuGYocyGYdP1//UBbEp4Qz2opQP4VrQnWJbNWurdA/rn8ocMNv9sslEhzF/kTE/Ya11l/f6A9Ed1SLbKNmYJQ2/YGodkBItPPjEwRBEARBNBGapIW5sdPKoYqJ2cOHDiC/IKreu/GrK4OYY0N7HmNqqmCAARysOJ2dYZPeLa3z7cjbsh3Jinlmcy3yC4qgkKTIOlsALuEytMtZAiy9D7ltLkRbAOeyj0kp55Tkny9Dxt6DGOqk7KbN2xBc6YehMKAquA32Bk9CncmE9nml0HPqqKipwy7NOQ6qqIYys7K2DiitjvehOvYNVM/eh+rYN1A9+waqZ+9DaeV8wI7lLDNErx7d0au/B8evLAKE+Dib89hoBgJCgNpyxIfbZnvo2bsvevZNBkzyPD+jEW3bdQQUiSvad+oOjJoLvLwEANDWwAL/Yvz1s1O0ik9Eq1HjANGrIigKqC5m09d8D6T+AYS3lst78Q0IATBK3EFKJnDqW5v9hka0sD3H9Fig7Lj0U7uc0up4H6pj30D17H2ojn0D1bNvoHr2PpRWzgd4fWhsq5Xtu1bItXx0ue06eiPn8TzzEVYSEKZ20zidwv6XazJjxHYDCo8xNwmlG8clbwFtBzB/7ZbdgZ6XODwllc+0krI823mVRbbzCIIgCIIgmhkkmHXwelo5V3ITa/1/xf1pfZgDwwGDjit6RYHtegDL++yv2Eef6c7LoqR1X6B1P+DsAcfHA+TjTHzW/aGzCYIgCIIgmggkmHXw+sAlYsDfqLnAnq/VA46IGHQEM2+1tTC7mutYzKlstaotzO4S1R64axNwahNg8AO+nCIWznbdq78FsrYD/a+p//EIgiAIgiAaGcqSoUOD5WG2Z2EWs2JEJgAXPK+/jp7VWM8lw5FgDhCWhbYEul/Mpq1mwNgA7aSOY5grhyNadCCxTBAEQRBEs4cEsw6yD7OHeZidWZiNAcCAmXY21hv2mbe1POsJ5mAhbVtEW+Dx08BDx5g1GJCH4gaAzhPtldw1jIEsaJAgCIIgCOJfDAlmHayiuPS2D7MxgA3zfMPvtutwOoKZ522tw7zV/nH9g4HAMGatNmis5o9lANctdnYCjjEYgDs3eLYPgiAIgiCIJk6T9GFu7DzMlRVVAID0E8eRVVf/4wfUnMNIYVp5HiEVWRgKIPXYCRQUmwAYVfmWAWDf/gMozoJqPm+14NjxdHQHUBzZB3X+YUg7WQFrhkm1nqWmAkYAB2MuwTnhuC2KctAfQHaJGScbsE4Das7rnqMrUB5K70N17Buonr0P1bFvoHr2DVTP3ofyMPsA0/q1AIBOie3RaZwHxy/NBbaxSdV55O4DdgG9+w0CegjzTepNBwwYAHQcCxifBfxDgJWPgeOA7j17AceAqMR+wBUfoqW4AT8P2LAQAGDkmWW878hJQNuBwvJxQOc2aNfrUrTz9yDoT0t1if45ugDlofQ+VMe+gerZ+1Ad+waqZ99A9ex9GrqOySVDFy/nYa6rZP/9Q5zvY8yDwLA72fSIe2QfZm3Zxj+uOK7gphGoGGeP41gAXkOKZcC1cyAIgiAIgmjGkGDWg+NYkJy3fJhrK9j/gDB53iPpwJWfy79DFAOEcBzwbDFw4YsKX2Sdst38NxutT0QpmL2Fbr5ogiAIgiCIfw9N0iWjSWDwY6PfeYI9C7MkmBXW2dAYoO8MoOc0NlpfXC/1NmIQoBSQqFO2jmPUv13N0dwQDJ7tu2MRBEEQBEH4ELIw28Pg1wB5mDVk7wSeawGcP8V+B4TaruMXCHQYaTtfRLToOipbaCt5X75gfgkw7W3fHIsgCIIgCMLHkIXZHt5wydi2iPkXH1/NfvvrCGZnuDIK4e1rgbzD+qnpCIIgCIIgCLcgwWyPhhDMWpcMcUCUzC3sv56F2RnRndj/xNH214lqz/4IgiAIgiAIjyHBbA+vBP1x6un6ZKxo2Q144DAbxY8gCIIgCILwOiSY7dEQPsw2FmaFYPYPrr/LRGR8/ctEEARBEARBuEWTFMyNPdJfeXk5qmrrUHImB0c8OH5Q1RkMF6ZNJhN65hcgTvhttnLY/B8f5YdGOvI+VMe+gerZ+1Ad+waqZ99A9ex9aKQ/H2AymRAcEobgljFo7cnxz50EdrDJ5ORk4Nz3QD777Wc0/OdH+aGRjrwP1bFvoHr2PlTHvoHq2TdQPXsfGunPVxj9G8CHWQHPy0F/gH4eZYIgCIIgCKLJQYLZHg3tw2y1qH2WPR0UhSAIgiAIgvAJJJjtYTA2bJYM3gJVlgy+gQdFIQiCIAiCILwCCWZ7NHQeZt6qdskgCIIgCIIgmgWk4OzR0HmYrRZ1GmaCIAiCIAiiWUCC2R4GP8DSkBZmcsEgCIIgCIJojpBgtkeD+zBbPRfgBEEQBEEQhM8hwWwPQwOnlbNaAUstYAxouH0SBEEQBEEQXocEsz0aPOjPwgRzUKRn+yQIgiAIgiB8CglmezREHmatS4bVTIKZIAiCIAiimUGC2R4N4cOsHbjEagYCwjzbJ0EQBEEQBOFTSDDbw+BXv+Grc1KAolPCD41LhtXChtwmCIIgCIIgmg0cr7SCNhE4jpsGYFp8fPzt3333nc+PX15ejiFZnyCi9Ch2DP/YrW2TTZcBAEzJSxBWlo6klAcAANuHfYLuRxeB482IKjksrfNfpry8HGFhZHH3JlTHvoHq2ftQHfsGqmffQPXsfdyt4/Hjx6fwPJ9kb7lfg5SqgeF5fimApUlJSbcnJyf7/PgmkwlxbROAmnS4fXwT+5ecnAycaQGksN/DhyYBZ8MBcMCYt4FWvZDcfliDlbk5YjKZ3K9fwi2ojn0D1bP3oTr2DVTPvoHq2fs0dB03ScHcJGhoH2beylwy/AKApNme7ZcgCIIgCILwGeTDbA9P08pZLbDJksFb2H4JgiAIgiCIZgMJZnt4KpgttWoLs6UOMFcDnNHzshEEQRAEQRA+g8yd9vA0D7OlFioL80ej2P9u8R4ViyAIgiAIgvAtZGG2h8HIrML1xVKn0svyfqmNQhAEQRAE0ZwgwWwPg7/7LhlaFww9xVxT6lGxCIIgCIIgCN9Cgtke9fFhVlqktT7MIuZaz8pFEARBEARB+BQSzPYw+AHgAavV9W2UIwPaszDzbuyPIAiCIAiCaHRIMNvDIGSzcGd4bK2FWQ8SzARBEARBEM0KEsz2MAaw/+4E/ildOKx1+i4ZJJgJgiAIgiCaFSSY7SEJZjd8ji3kkkEQBEEQBPFvg3Kc2cPoz/67ZWHWumRwtuuQYCYIgiAIgmhWkIXZHpKFucb1bVyyMOslZyYIgiAIgiCaKiSY7eGpD7OFfJgJgiAIgiD+DZBgtofkkmHHh3l+JLDkXvU8mywZeoLZg+G2CYIgCIIgCJ9DgtkefoHsv6Ogv73fqn9rfZhFC3O/a4EZX7BpsjATBEEQBEE0Kyjozx71ccmwaFwyRAvzwBuA4BZsmgQzQRAEQRBEs4IszPZw5JKx8XX9bZRimLfIFmaOk/dHgpkgCIIgCKJZQYLZHo7yMK97wc5GCp9l3qr4zQlDbYMEM0EQBEEQRDPDZ4KZ47hOHMd9znHcr746pkfUxyVDKYatGgszZ7BdhyAIgiAIgmjyuCSYOY77guO4fI7jDmnmT+E47ijHcSc4jpvnaB88z6fzPH+rJ4X1KaILhdmNPMxKMfzXvcCOj4UfHGAwCutQHmaCIAiCIIjmhKtBf18BWATgG3EGx3FGAO8DuABADoBdHMf9BcAIYIFm+1t4ns/3uLS+pD5DY2utx8dWsP9kYSYIgiAIgmi2uCSYeZ7fyHFcomb2UAAneJ5PBwCO4xYDuIzn+QUALmnQUjYG9XLJsGc95oDAcDbZebxHxSIIgiAIgiB8iydp5eIBZCt+5wAYZm9ljuNiALwEYCDHcY8LwlpvvTsA3AEAcXFxMJlMHhSxfpSXl2Pbrj0YAeDI4QM4ez5OtTxZMa0sX4uifeivs7/d+1NRHl6FoGGfoCYwGnwjnFNTpLy8vFGu738JqmPfQPXsfaiOfQPVs2+gevY+DV3HPsvDzPP8OQB3ubDeJwA+AYCkpCQ+OTnZyyWzxWQyYcSw0cB2oEeHNugxUlMGkzypKt8JC3DAdn9JyVOB8DjbBf9xTCYTGuP6/pegOvYNVM/eh+rYN1A9+waqZ+/T0HXsSZaM0wDaKX4nCPP+HQRGAOCA6hLXt9F1yeCAkJiGKhVBEARBEAThYzjexawNgg/z3zzP9xF++wE4BmAimFDeBeB6nudTPS4Ux00DMC0+Pv727777ztPduU15eTnCwsIwavNM5MWNw4mud6iWJ5suk6ZNyUuk6ehzKeh38HnVurX+kdg66hsQtoj1THgPqmPfQPXsfaiOfQPVs2+gevY+7tbx+PHjU3ieT7K33CWXDI7jfgRz3Y3lOC4HwLM8z3/Ocdy9AFaBZcb4oiHEMgDwPL8UwNKkpKTbG8slIzk5Gdgfi4ToUCRoy2CSJ6XyZW4FTGqxDAABLRKo28UO1CXlfaiOfQPVs/ehOvYNVM++gerZ+zR0HbuaJeM6O/OXA1jeYKVpagRFuu6Sceg3/flhLRuuPARBEARBEITPoaGxHREQDtRWeLaPMAr2IwiCIAiCaM647MPsS5qKD3O//c/AaKnB3kGvqJbr+TB3PfYR4nNX2OwrO+FynOwy27sFbqaQD5f3oTr2DVTP3ofq2DdQPfsGqmfv0yg+zL6myfgwn44DKgpsfWBM8qS0rGIpkGu7r3ZdeqId+SnpQj5c3ofq2DdQPXsfqmPfQPXsG6ievU9TSiv378fgD1jMHu7D2DBlIQiCIAiCIBoFEsyOMPoBVs3Q2O66sBiapBGfIAiCIAiCcBESzI4w+AOWWvl3xTnguSg390GCmSAIgiAIojlDQX86iI7iPdLeQVTxIWwf8SkAIKzsBJJSHlKt6yzo73iX23A6YZr3C90MoaAH70N17Buonr0P1bFvoHr2DVTP3oeC/nyA5Che+htQmSY7jedGAinqdZ0F/XXt1gNdhyZ7r7DNGAp68D5Ux76B6tn7UB37Bqpn30D17H0o6M+XaF0ywNVjHxT0RxAEQRAE0ZwhwewIY4AbWTLsiGnyYSYIgiAIgmjWkGB2hDZLRt4h9/dBgpkgCIIgCKJZQ4LZEUqXjKwdwJJ76rEPEswEQRAEQRDNGcqSoYMYWZl46gckZv6Ewz0fBMdb0PPIOzbrylkyPkZ87nKb5am9HkZBqzFeL3NzhKKEvQ/VsW+gevY+VMe+gerZN1A9ex/KkuEDpMhKwy4gE+iV9ibQ63LddeUsGX/rZsno3acf0CvZSyVt3lCUsPehOvYNVM/eh+rYN1A9+waqZ+9DWTJ8icFfnq48V899NMk2CUEQBEEQBOEiJJgdYVQIZquzbBl2XFtIMBMEQRAEQTRrSDA7wuCCYBZ9wO0tpzzMBEEQBEEQzRoSzI7wC5Sn7Qliq4X9t5evmSzMBEEQBEEQzRrKkqGDGFkZW7ANfVIXsnmhHRFWccpm3Q1jfwVv8EePtLfQOs9ks3zvgJdQEtXH20VullCUsPehOvYNVM/eh+rYN1A9+waqZ+9DWTJ8gBRZmeEPCII5LCQQqFCsFN0JKErHuDFjAP8goPAbIM92XwMHJQHth/uk3M0NihL2PlTHvoHq2ftQHfsGqmffQPXsfShLhi8JiZGntS4ZAUKrhbey/+Ya/X2QSwZBEARBEESzhgSzI0Ki5WmtYDYGsP+iYK6r0t8HBf0RBEEQBEE0a0gwOyIwQp621KmXSYJZCPozV+vvgyzMBEEQBEEQzRoSzI5QZsmoLdcsc9XCTIKZIAiCIAiiOUOC2REcJ09Xl6iXSRZmIcuIPR/mwPCGLxdBEARBEAThM0gw1xelD/P5TCD/sO06UxYCkQm+LRdBEARBEATRoFAeZh2UufuSTZfprpPfchRaFWzBlpFfY9TWm3XXMSUv8VoZ/w1QHkrvQ3XsG6ievQ/VsW+gevYNVM/eh/Iw+wBV7j6T/jqt2iQABcCo4cOArZqFd24C/IKQ3LKbF0vZ/KE8lN6H6tg3UD17H6pj30D17Buonr1PQ9dxkxTMzQJtWjklrfuq/Z8JgiAIgiCIZgv5MNcXR4KZxDJBEARBEMS/BhLM9cWRYCYIgiAIgiD+NZBgri9Gf/afBDNBEARBEMS/GhLM9YUszARBEARBEP8JSDA7Y8aXQFhr2/kkmAmCIAiCIP4TkGB2Rp/pwM1Lbedb69h/EswEQRAEQRD/aiitnCu07AbMLwGKs4A1zwHFmUBMF7aMBDNBEARBEMS/GhrpTwdXRoeJLdiKPqmvYFfSOxiy+37VMhrhzzVopCPvQ3XsG6ievQ/VsW+gevYNVM/eh0b68wEujQ6TVgakAkOSBgO71Yto9B7XoJGOvA/VsW+gevY+VMe+gerZN1A9e5+GrmPyYa4vnFB1VkvjloMgCIIgCILwKiSY6wtnZP+tZnmeoUka7AmCIAiCIAgPIIVXX0QLs7lGnve/HUBkfOOUhyAIgiAIgvAKJJjriySYq9n/MQ8BsV0arzwEQRAEQRCEVyCXjPrCcey/aGEObdV4ZSEIgiAIgiC8Bgnm+iJZmKvYf7/AxisLQRAEQRAE4TVIMNcXgxD0d2oT++8f3HhlIQiCIAiCILwGCWZPSfmS/ScLM0EQBEEQxL8SEsz1peS0+rcfWZgJgiAIgiD+jZBgri+dktW//YMapRgEQRAEQRCEdyHBXF8i2gDjn5J/+5FgJgiCIAiC+DdCgtkTjP7yNAlmgiAIgiCIfyUcz/ONXQYbOI6bBmBafHz87d99953Pj19eXo6wsDCn6yVkL0GXk18AAHYOWYTK0HbeLtq/Clfrmag/VMe+gerZ+1Ad+waqZ99A9ex93K3j8ePHp/A8n2RveZMc6Y/n+aUAliYlJd2enJzs8+ObTCa4dNwdx4CTbHLoyDFAi0RvFutfh8v1TNQbqmPfQPXsfaiOfQPVs2+gevY+DV3H5JLhCSqXDMqSQRAEQRAE8W+EBLMnqAQz5WEmCIIgCIL4N0KC2ROMAfK0oUl6txAEQRAEQRAeQirPE5QimQQzQRAEQTQL6urqkJOTg+rq6kY5fmRkJNLS0hrl2P8V7NVxUFAQEhIS4O/vr7OVfUjleYLKwmxsvHIQBEEQBOEyOTk5CA8PR2JiIjiO8/nxy8rKEB4e7vPj/pfQq2Oe53Hu3Dnk5OSgY8eObu2PXDI8QenDzJFgJgiCIIjmQHV1NWJiYhpFLBONB8dxiImJqVfPAglmT1AKZgNVJUEQBEE0F0gs/zep73UnlecJBvf8XwiCIAiCIAAgLy8P119/PTp16oTBgwdjxIgR+OOPPxqtPCaTCVu3bvV4H5dcckkDlahpQYLZE5Q+zARBEARBEC7A8zwuv/xyjB07Funp6UhJScHixYuRk5Pj1eOazWa7y+ojmB3t798GCWZPMFLMJEEQBEEQ7rFhwwYEBATgrrvukuZ16NABc+bMAQBYLBY88sgjGDJkCPr164ePP/4YgDx63YwZM9CjRw/MnDkTPM8DAFJSUjBu3DgMHjwYkydPxpkzZwAAycnJmDt3LpKSkvDOO+9g6dKlGDZsGAYOHIhJkyYhLy8PGRkZ+Oijj/DWW29hwIAB2LRpEzIyMjBhwgT069cPEydORFZWFgBg1qxZuOuuuzBs2DA8+uijLp3vjz/+iL59+6JPnz547LHHpHOcNWsW+vTpg759++Ktt94CALz77rvo1asX+vXrh2uvvbYBarthIMXnCWRhJgiCIIhmzXNLU3E4t7RB99mrbQSendbb7vK0tDQMGjTI7vLPP/8ckZGR2LVrF2pqajBq1ChceOGFAIC9e/ciNTUVbdu2xahRo7BlyxYMGzYMc+bMwZIlS9CyZUv89NNPePLJJ/HFF18AAGpra7F7924AwPnz57F9+3ZwHIfPPvsMr776Kt544w3cddddCAsLw8MPPwwAmDZtGm6++WbcfPPN+OKLL3Dffffhzz//BMCyjGzduhVGo/OEB7m5uXjssceQkpKCFi1a4MILL8Sff/6Jdu3a4fTp0zh06BAAoLi4GACwcOFCnDp1CoGBgdK8pgAJZk8gH2aCIAiCIDzknnvuwebNmxEQEIBdu3bhn3/+wYEDB/Drr78CAEpKSnD8+HEEBARg6NChSEhIAAAMGDAAGRkZiIqKwqFDh3DBBRcAYNbbNm3aSPu/5pprpOmcnBxcc801OHPmDGpra+2mV9u2bRt+//13AMCNN96osiZfddVVLollANi1axeSk5PRsmVLAMDMmTOxceNGPP3000hPT8ecOXMwdepUqUHQr18/zJw5E5dffjkuv/xyl47hC0gwe4KRBDNBEARBNGccWYK9Rc+ePbFs2TLp9/vvv4/CwkIkJSUBYD7O7733HiZPnqzazmQyITAwUPptNBphNpvB8zx69+6Nbdu26R4vNDRUmp4zZw4efPBBXHrppTCZTJg/f77b5Vfur760aNEC+/fvx6pVq/DRRx/h559/xhdffIFly5Zh48aNWLp0KV566SUcPHgQfn6NL1fJh9kTSDATBEEQBOEm48aNQ3V1NT788ENpXmVlpTQ9efJkfPjhh6irqwMAHDt2DBUVFXb31717dxQUFEiCua6uDqmpqbrrlpSUID4+HgDw9ddfS/PDw8NRVlYm/R45ciQWL14MAPj+++8xZswYd08TADB06FBs2LABhYWFsFgs+PHHHzFu3DgUFhbCarXiyiuvxIsvvog9e/bAarUiOzsb48ePxyuvvIKSkhKUl5fX67gNTeNL9uYM+TATBEEQBOEmHMfhzz//xAMPPIBXX30VLVu2RGhoKF555RUAwG233YaMjAwMGjQIPM+jZcuWkv+wHgEBAfj1119x3333oaSkBGazGXPnzkXv3rbW8/nz5+Oqq65CixYtMGHCBJw6dQoA81meMWMGlixZgvfeew/vvfceZs+ejddeew0tW7bEl19+6dK5rV27VnIZAYBffvkFCxcuxPjx48HzPKZOnYrLLrsM+/fvx+zZs2G1WgEACxYsgMViwQ033ICSkhLwPI/77rsPUVFRLtaqd+HE6MqmSFJSEi86qfsSMQrVKRXngNc6sen5JV4t078Rl+uZqDdUx76B6tn7UB37hv9KPaelpaFnz56NdnwaGtv7OKpjvevPcVwKz/NJ9vZHLhmeQC4ZBEEQBEEQ/3pIMHsCCWaCIAiCIIh/PSSYPYF8mAmCIAiCIP71+Czoj+O4ywFMBRAB4HOe5//x1bG9hsG1HIQEQRAEQRBE88UlCzPHcV9wHJfPcdwhzfwpHMcd5TjuBMdx8xztg+f5P3mevx3AXQCucbQuQRAEQRAEQTQVXLUwfwVgEYBvxBkcxxkBvA/gAgA5AHZxHPcXACOABZrtb+F5Pl+YfkrYjiAIgiAIgiCaPC5ZmHme3wigSDN7KIATPM+n8zxfC2AxgMt4nj/I8/wlmr98jvEKgBU8z+9p2NMgCIIgCIJoPhiNRgwYMAC9e/dG//798cYbb0g5iXfv3o377rvP42N89NFH+Oabb5yvqGDkyJH1Pt5XX32F3Nzcem8PsDzRr7/+ukf78Aae+DDHA8hW/M4BMMzB+nMATAIQyXFcF57nP9JbieO4OwDcAQBxcXEwmUweFLF+lJeXu3zcZOF/Y5SzueNOPRP1g+rYN1A9ex+qY9/wX6nnyMhI1ah2vsZisSA4OBibNm0CABQUFODWW29FQUEBnnzySXTv3h0vvfSSR2U0m82YOXMmALi1n1WrVtX7uJ9//jk6duzoVo5pi8UCo1GOCaupqYG/v7/H18disdjdR3V1tfv3Oc/zLv0BSARwSPF7BoDPFL9vBLDI1f258jd48GC+MVi/fr3rKz8bwf4It3Grnol6QXXsG6ievQ/VsW/4r9Tz4cOHG/X4paWlfGhoqGreyZMn+ejoaN5qtfLr16/np06dyvM8z5tMJr5///58//79+QEDBvClpaU8z/P8woUL+T59+vD9+vXjH3vsMZ7neX7cuHH8/fffzw8ePJh//fXX+WeffZZ/7bXXpGVz587lBw8ezPfo0YPfuXMnf8UVV/BdunThn3zySakcYrnWr1/Pjxs3jr/yyiv57t2789dffz1vtVp5nuf55557jk9KSuJ79+7N33777bzVauV/+eUXPjQ0lO/WrRvfv39/vrKykl+zZg0/YMAAvk+fPvzs2bP56upqnud5vkOHDvyjjz7KDxw4kP/xxx9V9aAss4jVauUffvhhvnfv3nyfPn34xYsX8zzP87m5ufyYMWP4/v3787179+Y3btzIm81m/uabb+Z79uzJ9+nTh3/zzTdt6l/v+gPYzTvQpJ5YmE8DaKf4nSDMIwiCIAiCaB6smAecPdiw+2zdF7hooVubdOrUCRaLBfn5+ar5r7/+Ot5//32MGjUK5eXlCAoKwooVK7BkyRLs2LEDISEhKCqSvWZra2shjpI8f/581b4CAgKwe/duvPPOO7jsssuQkpKC6OhodO7cGQ888ABiYmJU6+/duxepqalo27YtRo0ahS1btmD06NG499578cwzzwAAbrzxRvz999+YMWMGFi1ahNdffx1JSUmorq7GrFmzsHbtWnTr1g033XQTPvzwQ8ydOxcAEBMTgz17XPPQ/f3337Fv3z7s378fhYWFGDJkCMaOHYsffvgBkydPxpNPPgmLxYLKykrs27cPp0+fxo4dOxAeHo7i4mI3roJ9PMnDvAtAV47jOnIcFwDgWgB/NUipCIIgCIIgCIwaNQoPPvgg3n33XRQXF8PPzw9r1qzB7NmzERISAgCIjo6W1r/mGvuJyC699FIAQN++fdG7d2+0adMGgYGB6NSpE7Kzs23WHzp0KBISEmAwGDBgwABkZGQAANavX49hw4ahb9++WLduHVJTU222PXr0KDp27Ihu3boBAG6++WZs3LjRpXJq2bx5M6677joYjUbExcVh3Lhx2LVrF4YMGYIvv/wS8+fPx8GDBxEeHo5OnTohPT0dDz/8MFauXImIiAiXj+MIlyzMHMf9COauG8txXA6AZ3me/5zjuHsBrALLjPEFz/O2NVYPOI6bBmBafHw8+TD/i/mv+Mo1JlTHvoHq2ftQHfuG/0o9q3yYRz/pnYM48MG1WCzCKvI6p06dgsFgQHBwMCorK2E2m1FWVoZ77rkHycnJ+OeffzBy5Ej88ccfqK2tRXV1tY2Prna/Sn9gi8Ui7bO6uhpGo1Faj+d5lJSUSL/LyspQWVmpWsdisaC8vBwFBQW4++67sWHDBiQkJODll1+WtrVYLKioqEBZWRkqKipUfsTKcxLdHPR8jPV8mLXnW1dXh6qqKowfPx7Lly/HqlWrcNNNN+Gee+7B9ddfj82bN2P16tVYtGgRvv/+e3zwwQeqY9THh9klwczz/HV25i8HsNytI7p2vKUAliYlJd2enJzc0Lt3islkgsvHNQEIiXF9fULCrXom6gXVsW+gevY+VMe+4b9Sz2lpaW4FpjU0ovATy1BQUICHH34Yc+bMQUREBEJCQuDn54fw8HCcPHkSw4cPx/Dhw3HgwAFkZ2dj6tSpeP7553HrrbdKLhnR0dEwGo0IDQ2V9hsYGIjAwECEh4erlin3D8BmO711AgICEBQUBH9/f3Ach8TERFgsFixduhQzZsxAeHg4oqKiYLVaER4ejkGDBiE7Oxt5eXno0qULfvvtN0ycOBHh4eHgOA5hYWG610BZZpGJEyfi448/xp133omioiJs27YNb7/9NoqKitC5c2fMmTMHHMchLS0NNTU1CA0NxRX/b+9+Y+So6ziOvz/tXXuNB20JpCUU4RA0/ElozzvTRCEQFWhjQEwwECm0mupFSCSNMYCJEmyKtNE0PtFoANvw3yiRB/6hD1p9ckX+WIVSkANL2loOFVPa0OodfH2wv6N7R3e43duZue1+XsnkZn+7tzP7mW8mv535zezVV9Pb28v111//vuV0dXWxZMmSurZZYb/0d9y6/R8g/8K4mZmZTd7hw4dZvHgxIyMjdHR0sGLFCtasWfO+123cuJGtW7cyY8YMzj//fJYtW8bs2bPZsWMHfX19zJo1i+XLl7Nu3bpC1nvevHmsXr2aCy64gIULF9Lf3//ecytXrmRgYIA5c+YwODjIfffdxzXXXMPo6Cj9/f0MDAxMahlr165l48aN7z3es2cPg4ODXHjhhUhi/fr1LFy4kE2bNrFhwwY6Ozvp7u5m8+bN7Nu3j1WrVjE6OsqMGTO4666JPw3SGFUuDJye+vr6YmzgepHa5Rt22Zxz/pxxMZxz/pxxMdol5127dnHuueeWtvyDBw+WeoS7HWRlfKztL+mZiOir9X7TssNcNYZ59f3331/48g8dOkR3d3fhy203zjl/zrgYzjl/zrgY7ZLz3LlzOfvss0tb/sR7D1vzZWU8NDTEgQMHxrVdeumlrddhHuMjzMc355w/Z1wM55w/Z1yMdsnZR5iPf80+wuzBt2ZmZmZmGdxhNjMzs7Yznc+wW34a3e7TckiGxzC3B+ecP2dcDOecP2dcjHbJubu7mwULFjB37lwkFb58j2HO37EyHrvf9PDwMIcOHRr3nMcwN6BdxnCVzTnnzxkXwznnzxkXo11yHhkZYe/evRw5cqSU5R85coSurq5Slt0uamXc1dXFokWL6OzsHNf+QWOYfR9mMzMzayudnZ309PSUtvxt27bV/cMZVp9mZ+wxzGZmZmZmGdxhNjMzMzPL4A6zmZmZmVmGaX3Rn6R/Aq+VsOiTgX+VsNx245zz54yL4Zzz54yL4ZyL4ZzzV2/GZ0TEKbWenNYd5rJIejrrSklrDuecP2dcDOecP2dcDOdcDOecv2Zn7CEZZmZmZmYZ3GE2MzMzM8vgDvOx/bTsFWgTzjl/zrgYzjl/zrgYzrkYzjl/Tc3YY5jNzMzMzDL4CLOZmZmZWQZ3mCeQdIWklyQNSbq17PVpVZJOl7RV0guSdkr6Rmq/Q9I+STvStLzqf25Lub8k6fLy1r61SNot6bmU59Op7SRJWyS9nP7OT+2S9KOU818l9Za79tOfpI9V1esOSW9JusW1PHWS7pX0hqTnq9rqrl1JN6bXvyzpxjI+y3RVI+MNkl5MOT4maV5qP1PS4aqa/knV/3w87WeG0nZQCR9n2qqRc937CPdBstXI+ZGqjHdL2pHam1vPEeEpTcBM4BXgLGAW8BfgvLLXqxUn4FSgN82fAPwNOA+4A/jmMV5/Xsp7NtCTtsPMsj9HK0zAbuDkCW3rgVvT/K3A3Wl+OfBbQMBS4Mmy17+VprSPeB04w7XclDwvBnqB56va6qpd4CTg1fR3fpqfX/Znmy5TjYwvAzrS/N1VGZ9Z/boJ7/OnlLvSdlhW9mebTlONnOvaR7gP0ljOE57/AfCdNN/UevYR5vE+AQxFxKsR8T/gYeCqktepJUXE/oh4Ns0fBHYBp2X8y1XAwxHx34j4OzBEZXtYY64CNqX5TcDnq9o3R8V2YJ6kU0tYv1b1aeCViMj6QSXX8iRFxB+BNyc011u7lwNbIuLNiPgPsAW4IveVbxHHyjginoiI0fRwO7Ao6z1SzidGxPao9DY2c3S7GDVruZZa+wj3QT5AVs7pKPEXgYey3qPRenaHebzTgD1Vj/eS3cmzSZB0JrAEeDI13ZxOBd47droVZz8VATwh6RlJX01tCyJif5p/HViQ5p3z1FzL+J2xa7n56q1d5z01X6ZyhG1Mj6Q/S/qDpItS22lUch3jjCevnn2Ea3lqLgKGI+Llqram1bM7zJYrSd3AL4FbIuIt4MfAR4DFwH4qp09saj4VEb3AMuAmSRdXP5m+Qft2OFMkaRZwJfCL1ORazplrN1+Svg2MAg+kpv3AhyNiCbAGeFDSiWWt33HA+4hiXcf4AxpNrWd3mMfbB5xe9XhRarMGSOqk0ll+ICJ+BRARwxHxTkS8C/yMo6eqnX2DImJf+vsG8BiVTIfHhlqkv2+klzvnxi0Dno2IYXAt56je2nXeDZC0Evgc8KX0xYQ0RODfaf4ZKuNpP0olz+phG854EhrYR7iWGySpA/gC8MhYW7Pr2R3m8Z4CzpHUk44mXQs8XvI6taQ0lugeYFdE/LCqvXq87NXA2JWujwPXSpotqQc4h8qgfMsg6UOSThibp3Ixz/NU8hy7W8CNwK/T/OPADemOA0uBA1Wnvy3buKMXruXc1Fu7vwcukzQ/nfK+LLVZDZKuAL4FXBkRb1e1nyJpZpo/i0rtvppyfkvS0rRvv4Gj28VqaGAf4T5I4z4DvBgR7w21aHY9d+Sz3q0pIkYl3UxlZzsTuDcidpa8Wq3qk8AK4LmxW7wAtwPXSVpM5TTrbuBrABGxU9KjwAtUThHeFBHvFLzOrWgB8Fi6I04H8GBE/E7SU8Cjkr4CvEblQgiA31C528AQ8DawqvhVbj3py8hnSfWarHctT42kh4BLgJMl7QW+C3yfOmo3It6U9D0qnQ2AOyNishdfHfdqZHwblTs0bEn7ju0RMUDlDgR3ShoB3gUGqrL8OvBzYA6VMc/V457bXo2cL6l3H+E+SLZj5RwR9/D+60ugyfXsX/ozMzMzM8vgIRlmZmZmZhncYTYzMzMzy+AOs5mZmZlZBneYzczMzMwyuMNsZmZmZpbBHWYzMzMzswzuMJuZmZmZZXCH2czMzMwsw/8BEDI/MQWzH0cAAAAASUVORK5CYII=\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAswAAAEvCAYAAABR6ZerAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAACq4UlEQVR4nOyddXgUVxfG39mNO0kgQAIEdw9uQVpoKRVKlQrU+7W01KlThbpRd6deSrFii2vwEDTECEQIcd3d+f644ztr2ewmac/vefJkdvTOHXvvueecy/E8D4IgCIIgCIIg9DE0dgEIgiAIgiAIoilDgpkgCIIgCIIgHECCmSAIgiAIgiAcQIKZIAiCIAiCIBxAgpkgCIIgCIIgHECCmSAIgiAIgiAc4NfYBXBEbGwsn5iY6PPjVlRUIDQ01OfH/a9B9ex9qI59A9Wz96E69g1Uz76B6tn7uFvHKSkphTzPt7S3vEkL5sTEROzevdvnxzWZTEhOTvb5cf9rUD17H6pj30D17H2ojn0D1bNvoHr2Pu7WMcdxmY6Wk0sGQRAEQRAEQTiABDNBEARBEARBOIAEM0EQBEEQBEE4gAQzQRAEQRAEQTjAZ4KZ47hOHMd9znHcr746JkEQBEEQBEF4ikeCmeO4LziOy+c47pBm/hSO445yHHeC47h5AMDzfDrP87d6cjyCIAiCIAiC8DWeWpi/AjBFOYPjOCOA9wFcBKAXgOs4juvl4XEIgiAIgiAIolHwSDDzPL8RQJFm9lAAJwSLci2AxQAu8+Q4BEEQBEEQBNFYcDzPe7YDjksE8DfP832E3zMATOF5/jbh940AhgF4FsBLAC4A8BnP8wvs7O8OAHcAQFxc3ODFixd7VL76UF5ejrCwMJ8f978G1bP3oTr2DVTP3ofq2DdQPfsGqmfv424djx8/PoXn+SR7y3020h/P8+cA3OXCep8A+AQAkpKS+MYYCceTEXiOni1DZLA/WkcGNWyh/kXwPI/qOit2bN1EIx15GRpNyjdQPXsfqmPfQPXsG6ievU9D17E3BPNpAO0UvxOEef9qsosqcc8Pe3AgpwQAkLFwaiOXqOny4YaTeHXlUbw7IaSxi0IQBEEQBOEUb6SV2wWgK8dxHTmOCwBwLYC/vHCcJsWnm9IlsUw4ZsneXABASY1n7kAEQRAEQRC+wCMfZo7jfgSQDCAWQB6AZ3me/5zjuIsBvA3ACOALnudfcnO/0wBMi4+Pv/27776rd/nqS318i749XIO1WWbp91dTQhu6WP8antpciZxyHo8P5NE9jny4vAn5yfkGqmfvQ3XsG6iefQPVs/dpUj7MPM9fZ2f+cgDLPdjvUgBLk5KSbm8uPsym0lQgK0P6Tb5J9gnbtxEoL0NISAjVk5chPznfQPXsfaiOfQPVs2+gevY+DV3HNDR2A8FxjV2C5oenGVoIgiAIgiB8AQnmBsJAipkgCIIgCOJficd5mL1Bc/Jh5nkeHMdh8ZEarMwgH2ZXEH2Y5w3g0aM1+XB5E/KT8w1Uz96H6tg3UD37Bqpn79OkfJi9RXPxYc4vrcbQl9fi3esGokP7EiAjXVpGvkn2kX2Yg6mevAz5yfkGqmfvQ3XsG6iefQPVs/chH+YmRPb5SgDAs0sOAeSR4TZNr2+DIAiCIAjCFhLMHlBRYwEAnK+sQ6UwLVJdZ9HbhCAIgiAIgmhmkGD2gNLqOmn62+2ZqmVl1Wbt6gRBEARBEEQzhIL+dHDVUdyUXYevUmt1l93aJwDRQQb0jjU2dPGaPU9vqUJ2mRWPDuDRi4L+vAoFlvgGqmfvQ3XsG6iefQPVs/ehoD8fYM9RvNZsBccB/kZmmD+64SSQekR3H58fYkI6Y+FUr5WzuRK+fxNQVoqgYAr68zYUWOIbqJ69D9Wxb6B69g1Uz96Hgv4akT7zVyH5NRO+3ZaB7KJKLFjBxHLL8EC72xRX6lugCcDa9Do3/nvwPLD9I6CmvLFLQhAEQRBNFhLMblBrtuJ0cRWeXpKK+xbvBQDMGpmIXU9OwuoHxmJk5xibbQ6fKfV1MZsNTdAb6L/H8dXAyseAVU80dkkIgiAIoslCgrme7M0qBgDcOKIDAKBrXDjGdmtps971n+7wZbGaFWRhbgKYq9j/ynONWw6CIAiCaMI0SR9mRdAfTCaTz49fXl6uOu6RIgsW7qzWXffw3l3IDmBJmKMrrQCAQa2M2JMvp5UT95VVakHrUAMCjP/tpM0VFUykVVZVNcr1bQ7UmHlsyDFjUgc/j4Zd197LWmILDqMPgMKCAhyia1FvnNUz4TlUx76B6tk3UD17n4au4yYpmJtS0J/VymPWE8vtrnvxpGQYDbKgufpi4K/9udjz415pXpseg9EmKgiz5v+DS/q1waLrB3mt7M2BsAObgNJSBAZR0J89nl1yCD8cycTYpL6Y0qd1vffjLOghf1cRkApYA0LoWngABfB4H6pj30D17Buonr0PBf35mKUHcm3mvXplP2laKZZFLu3fFuseGif9nvz2Rikv88ZjBV4oZfOEXDLsU1zFcnxX1Xk3n3fGOWbtzyup8upxCIIgCKI50yQtzE2Jv/Yxwbz36QtQUlWH9tEhKK8149HfDjjcrmNsqOp31jk2jHaN2YpjeWWICQ1ATJj97Br/BZpiDvCmgq+cdqyCuwfH0bUgCIIgCHuQhdkBRRW1WHskH3eM7YQWoQFIjA2FwcAhPNB5O4PjOHx/2zDpd5qQLaPGbMWFb23EpDc3eK3cTR3RJdfqxjZnS/R9yP/teLtNwQvS3MC7czUIgiAI4r8FCWYHZJyrAAAM6xitms9xHOZP64W/7h3lcHtxgBMA+HjjSdWy85V1sPxHfRI4QaS5Kga3nijE8AVrsfzgGS+WqmnBce7VUX3hhVcAh//mvUgQBEEQrkCC2QEZhUwwd4gJsVk2a1RH9EuIcri9nyIbRl5pjc3y9UfyPSugm+SXVuPnXdlub3e+ohblNQ3vS+tqe0HMZZ2Seb7By9BUEe8cb8tYEswEQRCEK/A8j5TMov+sO2WT9GFuKmnl/jlSAz8DkHFoN3J0gvuckVFicbg8Zf9B+OWn1beYbvPc1iqcKrUioOg4ogJdbyvNWlmBqEAOb4+3bTjUh7IyFmBWVVXt0vU9lcEC4DKzsmEy+baR0ViUninCg35LcDTNCFPZiXrvx1landzsbIwCYK6toRRHHkAporwP1bFvoHr2Dc2xnrecrsOnB2txV/9ADG/TJOWjCkor5wPEVCQfH9uO3vEWTJrg2PXCHmlnSoFtmwAAb1zVH93iwnH1x9tQVceEdK9evZDcv22DldsZj21dA6AGQ4aNQHxUsOsbrlyG4hq+wdKzhB/cDJSWICAoyKV9Zm3LAI6konXbtkhO7tsgZdCl7Cxg8ANCY713DBcJ2H8jRvr9hR0RIzEs+c5678dZWp2NNYVADhAY4EcpjjyAUkR5H6pj30D17BuaYz2n/HMUwAmEtOqA5OSujV0cp1BaOR+Sea4CnTXZLtxB6cN85eAE9E2IxMD2UdI8q6JbI72gHEUVtarteZ7HH3tzUF3n2FLtKqLvcFVtw+zvZEE5TuSXu18OwVjvaq+OOHCHxQqsTctD4rxlyC/zQhDgG92B1zo3/H7rgZFnVnWD2bvBjqJLhoFcMggv8/aaY3jzn6ONXQyCIOqJ2M9u/Y+6ZJBgtkOt2YozpdVoF11/NwR/nRH93rl2IB6d0h0AVEF/E97YgMlvb1Stm5J5Hg/8tB/PLU2t1/GLKmolEb7hWAHOljLxVVnruj+yPbH+1J8HMfGNDR5l+3DVh9lPcIexWnl8vS0TAJCaW1rv4zYHrELnj4H3bh5m0ReN+4++AAn3Kamsg7UeActvrzmOd9fV372IIBqTf1LPYldGUWMXo3HxUTB6U4UEsx1OF1eB54H2HghmP6Nt9bYMD8QlfZkbhpUH9mSdR1k1syYWlNWgziKn9xIF9fG8cny2KR0n8suQW1yFxHnLsEEYAGXxzizsyy5WHWPFwTNInLcMg15YjUEvrEaN2YKbv9gpLa+stWDp/lyXrMPFlXWq32lnSpE4bxm+257lQg0Apwor8PLyNN0PrKuJzIwGDsMNh9GiKhNiG8TdDzbP880qK4mFY4KZs3pXMItvPs6tJH/Ef5Xiylr0f/4fvLGaLMXEf4s7vk3BVR9ta+xiNCoGqXe4+XxLGxISzHbIKmIDjbTXyZDhKnoWZgAwCLW+J+s8pn+wFZPfki3LXZ9cgQUr0pA4bxnWH2Wi+FxFLV5cloYrP9yGtWl5AICl+9mAKvN+P4jL39+CBcvTpJt47k/7VMe75atdqt+puaWY8+Ne3L+YDd+95UQhVh/O0y1rSZVaMK84dNZmnZ92ZUn7UmK18vjf93vwycZ0pAsZR5S4+tAZDRwWB7yIeSdvkEZWdFf8fr8jC52fWO4dVw4vYOVEC3OdkzU940Q+s9RTlgzCFcQG9NL9/50UjwRBMKSUsI1cjsaCBLMdRMHcroUHgtmgX72i6PthB7PS5moG5fh4QzoA4KMNLHfz6fMsq0RJVZ1Url9TcrDzlNw99PHGdLyy8ihOFVYgOjRAtb8tJ86pfi9cwTJznC5m+5352Q7c/s1uaXl5jRnrj+QjJbNIykUNANPe26x7Po/9dhBL9uWiuFLtg9372VWKAVssqLNY8f76E6gUfKjrY/AV8xPrbWu2WDHs5TVInLfMRlD/ticHAJBdVIn1R/Pr1aXsS6yShblh/M3tseEoayiRYK4fe7LO47wm9uDfTH0brETjklFYgVzhfU8Q9UUadMxLFuZ/Us/izdXHvLLvhqBJZsloCmnldh0/Cg7A4T3bcIRzP6UcAFSZ5ZtKeR7F1e51f9cq3DSOnZLzKN/6hbp76KMNJyWR7Yg6CytXcWUd3vp5jTR/3fr1MHAc3t1TjT35tkLt4OkShFrtu3EMemE1WodwmD8yGAFGTsoGAgBrtuzCXcfqkF0mn0tVtWupzFJz6jBdmC46V8jKcugQggqPqNbbcroOeaVMvKxZb0KgwsJfUsI+Fu8s3YWNOWbc2icAYxL8VdsnC/+bQqqfkkrWiDqXf8aj8jhLqyMKZXMdpZWrD7NWViAhjMO8Adb/RP3lV7Lnt6ratZSQetR3u+aYhsvXvL67Gr1iDLi4o9poMmslM3x8NcV5EHt96zmjxIK2YQYE2OlZ/bfQUPego3p+eUcVRsf7YazmG1VcbUVUUOPZOTMyaoX/WTCZbHubPeUO4T4d5J/bIPujtHI+wGQyIbJlLKLO5GLC+PH13k91nQVYsxIAVKlNCstrANMaO1s5ZkOO7NNa1gC99e/skQdUWV4YjRmDE1C48wCASt31t5+xb/G08kBuBY/Ht5rxyOTuAA5Ky95KsR24JSAw0KWUL7k7sgAhVqh1q1ZA3hn07NULyf3UKfmyt2cCBw8BAIaPGI3IEPll83bqFqCkGKVcGIBitOnQGcljOqkPZGL/mkKqn9WpfwBVQKvoKPTxoDzO0up89c8WAECgf8OklXv894OIjwrCvROafsohT7FaeWDlcuSU8wgLC7Nbf+fKa/D6P8fw7LReCPI3+raQDUx6QTmwcQP8/APcv19WLgNQ/+erOabh8iVWK49ZK5fjUKEFr86+UL3QjbqvTz2fLanGrAVrcXVSAl6d0d+tbX2B2WKFhecR6Of8+cs5X4kEvZ5lD+9fLSaTCQm9klBZa7YZBG3WymU4dr4Wz9xwgTRve/o5zP1kOz6YOQgX923jdP8pmUXgOA6D2rdokPICQCp/Ajh+FO3at0dyco8G26+EF+qY0sr5gOKqOkSFBDhf0QH+OkF/AGDUWKxnDmuP8d1benQsPf7430jcnSynSbuoT2vcOa6T3fV/TcnBtZ9sh9niWQDYuYpazPv9oNP1XO3VtVjl8og+yKcKbH2ic4pkkV9jYcL+2SWHsHR/ruRwIPpke3ptvY3FRz7MooW5obJk/LgzC6//03S71BqSOqtrz8nCFUfw484s/H2g+fv9moWH9r+aVqopc+vXu5yv5CUKy5lB5ODpppm96NJFW9D9qZVO1/v7QC5Gv7Iem48X+qBUwKQ3N+DSRVuk39V1Fmw5oX/sw0JmKKUrpiOu/HAbpn+w1fNCKpBSwjpx4eN5HpuPFzqNU6qoMSO7yNY456kG8RYkmO1QXFmLqBB/5ys6wGhndECDZv6Ll/dB5jl9i667JCqCFAe2b4G5k7qidUQQAKB32wjMm+K8Vaj1qVZyUZ/WePNqtQXhttEdpemObuStVgrmrScKkThvGRLnLcNZ4fg1ZgsS5y3DN0IqOQDYlcGGx35Dx8/p443p0rTodvL1tkzM+VEOSBTT7IUHNb3OFZ7n8fOubFTXWSQfZnjRh5nneRiE7BiUJcN9zBbXRKMoMhuqo7q6ztJoPsRiFh/yYXYdq5XHuXLbHraGRgwSF1m6Pxd5pfUPct55qkhXzOhRY2b3RaCfe5LiXHkNVqWqu/Yraswui0JXOXzGNSG/N6sYAKTYGz28mSHi2SWpmPnZDt1lop5ozMaqFPSnKcLWE4U4pQjsX3bwDG74fAe+3+E4m9bsL3dhzKvrbeq0soHGnmhoSDDbobiyDlHBnglme2iFNMdxuH5Ye4/3O6ZrLEyPMBeS6QPjAQCBfkbcOKIDAHaTcxyHkZ1jEBpgdPvlNqJTDD68YTCm9msjCfORnWPw5NSe0jpT+rR2eX+FVVbsyy7GV1tO4XrFS+LHnVnIPFeBo2fLAADH7aS/W7wzC5e8twnrj+ajRJP+rtZsVeeQFh5I0cIsPp+ni6tQY24aD+eq1LN49LcDeHvNcVg51nXIWb1nYa61WCURRwOXuI/ZRdEofuDsxAC7TY+nV+IBTSYcb3PkbCn+2p8rCWVXz10PTwTH3qzzOFPSvILX3l13HINfXOPTDD0VNWbM+XGvKp2oElcCVa/+eBvGvLrepeOJ71B3vym3fr0bd36bgtJq+T0358e9uPrjbTbvdGcs3Z+LbSfVAe48z7sU1yOvz/47Cluq1Vg/j+eV4davdjXIAGNH8srsLvNGwO2SfafR5YnlDst+8xc7sWA5SxQgvsu0z/D1n+3A+NdN0u/soirhv+MG104hr3V5jTp9amVN0/gmayHBbIey6jqEB3lHMOsZnm8b0wmnFlyM+ybq+34mtLAdyrpLqzDV7zcEy++pBRfjzWsGSPNnj0rErJGJmC1Ygr+/bRgOPTfZJWtwzzYRGJoYDQBoE8Us1YF+Rvw1ZzTCA/1w17jOUuYKAHj4wu7SwCxa7hjbCVcnJUi/V2aYcfn7WzB/6WHVeu+sPY5xr5lw93d7HJZt3u8Hceh0KWZ/uQsvLlPvo9ZsxTnFR2F/TolquZXnUWexYtTCdbjwrY1uvZyr65jl+wOTPAjDgZximxR87lJUwbYvrqxVWJi9KJjNVrIwe4CzbsPqOgtO5JdLPSkGzVf4660ZNjnUnSF+qP7a3zBBMa4y5e1NuO/HvVLPjSdZZl74O63e4uKKD7ZirIsibn92MeYu3utQYNRZrF63/oquOOcrGv5ZvvLDrXj01/0280UBomdhTskswsAXVmOlTopQV8kvrZZ6AgGgQhA4gW766IuW3AqFYNotiCity1NlrRn7sosx6IXVuhk/5vy4F9d9ul0172heGRaukIPDd2UUged5mI7m459U2/O352qgvIe0Yu7pJYew9kg+UjLP627rDo4ak+5YmO09XzVmi+oYr648CrOVx/G8crvidsOxAqn3VuxVUz5SGTopY6Uyutitlleqfga1ArqpQIJZy4m1aJP7DypqLQgN9E63vfbDKcJxHB6Y1BUTerSyWdYqPFCa7tkmArNGJiJY8XL6e85otAoPkvajJCTAD/Mv7Y0w4Xw4jgPHcfjmlqEOy2k0cFhx/xj8fNcIvHfdQDx/WR9pWUSQPw4+NxljuzHf62B/Iy7p1wZGA4cLe8Xp7q932wi3AkJOu5EGqaxa/YDVmq0oKrdvRTFbeSm9Xea5SvR//h+XjyX6630nuIoUVdTi0kVbcMUHWxxt5hSxu9vfaIBFsjDX78WRW1yF/32fglkrK+wKhr1ZxbIPs48tzBU1ZiTOW4Zvt2eq5tearQ1m8bdaeZe7lO2RX1ot5ETPt1nmzMr6yK8HMOnNDdLARNrn/tm/UnH5++7dM55YdhsC8V6yuGklVt6DX2w5hV92Z+uu54r1uc5FV5grP9yKP/flIr2gHE/9eRBVtbb31TNLDmHwi2vcuuf09uOIWsFdwZ6LniekZJ7Hz7tzbBowh04zA4E2jia/rBp/7mWNre3pamusM/ZmnZcaF0NfXovhC9ZKy8pr2D3uroVZdOUoV7y/q4V5Yr2JDHtpLS5/fwuKKmpVYnfIS2vw+eZTNvvOLqrEqkPq8QWu+mgbftyZjVlf7sId36bYbCPefqtSz2LloTPSAGHKAcW0Yk6sY63l2V1O5Je7lPrPbOHx5B8HMfOz7XbXKdLpQSgsr0H3p1biq60Z0jzxlTRt0WaXehPEeCLxeeZ5HskKy7IWe1pHi7Zh585oxL6EBLOW1N/RIXMxKmvMCAnwPKL99av64+85o1XzHL04OY7DF7OGoFucbD2+cXgHdG0VLv3+/rZhmH9pbwT5s8v3wKRu6BMf6XbZWkUEYVSXGNW8/gnyfpTlnNa/rSS49Uh7YQoWXT8IANAmUraGb3gkWZp2JUK5vhRorES1FgtyHXTdWq28/YfSid+w+MEMDjDiWF4ZPha6/NJ1AhHdQXwp+xk56cGsr0vG1Hc3YflB9lGx11q/6YudkisGx3tuYXanq11sdHys6S6d/PZGKTinus7CsjJo2HqyUBWUU2u24qTOeqvT8jDm1fX4c+9pl8ul5YDQMzH7y11InLcM+YoXe52TD6QYvCM2zFz9eDiixuz+dSqrrnPpA7T1ZCGSXlwtCXw9RBFjL97RYuXx6cZ0G1GpratXVx7FdEUDM7+sGhe8uQEdH1+Oae9txg87snSvvZbqOgsWrEiT3LeUiI2LR387gO+2Z2Hj8QKbdcSBmFztHdp0vAA9n1mJPVmuWxPFOjNrKu1MSZXufVsfOj2xXPX71q9ZXn2tYJ7w+gabRqoeymd5+gdbYLHyuOKDrZj+4Vbd3gXRYOGOYFbm273grY2os1jx2aZ0qb60grlM8R7zF45Ta7aioKwGL/wt9zBuOl6A31JycPn7W/DWGttYF0f+ySK7Ms7jru/2SC4tyoZqpebeDhDquE5T3vIaM15fddTl3pRJb25AoR0jz9dbM/C4EEhvsfL4fkcWtpw4h593Z0uNIyV6gvk5oSdX+T509510SAg8rLVYkV1Uicd+O6C7nnj/ONu7KDHySqvRd/4qaX4FuWQ0EwLCYLRUo7LOgtAGEMwzBifYiFltlgw9lA/oc5f2RqLCfaKFEIwoClA7yThcQmutWXT9ICy9lwl8v3paRJSW+Tgh4BCAJPCVfH/bMPw9ZzQ6tXQ9WFAPbXdYrZnHkTP2/cGUFmYbLI79+8TtQgL8cOFbG1XBhp4gXgt/o0Gy+PL1tCieV7iYVDjo3hKP48iHuaSqzqUPe32sn1qNrQwceeTXA5jwxgaV2Bvy0hpc/+kO3PC57PM+7/cDmPjGBhvRkyMM+LPsoOvZKarrLFI0OgBUayyPaQph5syXUHx6aoQPplYw1YcaN1wZiipqceRsKfrO/wfDXlrrdP23Vh9DYXktUnPtC4rj+ez87VmYRyxYi5eWp9m6SFlsxc+erGJJfP2x57QUq3DwdAme+OMgrv6YWdB+3pWNJfv0Gz1fbc3AxxvSMfntjbrLATmQSxRzPM9LgyyFBrB3VXFlHVYeOoM3/lEP+b3zVJHK91hsQC1xoxEmnvuGowX4ZluGNH/EgnWY+MYGl/dTH7QCVq/x/P76E+j9zEpkF1Vi1pc7sWhvteq7sCerWLIsZ56rRH6ZrQtLbjGro7BAP6cN539SzyJx3jK8u/a4av7inVl4cVma9NuRxVYUqXrvths/34mHftmvcslTUh93IKUYrqjVtzBXafb79dYMLFp/At9uy0RJZZ1HLnvP/pUqTSufvUd/PYBLhAHFrvxwKya+YQIA1bl/LViUxdGBjQYO+wVXMK0UEZ/HgrIam1iB08VVWHeE9bRV1pjx9JJD+Hl3jmodsadGzw3tmSWHsELxLj6eVyatl3O+StVL7Oib1ZiQYNYSEAqjpRo8zyPEWy4ZCiFqb/hs8WMcEeQHg4HD7WM6YuH0vljz4DjJ5UJ8GWpdMNxB+9FPaBGMYKGh4Iqwd4Yy72ywxr8tIoBDj9bh6BMfia9m6buHfHzjYLf8a+dP6wWAvWx/2GnfkmK18vYDC8zyB4HneZs6Eh9m7fm4i8XK47mlqfjQdBKfbz6FV1YyXzt/IyefcwNYfvU+kmIXmCyU7X/kpn+wxaUP+1kH2VW0aK1HeojR8/kK/7YCxcc6cd4ypBeUY5ngIypapMUPk3idNh0vwOKd6mjtGrMFzyw5ZGOJufeHvbj43U2SSNf61pUqPnrOXAPEx0dsYCnPWXtP5ZyvxCO/7LdbL0fOluLVlUfsWpi1FtySyjpc/M4mTHl7EwAmUPNKq3HkrFoM8zyPrSdZ+ifxWb32k+12syuIVip7jQVRTH2/IwsbjhUgcd4ynC6usnte5bUsI4KeABd7IR797QDuX7wPS0/aCiBlV774sc8uqsT760/YrCtavRfvysaA51fjRH45QgPZORdV1OKu7/bgvXUnJMHH8zyu/ngbrvxQTs0l1tGxPPsNyJ93ZePeH/ZIwkw89wUrjuCZJakora5D4rxldrdvSOylNlXyw44sVNRacCyvDKajBdidZ7FxUTmruB+UDQixzrOKWEN38a5sdNZYu0WeW5qKxHnLdF0hANvsTGK9rT6ch5RMddYMsfcz7axza7EWe89QRY0ZP2reEyJKf2rxvWK2WPHqyiOSgC6qqMUHphOorrPgdHGV9K56eUUa+j//D/o/J7v9Ld6ZJQ0m4y72svOkZJ7HSaGXs6hCfm99uildFW+xJ6sYl72/BYnzltlk5yoXzmXIS2swYsE6ySUFAEYtXCdNl1abEaTTY/zE74fwzJJDNsGTPM/jm22ZuPt7FpdksfK44C25kasV59pGSVOh6eXWamwCwmDgLQhEXYNYmJ1hz09afCiemdYbAOBnNODaoepMGgGCYPbEN058kOZP64VurcPBcZwkxI0ejNj0/W3DsEdj9dUO2vDuhBDEhDHf7GCdug70M2By79YwuiiY/3lgLGrq2LpnS6qQV1qD0AAjKnQsyRaet/9QWmRR9O32TDyzJBV7nr4AP+/OxpdbTuGe8V0AQDfqXezOthcwejCnBI/9dgBvXTMApdV1+HJLhs06fgaFhbkBBfOBnGK0Cg9C68ggbD3J3AVccck46aKricoHjueB8jwgnGVNsVqZr9v9E7viysEJqBauk70AFmVDJa+0WtXDoiQ1t1T6ANbUWTHhjQ3o1DIU6x5KRrFgZa+us2Le7wdVz8+yA2fwzbZM1NRZ8cqMftL8NWnM5zG9oALd4sJt7mHli91Vi7EomJUCWytwH/xpP3ZmFGHG4AQM66R2kwKAqz7chrIas24u59WH83D7N7uxcu4Y9GgdAauV1/XJH75gLXgeOPz8ZPA8sDvzPM6WVOGx3w7ivesGqlymtqefQ882EfhldzaeuLinzb5c4ZONzN1mb9Z5DGgXpbvO/L9S8fue07ikn/OBGH47bmuhUwrtWosV61PzpY+yFvE9sEFIv3Ysr0x6/4oWZ4C5d7UKD5LWzy6qwoTXTegQE4K+Qm/hCaHHpcbM8uZyHIftJ8/h8Yt74rmlqaioteDvA2eQ8tQkG0upNod8dZ3F7QFtCstr8PSfh5yuFxbk59SPX3Q9VDZG+85X3z/KxrCyAVtazcYrOH1efi60banbvt6FNWm2MQBaPjSp3bNE0X77N7tt1q0xW/HQz/vx254cm2XO0HPN+TUlBwtXOGqQyidVUcMC595dexwfKMr88YZ0nC2thsXCq9Ke6r3itOMUuBNEW6ZjAPljr7oeihQBpp1ahiFPp1dAj5LKOkQovl32sqysO5KPDooUtiLi9bhfSF5QY7ai77Or8NL0vurjaKztP+5UxzQ0VZeMJimYG3No7PicM+gKIATVyEo/DlNNhleP58ebdc+xooq9oE4eOwJTma21BAAKC4VBPNLTYeL1g2iccV4QAOb8dNTWGWHKBs4LQ3dbzXUe1X9fI2AynUarEA75lTz27EnB+ZNGdG9hQJAfpxq2stps+8K4ONEIk8nkUDDPHxGE+dtYPWSl7sbZCraf9SnMWhsfyuOYTs9c2pGjyAvSbxBs22xCTRALZvxqG6uf3/7ZhIU72HGeWcK6xzJ0cmdPeGU1Cqp4u0PQLkuvxeEzdXjl960Y0Ub/8Xtn7XE8G1UMAKgoL9O9Blaexx/H6zAmwQ+tQgwor+Uxd30lbusXiOGa/W7dmYLSdD/MWlmBAAPwyYWh+P0ge4GKlmyLzrU2W3nVx2/NuvUuu+mk/fQseh55BymDXkVZRHeU1/LIKqrEQ7/sR0zZCRw/z16IZ0qq8fPydWgVoraE/bhsvSSY1+/Yi6os/brKPC53/S/fwIaKTy+ogMlkwtFT6o+E8vwOZrMXdu6ZMzCZbHO+XvLeZoxoa8TRIvW9tz/tJExW9qxlllpwt/EvbLT2Q3l5B2n/56utKKnhUVvLjlFaye6h1CNHYapi7jtVivvdZDIhI5/dS2kH96EqiwmYc1VWrM0yY3pXf+kjmaUQP+LxvjrAzvOXNTswJsEfNXYsUOKHu9czqzCijRHbzljQryU71ta9qSgtlj9Sx46kYdUOK5afqsOAgDy93cFkMsFs5VFWyyOz1IoDBeqP3Ol81tjYtS8Vhaf0LZ0b01g3cfpp/WOsW68fiCSe+4cmWXz+75M1WJdt3zK1PzUNsWUncP4ce47v/3EPhHYbtu+VxeeSNVvQtYURBZXytU8vrEB6YQUMVeycispr8P3SdViXXYe1WfIxu3FnVA30t37baGNd37JTbWF95Ku16B1jRJARiA83wN/AMZexOiAiUP95++5wDdZkObfCpWSetxvMtf5QFpIjCmCuZvfnjgNHdNcDgE0pssDbnCL7rX60ZCOGt/HDWY0of/mHNYgJ4tAlyoA1afULvL3yw224tY/+AFOHDh/Fb0ecp8bTo1jhribeRw87sPaaTCZpSHgA2L73IL5euw/bzuhb4Y+etA1AFPn7n/VYlWHb8LvzY/2gc713/8ZjtoL/gZ/kTClXvrUSaefksvlVncfqDa4NYLJu8zZ0iNBvvLUM5lBQJb9bHI0dkZGRAQDYfSQTZTUWPPnrXmnZ7PdX2dlK5sDho2hb5bmrIw2N7W32ngZOAKFcDQb164NkF4agrBfCEJAto8KRnDzGZrHf5tVATS0G9e+LZDtZJ37J3QOcPYOuXXSGeXaR4L0bgbIyjBw2BL3aRgBgmQFgWotWUWFITh5Xr/0q+bp7KRasOIJrLxqM4AAjkpMBbHsf20paYkTyJdJ6//Qtw76sYjz62wE8NbUnbhPOybDyN9X+Xr+qPx7+ZT+uG9oesy7ri/nbWF1OmjCeBQpt2YCVwktpcNd4HNtp25go9o/FX0dsXzwAsKs8AiuPGrHsvtFIX8m6F1/a4Zq7gfhC0btveZ7HqqKDALKxLsuMK0f3A3boW8NOl1kAfyC33Irw1r1QLuRV/fSmJPRvF4nSqjosXbURWXWhWHLPKOzKKIJ53TZ8kVqHeddNku4vAOjcvTe7j1cuQ60VGDduHBbs3YSQgEpwwjfXz2hAcnIyzlfUYu5P+/DajH548s9DWH1YFjJDR45WWR+054aVclds10BmwR4cHwQMTmbXZR1z6+iTNAJ+Z8qAHcwP+VxIB1yd3Jl1Ya9kAX9PbJYtVq3bd0af/m0Fn3R1Uv8B/QcAu9m8hTvla5ScnIy3Dm0GIAfEjB4zFn5GA1JzS3D0eBqAc0iIb4vkZIX1Q1Fvh4o4gDcCkIVJTOu2iO6SgD5tI3HgdAlu3jMdj2ExTGFLpGve7ckVqLVY0TI8EKitQY3VgFUBD+Oc33UYmfwUACEoZ81qqazl61YCsKDvgIF4Z+0JjO0ai8Vp2TiRX4Xlp/R9H8Xj/Xl2L5Cbiz69eyJ5YALLsbt6te42IqVcKIBS1BpDAJShX6/u2LrhJAD2EUzo1A3HjuQDyMOQ4SOAtbY+0CNHj8XDv+y3m+KO9w8CUImvD9fiq9lDgG22I9EVCs+LX3A4lNdKJLBdX2ivOQCMGTuOCZSVcjexI7EMAPEdOiF5XGf8lb8POHtaEssAEBufCKQyq2Dbzr2Q3K8NDuaUABs3q/ZxtMwfgBkWHnhyi21Q8UMb1PMiW7cD0tSW07jE7sAuWeAsPVmHpSfZNb52SDssvLIf7v1hD/4+cAbDO0Vj8R0jbI7z25m9QJZ7qQU7xYYiXREjkFlqxfaq1jhVysoXFtsWOKF2Y7smqR1+2p2NiLh2wGG2XsuEjkAq8/U2RicgObkHrFvWAJAbqJ8caJhUfZ8f0hfFCYmdgCP2Bb6rfHYiWBhm2v7ItMnJyTiRXwZsZC4EX6U6FupdOiUC6cd1l927Tl9krs7Uv3eTk5OZpX2l81EKRVLymFiODQtEoJ8BUS2j0ad/e2DbNqfbdu3VHyO7xKregyJKsSwS5G9AWKCfTbDiOS4SQCFCI1sA+YWA0Q+oY+e43slzCgBt2iUiOVk/xa47NPTQ2E1SMDcqgSw7RSiqEOQDl4y3rtFPsyZaJfQC5UREh3qPXDKsYiozeR8twwPx+EU9XBqv3hV6tolQp7ArPQOsegJ9QzsAU66WZneLC0fXVmHo3CoUg9q3kOb/csdQ4Bs2ff2w9pgxOAEzBsv5nJVoXTs6xbLrGWA0qLpGHeWxXZKSiZN8PLZqkuC7w5J9pzG5d2upq7WwvAZJL65RrXPPD/bzTBskqzqP2V/tkgaKuf2b3YgK8cfnNycBYP50W08USkEhtWarjT9YWY1ZZeX6cWc2juaVoX+7KLw9qh/wJwv+qzVbcds3u5GSeR4LVxxRiWWA+YDaE8zagJefU3JxvR/wxO/7EXA6VfIVBWBTD8WVtTiWV4bfUvS7V+cvPYyFK49IbhxK7GWqKK6sxf6cEgT4GeSoe4sVfkYDbvp8pxQUo7zvtcFKgX4Gm8Chb7Zl4pttmXj/+kGIC9evC/E+E7u4a81WdA/KAY6/hgd/ugQPT+5uY3UU3Tau/WQ76iw8Nh4rcJiVBmAuBb/tyUGdYIkX3wfaQEU9xIBI0dpWVWtRWYwe//0gOguBuPb8j0uq6hw+R8ogHr2ofSUHcmzFMgC7o569s+YY3l2n3/Nmj8oa+5kclP6zoquVMkBPJOe866kuAeD99baDZmy2M/QxwNxknl96WHK92Z7ecCPe6bn/KQf10MueERXK7vGzJeo4ggCjASGBRukal1c7F0ENiRjvoYfymRe5dXRH3dRzm08UOrweAPNJ76rIWuUMV/zG3UF0gXn1yn548s+DLqdVLK6sRWJsKKpqLS7nNb75y53YOm+i3eWTesYhvbBcyghVXWdFoJ9tecQ63SRkM3J1VNSx3Vpi56lz5MPcbAhgH4lQVLudU7I+9GgdoTtfzEXpaPAUaZQ2D4LzokMDcLKgQuVDx3Ec7hzXud77dIqQKs3PbNva5jgOgztEq+b1aSO/rJ6a6tifskWIugsvTBgC+/KBbREbFogJPVphxkeOW9qBYOXbn1PscD1H3L94H2aNTMT8S5kP+nI3MjUAsm+x+F/p/lFcWScFoxk5TjVKIsCi75WUVtVJ0c0AsHAFi0Q/fb5SCiqsrq3DgKdWSOv8rpMFoKrWglqzFaaj+ThTUo2Zw9rDdLQASYktbPw0rUI8sQFWVd5PPX5NycHHG9MdNg71xDJgP4BHjBzvHheOg0LapcpaCzIKK1UimwMw8Pl/8My0XjZZVay8vv8hAJyvrEWs7VhCTjME/L73NNILK+wOWKL8GDr7yF33yXacq6jF8E7seREbzq5E44vriN3IxTrbiO4f9up+xAJbq7MSZYCkM8HsLu6KZQAoF/wi9QTND4ohfI/nl+PGz3dIH/v6EORvsFtvfzjIsGG18vhii1rYXfnhVnx2UxJ2ZRThnh/2YGKPuHrlKteLE3FGiD97fyqDQPNKqxEe5IeQQCOyiipRXWexaTC7Q6eWoR6n5FTtLzYUE3u2wvvrT+KBSd1w/yRmqdQTzK7w6G8HcMPw9vAzcAgP8lNlINJDL82bJ4gpDNtEBeGG4R104170MFt5hAQYUV5jxqwvbXt39Kiz8Bjy0hq7yx+/uAcig/1VRg9X3jeu3h/3T+yCO74pabJZMkgwa/ETRrPj6twOxGhIaiXBbP8SiTrZ4IGF+f3rB2F1Wh7aRds68HsNIc8x76rQVwRXhQTY1sfmx8YrLPLqayZWDc8Dj07p4dKgA/5CF/yrK486WRNoGxlkE90tcqqwAtV1Fjz0y34pk4OrcNJ//Y+uGGRz1MFQqiKvrDyiEmKlgjXo3WsHAqVMJLsyNPb1n25XneupwgpJDGvzeSsFszNEK649geGIbSf1RY1oCYwNkxtQs77ciUOn1VH1a9Lycb6yTuUDKOJI5JVVm3Hv9/shfoZmrazQ7cbUw93R/ewh1ptohRSz2oiZMdxBbyAR8Z5ZYaex5yyNoHJ5zvkqGDjbgDA9AowGXDagLZYdPGM/9WM9EIWHs3IrxXN9+XDmYMz+it0dgX4Gl/Nnp+uMmpaSeR4DX5BdbFamnkV0qL5vryPqM66A+P5U5i4+KwrmAD+YjhZg2MvOUxba47qh7TCqSyzu/WGv85Xt8NTUnqp0dG0igyQjkl5Q8aLrB7p9vO+2ZyE2LBCxYQFOBfMKD0ZQ1JKSeR73L94HgI1v8PTUXthwtED3PtEyolMMePBOLejDOkZjxynXejI6t2TGq/euG4g5P7I6/Gr2EGxLP4ePNzj3OR6S2AK7MthzOH1QPN68eoAqY0ygnxE3jlCPO9GUoLRyWowsa0MA9NOm+JpwB92ykkuGBxbmVhFBmDmsQ723rxeSYHaxfnnHH82EFiHo1FK/y0xMuSe+Ng0u3PEBcL11q5e9YRB3DO24PBw9W4YeT690WywDslDmwFxktLy0PM1mnj3sdeEN7xQDSCP9Of+gaxsGSsvxlhNq9xWL8GpxNcNJffl6m+NBGJTiSCuWAfdGk1TyysojqKp2zU/TWd2KHx5PcTb6nqN29RkHKQGXuDkM9/XD2tvM+3PfabSLDsH6h5OR1KGFzlYyy+4bjdeu6o/3rhvo1nGdsS+7GO+vP+FQEPdo7fxDHeBCl3uXVvL7SNmIf2BSN6fbukJRRS1GdIrBlnkTpHn3TezqsAfOkWC215vaPiYEPVqHq1yT8ktrEB7kj0ChR8iRhXGcMBKsPZK7t7Lr5qWkT7x+T+ynNyXhIo3rYGSwvyTsEmNtDUEjO8fiuqG29ygAzJ1k32+2sLxG911sj4k9WmHR9Z7dw2JKw9iwAHRuGQqDgZNijZTER6m7u24f0xHf3zYMIQF+ql6yTY+Ox6q5Y1Xrhgf549SCi90ql7IMyd1b4fGLerqUVUx5r0QGs+uudCkN8jdg7qRumOpC1pzGgASzFiO7iP4wO+wi9hWuuWT4piwNhjTcs4v1W8/hoUMDjFIdiZYGPxcUsz9n/3jPCnmeRVpHsh6Jcd1aYu6krpjUsxV+D5yPTYEPqHKXuotBMWT1mgfG4Ze7bAN/BjsRHk6PYeAklwxXLMzuwAs17+5+tf741yS186gcVwyM92h7R7jaGPBzst5SFwVpB+4sOnD2rVdHz5bppjoUcedjr+SEMKDIWCfiR6RvfKTNx7O4sg5nS6rRMTZUembsIboOxIa5Vt673HAfe22V416jRyZ3x9vXDHC4jiuDLCktwEpfdH+/hntZBwcYVULpwQu6qe53bUYbjuPw8IXdsHLuGNUIrAA772n920q/75vYFZ/elIRL+7e1Edqni6tw+EypS7nUn5raExf1aY1LFftWcmGvOLupVZWM6cruvcm91QHwLUL8bRowYUF+uGxAW/x0x3BcPsD2+TcaOLSoysQn/m8gEOpepPioYNydLN9PGQunStPPXNILr1/VH7eN7mgTQ7P4juHY9Oh41bxLB9jWnSOmOogZevqSXpLxp3uculE3f1ovbH5svJTKDQCuHJwAg4FDN826gf4Gm3RwBo7dGyM7xyAuQn7mkru3xK93jcC8i3rYlKe90COtTBcZFeK41+Ozm5LwuCJFpfhcKAd2q8/gV76k8RVhU8NPtDDXIbARXTJEHIl28QFqiCF3fYowkh7PuSqY3euWXf3AWPRoHY4vZg2RB3WRRh5Srxuh4/ISYrTgznH6WUe0LfkY4cPob+Qwd1I39G4bqbeZxOI7huOhC5xbmUSheUHPVogM8Ud3HctXfbpYP5g5SD2DFy3ZDfOieuMqFsRqceKSEeRvwHe3DrOZH6Ppar55ZKI0/fUtQ3H5AP0Pr5JebWTrR4eYEHx842Dp98jOtjmOlXTS6TEY2D4KgK2Vyw+O70vxXjM6Wc9VNgQ+iA2BD9oVbO+tO4GhOiP6iXWqdVdyVZCKtBIE94N27t9bRnXEZzcl4doh7ZCUGG2z/HXh3mireYYMHHDkhSnSb3FAIFfdxMRrOqJTDB6Z3F3KlXyP8U/cGcJSqrkaj8JxwOUD4/HznbYNVIAJwC9mDZF+L9DklxVRHq9nmwjMGpmIeRf1UIm7Q89Nttlu1shEjO3WEt/eqj+QkxK9gYJiFNf0wPwLsf7hZOn3dUPa494JXdGjdQTatVDXbWigH24eIfc0tgwLwAW94sBx+m+G28Z0tBm4qY3QEFI+J13jwvHhDYPxyOTu6Bgbio6a54vjOMntMC4iEMndbRtl0aEBGJLIjANaF52okABpPAIRs4UHx3EY1ilGd1AvfyOHy3LfwoXGFEyLVPs1t4sOwZiusTpnDFyVlIC4iCA8JQhnJf0Tomzu1/E9WiHYX/6+bHt8gkMLtiMX0FbhciNT+/yEBvqB4zh14L5wH2gbKsH+RptnQby+P9w+HDuemISf7hgOABjaMRpJidG4a1xndG4ZikHCexBgcQD7n70QXyuC+ZViW48x3WIxvnsrqYErNiq/nDUEN43ogAA/g8192dQgwazFyC4ic8lovOoRh792NIpfc9PJEsLAIC4LZicuGVq6xoVj5dyxGNYpBv0S2MdzkpCaT1mf1w5ph1/vHmmzvcFSi06xodj/zIU2olTrQx0WyK6TaLl2lrFkeKcYzJnYVWW50OPmEe2E/bL9hQf6Yeaw9vj6lqG4dXRHVs563AA2HwNBMCutpVdprCcr546RxNKNwzvApPgIaxG70mTBLH9uo0Lk3pJp/dpitM6HSeubKb6EO8SEYFy3lpJlQ4n2A/D5rCRpWvsRmtKntd2yA8DPGkv+l7OHSIMKXNRHbQHSszArL/+rXdNwJPBmBMO568aknvqpI0VRe4EiteTC6f0QExog3QfOEOuU59XX/4//2d77SrSNdfGdZDRwmNCjlc36oYFGTBJElvJai4gWzP8ld8bUvm0wS2gMdYwNVV0n8RlrobMPLVcNTpBG1AsJMOKe8V2k7D6P+P+Mx62f4pHJ3fH+9eqG4tvXDMAto2zrT3Rf0osd2fP0BbhtTCeVYBnfXa6H64e1x0c3DMJvd4+An0IYP39Zb8y/tDfuGtdZCjiMCvFHWKAfTA8nq+7pJ6f2xDe3DJUsqo4QhynX8sJlvfHhzEEICfBDjMKHX/m8GQyc6vsR6GdAUmI0xguCNS5CFmhKo1/Gwqk4teBiPH5RT9U9CQDf3TYMt43uiD//NwpfzErCX/eOkpaJ7jhto2x7F0RLY52Fx/vXD1KJfAC4Zkg76Z6oqrWoRGCLEH+b59/eKJUifgYDrEIPWESQUTjfQAT7G9EnPtJu48pR1hrts/LznSMQEeQvGVieuaQX2kQG486xndE6Qr+HRdxHj9bheOYSdU9mK4UYbRGqfi6mD2Lva2Uwqxj83kojYoP8jU5HBh7WKQb/PDBW9XysfSgZv/9vlGq9yGB/ya0CAAa0U/d4ai3TYmPx+qHtcc/4zpIraHRoAJ6/rA+OvXiRS70NjQkJZi2CYPbnzI0a9Ldy7lgsuWeUw3W07gbNBi9bmJV0iwvHkRem6KbIW3hlP5suKwDwhwXJ3Zll99D8yZKFEQD8NKMfRgTL1hGg/in+kru3xDvXDkCvNhG4fEBb2dIqnDvHcXjpir4Y162l4HvMxJkji+lzl/ZG9xYGlV+mzUufl10/RF5TWE96t41Aj9YRkvvHvIt6IDrMftdbkL8RD13QTXLJUIrKixRi1V7EfqC/ES9f0RftotmHJiYsEE9N7Ylvb2HW6B5tbP331j40TvWBUb50QwL8pICrqf3aOLRgfHzjYMSGBeJXhWju0jIMA4UUhz3byPXYMjwQnaJtLSptImUxdVHuIgRxdVgw2bk/nj3x2yEmBL/cNULVXT60YzRSnr5ANc8RkmAGj69nJWHGgFaYPigeCS1s03woeyCGdVTfW+LHP+d8Fb6YNQRXJ6kbVsr3pfJDCgA3DJd9RqNCAvD+zEF4eHJ3AMD9gl/vpJ6thP2w9wLHcbhvQhe75/XLXSPw8vS+ksVdbKzxGpvoPeO7YFKvOKmnIbl7S1w+MB7PTOuFH28fjpVzx+DhC1kZRLcVUTArY0j0Au0igv3wwKRuWHrvaLx8RV9M6dPGJsuPUmCL7w/RCp4YG4qVc+U8/ErRI57XTQrLr7JXRmwwX9ArTvVs3TgiUfLrdeRvvfZBOce++N4SraTKmBDxjSbeG6LgumNsJ/zxv5FYcf8YPH5RD3RuGYanLukFP6MBE3rEoV9ClM0x9QJ7RUt1ncWK0EA/lRV615OTMHdSV8lwUVlrwdvXDMB0wfUkMljtkhEV4o/bx+r3DgaiFvP8foC/pRJWXuydZcsu7NUaaS9MQVign2rES0BOPenYeKVeJlrb28eE4MgLU3CL8HwHBxjxxz36DdXBHVpg9qhEfHJjkrS+iNKdSvls3Tmuk3TtxHsnyN8gJQKI1rhJ6GWI0ZMP3eLC3dY//xvfGS9f0VeKPdD6r4t11D4mBI9M7mHTM9AcaNpyvjEQXDICUeeTtHL2iIsIUrXy9TBoAtqaDRbRb8xVC7NngWOuPPjKwKxArk6y7BkMnPSS+eiGwRjcoQWmD4yX0q5d2Ls1/AwcZgxmFuH6CuZ+8ZG4bEA8LhN97tYJkcM6/ttiA8lo4PDtrcNg5Xl0fZJlu0h7fgp6PsOS3NdZrHh8WDDGjRuDzzefwnC9LkpJMAO7n5qESiH11ryLemDhiiPSaHuvX9UfD1zQDaGBfrq5j0d0isHFgmCZM7Erft8TClTILhlxEYG4sFdraQhUe7UUGxqA64e1x5WD46Ucr7cpBuW5oFccPu60FYPbhyPJxLrDW4UHYfaoRDz/Nxv1L1TRCxDsb5R8LQONBnRrHY5YlCCKK8MJXi34JvdmokPpThAe5IcnLu6pcg0BgG3zJoArzgTeU5d/Ys9W6N02Ao/9dhBGowEwA1N6xgAb7JywgPIj6G/kJEvnI5O7Y0hitG5aQleCzwDZ2tSjdQQMv9+G14/8Dsxnqa9MDycj+XWTtK7ynfP0JT2x4U02uM+mR8dL3eFi16w2WEvZRR+lEcw3jUhUF6o4C2FR7VU9LYuuH4RzFbXg8g8DS+4Fbv4LD17YHRuOFWC/kKe5T3yEFLw5RLhOXVqF49Bzk53mrRaFj1IgjBAanF1bhWNUl1ipcSTeQ+FBfrpDEUeF+KO4sg5BfkYpbZkeIzTDnIvvEmXvkL3g8tdm9Mfba44hJpS9i24f01FlJRYbgp/elKS7PWDrx6xE+a4Se8ieuLgnEqx5qqDF16/qj/fWHbfpBeE4TtGY1A/K06JsdIh+7lEh/rh+WHtcrROvIApFpcXUYODw+lX9Mf+y3ipLPgDse+ZCu8e+wbgGd/n9DWx5W/pmihbmVuFKC65aZG54ZDwKy217iVpHBNnEqcRFBCKvtEb1HGm/P20ig7H03tGYtmgzLugVJ+W79zMa8Oy03jbH+fjGwapnTWyAXZ2UgMcvkn2C/QW9ouwFNRg4/HTHcJitPBs8SofOrZz75LtCbFigFPB7UZ/W8DMacOPwDrr5vZsrJJi1CEF/QZzZ5mFsaojxa83XwuxiC9YDC7OrKF0HWgSqPybihzY00Ah/owFvXjNAEsyBfgbcqBAD7mQsEQdTGdUlBhf00rgKiI0EHXeUwR1awGjgcPsYZl0wKuSnsmtwdNdYnD2SBY7jVKJT7ziBRiA8LBAQvpMTe7TCwhVHpCCM0EA/yRqvtVLcMbYTnlAEcwCQbk4jrDj8/GQYOA5B/kY8cXEPvLz8iCTcf7htmCqP9Csz+rHy+BkRGGZ7f/gbDZicuwjIBYAfAMDGUmE0cHjjqv74dFM6WoT6o6vw8R/TLRZtI4NgCnwAYVw1Eqt/wD8PjEWn2FC7GSZCA/3gbzSgY2yoNBAJwD5u2mvz3nUDkdy9JcIC/dA+OhSBf/izwc/qbLuIpw+Kx+975Hy8IQFGrHtoHNpEBmPgC/9IglnuTbC9r0RLaueWoTipyWP79jUDMPenfQBYL8HM4e1ZgM7C31XrKbO8TOjRSuUGIYqohBbBkuVx79MXSO4WIRqBqnTDiBAE8/juLfHJTUnqe+b4GuD7K4GrvwF6XSbNDvIXgth+eB7I3QOc2gT0uFhyCbitbwDmzhiBKW9vxNCOaiuuUixHBev3gIgB1Hq+lkaDLP7Ec3lgUjdM7dca58prbQIVl9wzCjtPFTlM6Zn63GSbZ0Vs5CjfL/b2MbhDC3x76zC8vYaNQKj1OXfFJcdRA14ZpCWuF+RvRLcW6ueuS6swvHNtw2QsefXKfljdMw8hgUb0i48CwIT3y1eofcE/umGwqmHeLjoE718/SEpfaTBwLmXXUCLFHJhrJJeMkZ2iETuwryqIT2uVbRsVbOM3DAB/3jMKwzW5yFfcPxZHzpQ6tZ72TYjErX0CcP+M/nhlxRF8vyMLxZX6aSyVjReACe6/7h1l0zvqL15D8dilrJE9rBMzZIzqIje2Zo9KxJq0PDx/WR+M6qzvs+0JonZ64fI+JJj/1Qhp5YKN3k2H1TDYWkyaBe66ZLjpw1wfVII5SP2REYWD3mhFNmJN8336695RuHTRFt1jLp0zGqsPn8W9E3QsVKJg1mksxIYF4uTLtmmA/AwcOI5TWe3O6gyIFeBnkC1PwnECNJdCFAjK7mA9Trx0kW7DkjOwV4uB41UWD6MmS0lnzcfAnUC0YFQjDPr+ilcOTsCVwkewf7so7HxyohQ4E8bJ24gfHXsvQknw1FUjMls9IIzW+q90kRjROQYQ7+9atWVn++MTERcRiLvGdcaMt5ajC5eL4ICJklVK73nWEz6i5XFSrzicFHKgXje0PbrFhakE5F3JnW27YnneJgjii1lDkF0kD5Ajil5lppIWOhZCEaWVXDwXs5W3PfaZfex/7l6VYJYQG9LCvSk2DBLC2DC8mx+bYLuNgmuGtMPHG08CmlS1SR1a4NUr+7mUsorjOMly3MXWXRsdYkLRIcaxZU7PH1OsC3f6oW4Z3RElVXWSlT4s0A/lNWangzgBjt0IIoP98diUHnhl5REbUeYtWoQG4OohzjPf6MUaeJpqjFdMiS4ZfpxtGkRXB3jRy/YSHRrAhpZ2gTEJ/ogI8kdy91b4fkcWuthJjap1bwKg6+4i3ltSsoI3BR/i+bYDqTw7rbeuNZtwDAlmLYIPc4ixaY40o0TSPI1bDPfxoQ+zqyizOUQHqK+9KC71XBG03eJ+nCaKW2Ht0vpAdm8drpv9AoCsmlx0R1n70DjbQKUNryLZ9BIw5hxglJftV3ZbSpZs9XHCg/wdBiZ2bRUmdbvpIX6op4ceUM0X/YAHdWgBpP2NoDg5yvpmJ+Jcy58hL6G79SSAmQDU3fValFHm9WL1MwjY+TEGcs9hLy80cBSC+clhOvsX7+86WYT2T4iUPrTd4sLxTcBCDDCko9T/fw4Pr1fNrSODsOnR8WgbFSwNGiBmbRAHmggTLOQ2WM1Sb9o71w6Q8tYqhXl0aAAOzr/QrqvD1H5t8N66EzAaOJRU1akEouiH6ii/s13ZKGW2Yc+SOG6Rq503RgOHG4d3ADQJQziOc0mseRM/F/xhtUQE+avEzdbHJ0iZIDzlrnGdcO2QdjZuCE2StKVA4mgg2Dad5p3jOmFgO9v5uvC8ZGFuCp3IF/SKw84nJqKVjgtmOy4P4YF2BPzWRazxeeVnAGSXDH+t1aYxsJiBXZ8CSbc0dkkalCYpmDmOmwZgWnx8PEwmk8+PPxYc/K01Xj32dwOOoGfubzCtD5Y/rG5yJpd1ER89egym6voN+9kYxJ3dj54ALBbepToOKzsB0UuvIa+Jcl/KoLfA6iLVsgtaWnGmwADrmTSYCtQm262bN6q6yzMz1NbEXTu3o0+sER0jDZiS6Ody+TtlZaI9gOLz57DPjXM+rJges/E1GAFsNK2F1ahvuU3IPoEuAKxWCza6cZwnBwHAGZhM+oOy1FaxemhXc8LmnF8bG4zYs9uAbbegLqo/gMcAAOMjC12qn2ThPxPL8nWc25uHpVeI032I2z8zIsjpuuLyvid2IwbAY/6LsST0aphMoQgrOyndl238q2z2NbymFkEADu/fBTEk8YE+ZtV6yQYmdHdvXg+DP/tgWhUjW4rrphaYMUEzT+Sk8L99uEFaViP0hpTXaI4n/N+0fg0sfqybORJAYTFwcNtOZATLwsyVa7FofCDmb61CSRWQdnAfqrOMquOPaVlrs5/2menoBCAzKwundI7R69x5tAKQeuggCvIjUVbOBpepqrStY3ucypC7txvjG2KPg2fNmGzYiZZ5kTCZbH1KXSlr6zOrURQ9GLWBzC3FYKlFeNlxlEQ5thi6Wg/l5eXO1+V59Ex7C2faXIDiFvqp9RqSwOoCjNh+G4paDMCB/s/ZLB8RDKAwDyaTTpeaQGSgAbAC2dnZCBZy7ZeeOaV7rjf0DEBMMOdyndXnHtPW82HN8se7nsad2Y/gxOJDyGl3qc32yaYn2bFjbgAAnD3PGpgFxRUwmUzSs65XtsDqQgTWFKI00jbHsjPic5aiPKwjSqL62F2nTe4qdD/2AU4dOQhgqt1yeBuX7mU3aJKCmef5pQCWJiUl3Z6cnOzz49eY/BHmz8Grx15wE1BTguThA3VbzK6wruQQkJ2Jrl27IlkTlNSk2ZMNHAEMfv6u1XFOOJDCJhvkmghDGEv7WrlM5ZKREBWAYZrjXKs1tgr7mDBenay+YMthIINN3zyiA66Y3BtXXlSPFn/NaiAbiAoPq/85b2LHHTtqOBBkJz/0lv3ASeaS0pD3+z8Hf4GYTU13v+czgG1ADC8Pyery8U3qn8ljRjML+voFwJm9wMyfXdr+lssm2l1lY99KlFbXyUn1cxYBRcBwQxqGVz0HJJcAp+X7MixM5zrtCwZqgF6dOwDCwIw26whlmTB6mPQeMKxZAVitmDmsPZKTmRjxO14IpNrZh1De6LAAhJmeBUJigOQHMS1/L6b2bY1kZTo84XhjRg4DQhR+wAVHgfdfQrce0wHMsHscPS6uPoIPTCcxdcIoZsk31wKV55Ax0U4X+oadwCmgQ4dEdNA7RuE3QAHQu0d3oF8yRhcdwI87s9EyMoSVqaYcMPgBQgMDObuBE2uA5HnSLk5vPSE9h43xDbFH5cEzePjIlUAl2D0kon0n2aM0F3jzMiBhKHCbMFz20vuBfV8B96YAsTpZRVzdt4DJZHK+bm0lsGED4gq3AM+cs79eTRnrIQyOcunYdik8AWwHormyel/Pkcb9wFqgXbt24MMswBFg1ICeQB/b/bl8BG3dVp0HzqUDCYPtbyPgrJ6TWxYD2UCXgHx00VvPBNWx+5TX4OUda1BaJ8zTLFfxQivAUqPrruGU+YIblaNttx4EjgEdW0fhm5FDUWO2IlmThlAFzwNrnwf6XQO0cl/E28Ole9kNmkCHRNPDDD8EG7zskiFF7NXfV1qUYc036K/xfJiHKjIhXNy3tcolI8LgIG/usVXA55PtDnfsrxik4rnL+jgMCnKI5JLRAOducXAvS64YDXsPdWjBLNpWYxBQVwWYtXUqdE03xL1bK+Sj3bAQOL7K9e0cuPq0jwlRjUCl6w/gzFVIvL8rC52XxWwb8DN7VKI07WyAyvYxIcx1YtsiYC2zwL133UBM6WNHtGqvh+A2Yiw6rr9+fhqQ+qfuoocu7I7tj8s+4vjrXuY/qXNOLiHWm3Bvzr+0N/6eMxoxwcL8BfHA+/LgIfhsImBaoHqXBnH2h2tuTIJL011bsaYcKDimPx8AquSGJgqE0Qsr8j0rnDtYhPvH2Sisb/QAXnHP1Uof4T3hgRuK5D7HK9xZ6jmKrF2+uxL4bIJH33UJ8d3s4ncyJjQAQztGY5ErQ8qL16+6BJgfCez6vJ6FtINUZh5ju7W0ydltQ+U5YPObwLdXNGw5GhgSzDrUwh9BDoZHbhCkwJb6CyLxoW9uetltn+QGfqkdfXEKfrhdzmf6/vWD8PbV/aTfIXyl3maMX28Bsrcj1E6wmR8aqqzCRW0I/22LA+Fix4e5XvA8UMsirbq3ZN39Bt4CvNQaeFczwqAweE2DHLe2wvk6ZXnsw7DnW3mejYh3hJ5gVlxrvYdQ/Gise9H57s2295MyQNIm+4qlDlj1JFDhwLrnCO09IbyPOHvvow+GA7/crLvIaODUAVCisLbYqV9eIX54njWolAgBo+K7MdDPqG68AEBxFvNprVA0Rmpki1cgX0+x3tCsexFI+Vr6OX61bbAuwEaB2/3UJHnGzzexRoH2+TcLdeWnqG8h7kbvHgKYj/rvTgapcYjVAnw4Ckj7W1EOF5+dWlu3k3ohvSc88c8Vt+XlZ9PRu9FFVD7+p4UupzoH3xCXEd8prp0zx3H4+c4RUg5ulyjNZf93fOxe0QBm9T93Un+ZptFrl8xtwIZX5XeCucrx+o0MCWYdLDAgwOBlFWoQBLMHgkgz6nPzwV2R1MBBf4F+RlWwGsdxMHByLQbwjkeKAoAkw1FkBF0PlJ1VzffnGqisDtLKuY3VgbWtIVtbn00C3hkgHNOiPnZpjnpd8UMlnOfk3k4sEI6o0XyU66qYy4eSYiG1UcqXtmVQkrUDWDzT1jqqFaz7FwNfXiT9TN5wue2+3IlNMNcwEbznW0SjBKMNB1mwqaUO2PEJ/HjNNTy2klmTVz3u+jGUaM9duE6cshFgrmUWnyPL1POytgPpJvY79Q8ge6d6X+I961RUccCeb1iDqjhLMduoX0YtP90A/HitXM/VsmDuf/hVJ8f2kHIXrbkbXwOW3ud0tTaRweoMMWL91miCWMV73U+xrjidu49dq6rzzBVC4LIB8RikSJnnNjVlQN4h4Pc75HluNTZdIHevqswS504Cx/6R7wV7FuYt7wBvO/GlVm0rTLsjmGsrgLMHVbP2P3Mhtj+h49rlSiPeGaf3sP+uWtVrK9jzVK93uovbKHsrFw0G3htkZ0V1Fia7fDkFWP+SfB0awjLvRUgw62CGseGEjz3El7wH1lNOSivXzCSzu24Avkgrp6jDQIvzl91dfoK15dQm1XwjGlgwe/QCEc7J4qJg9vQ+Or2bdQvzvPNrphDMx1+6CB/OVPj8HfwVKDqlth464oNh7IMr8uN1wDv91Q0tyQqn+NDrfSzXPgcc+Rs4tVGzQPPR2vKO7baVRUyo/3AtE29uCeZqJoD/uhfb/O7EdwELYOTrgK3vASseQctjP8jrKgWqKKB2fc6EvpKNrwGfJNs5Xo3+b+UHrjwPOLkOWHy9PK+qCPhiMvDNZewa/TIL+PwCxfJi+Z1mx+Kp6l5P+4tN56fJi0XLuiuirOiUbG2tKpZmt8v5W399Z1QUMp9oR5zaBLzeVW1xdYZCzNulqhjY+Sl7fkQRvP1D9TqiqNSzMK99jl2rVxLlhivA8oCXaBqsSo6ulHL26iJeh7oKWTApr02h4MZTlgf887RjFzA9aivZfboggZVFxGJmguyHq5wL29XPyI2udBPrTSqR85wj9U/5meWVFmY3XHd+vwP4aDR7zgUij/yIsHRFmcXeEVct6+Za1lMivnvL8uR3/rZF7H9VsWvfAdNC4K85wNEVrh0bkHt3lM99fpp9y7G9XiMtnOz+4hJiw7Ahehy9CAlmHZhg9rIIFa0ojqx/znYhNuKamV52WwD7OK1ccGWugzVZpfuLrhea1j/n6gvYamXuAfb8PF21MJ87aWvh02KpA/Z+J3/Y9I6jnXaV6hLggCbIzlLnvCEo1RPL0yv5evM88NutwLsDgNc6A4d+Y1az3V+wD/+Se/T3t/kteTp9Pfuv7BaVrJ4KEaf9CJ/PBDKFnNmFx5jFruS0vtgw6qTherUjsPYF4NgKZu2yJ5hz9wIfj1UJPJhr2MdSgb+5QurB8KtVWBq/uxIw+KvPYdmDTOgrWfciOxbPAxmb1ZZ47YdPEEAcb0E4KpmPvtZVAmC+hiKLFH7E8yOZ2FP6q4qi6uxBdm48D+z7QVGfnCz88tPYPnL3ye9G8fi1lcD8SLQ+s9q2PBwni0uFKK1uO9x2XUsdsOxh9fVc+QSw4xP59w/XMJ9oR2I9V7D8/XGX/vIdH7OGk9LKuOIx51bpFY8Cyx8GsrbJ99eGV9TriMIic4ssEJXWZhGl3/wvs4C3essfiqJTrK7P7GfvoR+vAT4ZZ7sPEWU3+TFBHCqfo0VCrpgVjwBb35Wt43qsX8CeESXK++zHa+TpbYphNKXBf5xYW821sjA+q0hp+cvNrAEIgLlkCPspVz9zAICT6217qAB2XQD2nIv8NQf4SdFQFe/dT8arxbi9j/T6l1hPydEV7F3zRjfmy6skfT2wi6WOkxoByjq2anp0zruRMUtsgCnL98Fw1lBRNjhEHD0XX14M/HY7m+ZctDCLVBS4t34jQYJZBzOM8Dc00IXL2qF/44lWFHdb48pdSC4ZzUwxCw+FywFfvniIhGOkWdsjuCKH+VY5IAD6wthidlEwp/7OgqOUQs9qYVbB6hKFhdnJ/fHeILWFT4/vZzChuSjJRpSp6tbRsXJSgKJ0tr3FzFwSvp3OXva/38782USqzju3cohCr7qUCYk/72EfBa1Iy0lhVrO/HwCytzPhL+IfopjWGUSitoJdx/mRcqPCkYU5L1WeXvU4ExFv9WJiQ/uMKT/GSs4JjZLqEsBPR1QfXcmsaWf2y8IeEIS6+hh+5gpJ2KpGxTTXKO4PO/fbTzfI04XHgK+mqj/02oadWC/mGmwJnINP/N/S98P8UOELqz326mf19/nRaCYEMrcAf94N7FX4kYuC+fAS9n/f97K7mijKBIHbPks9SiEA1igR91FdLM2WRjtTWmKzd7DcsO8lAccF8b39fSb0RMtekWBZEwPp9BDfW7Vltl3v5flM+L7TH3hZHsgGlUXAu06CscQelZoyKUc2ACBzqzytdNHY8y2QvYs1KvUw17KyHhOexeeiWO+N+Gzu/V6u4/I81qgqPYOAmvPq/ShHqhQtqFrhdGa/3Pi327MAFpi76XX1vCNL9ddVNmzyD8vlfLM3sNKOK1JdpSy+7KG0MG96Q31+hceBby9n7yMt4rkD7F2t/H4d+EVYR7h3a0rkcrzTX+79EZ87q4U9w6K4XXwdsP0DNn1kma0hJXcPexe+1Ys1Or9RDPgjvsfChBF2tI0AZTkLj6s1h9TIFOJPlD0Nb/WSt9/7HXtG9Hr9xG9K5hbg4M/sXEURz1vYtuVOrokkmL1vHPMEEsw6mHmDKtuBR3xxIfCeToqZBrAwzxrVEb3aROCKgQnOV25KuB3018AP0eKZzOIjcuh39N7JUlL9ahnLsnccW6m/rdBy7tlKfyAM3mGAHc8CtQqPyy8IpcUuYzOzCi6dK7/kPDl3cR8l2fI8ZXYBQP1ytXes/T+xyO93BzLhs+oJ4I87gZNrZdeFcoUv9593A2U6XbyiT17a30y8AEwQvt4V2PcdsOwhWXCKhMbYL5+/YrjaADuCWRQLR5ez/8q6cOanrETbpW6vEXf2kDztp3OP/KHwAz2naGSsedbGChWxZDaQ8hUAwChmAgFYnS2+Tpiu0/eXTFOIEPE4ynvTxiWDiQauLBcRXBUuMKZIx3aZOk05Co+yRpbISc1IiQVpsnVUfA9a6uTrLHZrVzEBZ/YLtTUwcAbZGqu02IsWVlGglOayRgPALKbfz1Dv541uzB86WMie8/EYuRyZ2+TgKEB97UVjCM8zVw17YvH4Kvvd9CufYIGB4nnUVjCrusiXF8kZM6oVgnnjq8DnikBBLS+2BBaqR7HD8kdkyzTHqRuo614E3uyBkdtmsXNJ/YM9q0rfYvH8tD0UH4+V3yXiMuX9rH12xd91VSwtnhKxcatsJC5/mP2vLmbxEKK41FJXJZ9TlUL4+yneFVpRtvdboFh4Lxz4SX0OSpSCueAo8L4cOC5ZtVUNW6GuzmcAR5exd/8LseyZeD4ayRuukBuKgOyCYfRXNf4AAGFxsrje/aV6mfhci++b8nx13VedZ4K1OJsZTdYoGrY/38j+8zzrzdD2NGx5hzW0ltzDnhHt90O5D5Ejf8v1l7uXbbviUXn52UNsv8oyikLcXA282QtNFRLMOjS4D7Ne5KfYEnXHh0pDfFQwlt8/Bi3DXR9OuEnQ2D7MR/4Gdnwk//51NmLyNgMAyhAMc1CMOm2TDn5W0QdXfQ5WpYVZvLZHVzLfvpJs9lL8/ip52aFfFTsVXniZWx27ZJw9aNvF56qvc3UJsOE1eXtlENzLbfS7jZUiT1tmEVGMAExI6/H3A+z/TzOl1Gc2fDxW/TtAMRLid9PVywwKK1xACGyoLZfX0ROV313JBMj5DGaxOZ+pXyZA3bBxhPJ6iY0CJUqRfkIjIDXX2pgvBxi1PmQnit1Sq+9PrUTpgyySvp75uYoBYnoZMFK+tJ3nDr/MAj5VDGOdsVm9/PASZlEGZIFYUyYfV2ykCI3LwJpzcre4hMKtQ9moET/AvAV4qy8Tis44vkq2MANMgK95jgUmrZynWFHx7IkNsHUvAF9f4l62gYpC1gDY/j4LDBStyr/Otm18fDUV+PN/9p8be2iDBquKgB0Kv2jlt0lZt19fwq7fTzOZVVi5/Yp5wB932x5LdFUpOsVcW95SDGyRd4gJcBHRevy5YtRRkc8vYO8zZzEAer7mdZWQ3DaqzrP83Dm71XmgS04DB3+Rfy9/GHi7D7OS7/6CzROPfewftp8z+4FSRU/xybWsQSid30FWZoNCMNdWqBskoiDOtz+4CgAmzLUNdHON/XeQ5FcuHKs8X60rXu0IvN5FbkQqRboEz9z7tNbp1c84LivAMoOc0fS4ie+5M/vZ/9Tf2f7nRwIfjWL7zVMYF5SW69LTHukib9IkBy5pbOp4A4I5L7sBSBbmpj8Ed4PTyFky5HLwNlZFHhyswdGqwA5dxAe6tpyJrqAIYb5CEFUVA2EtZb+8oYJ/V02ZbFGrPMderAGhcqu8tlyuo+Is9qKJ6cx+H13J9nfFx0D/a+Vj1ZbLZag6z7pe7fVerH8RiB8EdNGJ7j69B2jTD4hoy85R71q5Kh61GPzU3Z82cLBpRCmtRFqUVm090fjTjUC/q9l0rY57QWkOsFAxVLJNoJ+CQp2cuABzBdGKG0eoBMpW9TJ3gnVEcnaxP3cRXYHSlgJ2RoFsEJTXT68BISIKVWUPw+k9TGQJ3bmBtUVMyCkpywVEA6holbNa2HE5A7t/S7LYnxZnYqA8T/YnPbmePae/3qLuffpuOjDtXda1D7h3LV7rDAxT+EGLAZAiHUYJIuYsC6YVGxcNBsfErTNOrJGnxUavI9a9YDtP2xBe9hATnfa+BdXFavGpx2cTgSfPApsUPr91lXLDs6qYNYq1HLPznCnLmL0D+OcpFnTbZZK6DgD9Z/XoMiCqHXC2mP0uOgUEhuuv5whzte29UFvGxgAAbOtF/OaIVvLzGfoWePEdqOxlE+F5/V5BV7CaWY+MkvU6qTS1GTW+v0qe1rrRlGQD0Z3qVx4vQhZmDTzPow5G+NkZmKLBaAALc7PBYpbzUwKNb2EWqS236Za38gb415UxK7TYdfnH3cAXU4Q1BIEtdmn/PZeJLsFiG1ipeOlUF6vTzolisbJQ3aIWxblYFqtZbUF+b5BsFRCFmya9EfJSmXXr8F8sZ6rYhWmPI8vYulp+nQ282ZOV5eNxwIutHO/HHaqKbLvCVejcD6aX63+84kzmEw6w7n9nuNuQm3sQeNTFgSi0xOkMKytYsB4NW1C/ferhbBTRv+bY9iB4SmR75+vYQ7RIAcwC9css5mPsCtk7WbaQ0ykAeCBUce9yOuLLmWX+wxHydE0p80nWc9Var7hH9YLFHKHs6dISGA7EdnVvf24d+0O5ATJRp/Ew+kGgxyW28xuCE6sdP28rHpUtso5YOpe5poicOyFbZx01tgHnDcWtQtChnj+7GBys5Pg/7Hsu3nc/38jcMLQo4zD0KMtjo94pObFWdmnSGnNqyoDPJwN7hHzfRSfVbhfK8tmjOFPtduQLlAJd25ultVg3EUgwa6gxW2GGEX4N5cNsDymtnB3BnL3L+eg7PK/2mWyqbHiFdc2Kqb8Ei7HLQX8NYWFO3wAs7KD2AXytizoQCsAb1wyEoUx4cWx5l3Wz7f/BtitY6wOavRP4YAQmpD4hz1uUBLzRXf6dobBgKi0Ab/dhL0HRwmypUwsHgFmwsrbLmRC2LWJWGpEvp7CPzM83qrsO7XH2oOx7NnKOPF8M9HqxJZCfartdfYlIYL57GZucr+uMPgqrUdKtnu0rIEz9e6DCHy/MQW7osY8AUe3l4ZntMUhwdeAMQM9L2XSXSUC0cN/F9QFu/FNe3xiIx26+Ajw4YNjdwLU/SovO85qyukLnCc7X0XLB8/rz2w5Uu8jYY9id7h+zIcjYxLKFiEGwYQrB7M1gImU3tl7WBS0RLsac+AXpN6wcEdoKmFuPb0JLneGIY7sCI+51f19K9KyEYa2db6d0mRjjoPF/YLH69y+zZF92Z4LZUgNEd7adn3QL0F7RWNLk2tcNMAZYDuSCI+r7Tpu5xhW0OesBQVwKjcBCjYDf8zULiJbKp+OeBgBb3nZ83PpamL1BfXrbfAAJZg01ZissvLHh8unaw9nQnJ9PYi9/Rxz4mfkDHVnesGVraERfJSlARsyS4WIdN0SWDNMCZvFVZjcwV9sG4nAG4CbB8npyrXrQAWX6Nm1QyLdXyJHc9lAKXC0/3yT7mvIW5hOnpPAEy3+r7NYWUw3VB2VQiSNhKKIMmnEFg796vxFujD7ljMTRiuMovMouXSQHbUV1gEPuEixE0zRWxnGPAg8cBm5fB9y313Y7gLnDTHhK/q21wg26CbjxD9ZdLIpPYwDQIpFNh7cG2gxg09EdgYh4eduo9ohp2QbcU3nARQuBxFHSoo/M0+yfz1CNlVj8qMcPBhKG6m8zUWOFatkDeOa8XIdaZq9k7jp6tFIE6kTG66/jLeyJuvFPANf/Ite1kl6KLAMhscAoReBZuLv3qptZivQCVAHgf9uB7opYAP8Q4AKFz/L9LljdIuOZW4CWKz4BnioAHs9hLiTK8wdUPRFlYYKI5Iz2r3d8EtBzGjDuMWDKK+w/ADyQCjx8AogTBhFJfgK4dTV7JkTu3AhcLGTKaKvppk/UdO1zBvet7JJLhsYSG94W6KxxQ7vhVybI5yret616Ad0VIzJqjVpKF6yHjto2APpeBRtcaSRc+TnQdbLjdfSGP9da4juNl6cnzfe80eNOA0zpYuQJej0eTQASzBpqzBaYYfCBhVl0yfDAh7lACB5wJtQaG2lUQ+FcedHC7KIQdtfPe81zzHdNmatSjMZ3lPIIYAKs0zj24i5KV6fA+vwCefhd7X7c8WPVw5nl1dP9KwmMUGcUsPcBB5iVq+1A4KJXbJc9WwxMXgD0ng7MXgFco/CxfLpALUKcoZfX2B5KAaQse1R74A4Ts9jOPWD78VXSug8TD31nANcr8kiHxTHRET+Y7fvpQrWovuhVoO/V6n1d8x3SeswF2vRnv+uqmWXXP1gOSGs3DGghiHhzDdD7CvZh7nkp808fdBPrAr9RSJ0m3q+KbuMeVz6JsvuPAd2mAFd/I3+Ekx+XP7TRnYCn8oGHjrD6H3IbcNtqoL1maGSDPzDmQWCe4M8Y3AK4ZwdLd6kNkLz6W2Dyy8yabi/TQztFxgCtVVRprWs3jIlYl9FkLgmMZP+TbpHnDZ4NzNIxGrQfAXS7UPbtB4CWPdn/npcC/YUG6vgn1FZ1paVt1Fzb/WobGs644Tf1PSbeswlDgY6C3+z0z4BWPdXBaa37svsgtCX73aKDbQNPKXwnzQcueQs2zNkD9L+GpTkMDAcG3wxMWciElNg4MgYC1/4A3LYWlSFCOjyDkZX19vXsnhO5bx9w+1rgmu9Y3Q2/i92DT+QCkQksbmOAkMWl+xSg3VDg0vfYvXjBC0B4nCzQW/cBuijSYl77vdwTIxIYAacMvRPoqgkg1GZlMVepfYr9Q9nzMvFp9u4YLRioYroAITqNxuH/Y8+dyIh7WeP34aPA9E/l+cr7HWDf+nZ2Gq1K+s4ALnYyQuUMwXWhVW/NMRRSbrwi5d7oB5gvvEikojE1VuHqJK4jvluVgjWiLXC/psdTRCvGg6Lk6SfOAOOfBC55G4gVelrtWeeVTH3D941uFyHBrKGmzgoLjDB6Ox+gJCI98GEWrWtNPXBQW05JKLsqmN28FpvfZEEaylyVonBxNnqY2EWv7YZrSHo6sBQ2FB0UVti4vmqBEdNZtlT4hwADb1Jvq3z59r2KidDBN7MPiXL/HAeM+B9w1ZdAh5GyIATYMuV9qQy6u+Y7+YU8aT77f/mHstXJmd+k0poZ2lK+vwLDWRk6CxaWWX+zsl/3k3p7UVyKH89uk2XhoB0EwugPDJ4l/x52p5xDXYTjkNd6PDBS6I1Q+rH6BwG3CeJCtPz0ns6uwf+2saBEg5EJiknPsg+39vgCVwxqh/AWccD1P6mF0oCZcoOq7SB2DkERTASK59NS+GDN/BW4dzfwoNDIDooA5pcAjynKPOB6YOAN7EP3VD7Q61JghJCXVsw6cu9uZk0cPJv9vlAR6KW8T3peyq7t4zlAv2tYL0A3ncwIIo+eAh7LBK4S/DF7au6Fm5cw0TX1TWa5nPEFENtF7gZXWvJE8akUXEbhXgkIlVMWOhqFr/1wuSEkMuZB4O6twINpQK/L7W8LsIZRl0ns+RARBTNvlQWz+B2Y+CzQZwYT0KJry52bgP8JPUvKexFQC7jRD7DGrQpODhhWEtEWmPySLDJ5C9BjKpCQhPROs9i16iFYu+MHsXvu9vXMUi26E6kOw6kbryPuAZ4+pxaoU98ARgnPSPeLgXHzWEPsio9YPV77IxAUya79aCG4MKYLK6PSbeyC51mdKInuCMy00xC76FUm0CcvAAIVbk0Xv6Zeb9xjwnOaDIQI94bS9/3CF9lzd/lHwPinWP2JKK3K8YOA4ffIDQH/ELVgFoTq8S632QpRsRcKAO7Zyd5VymveZzp7XrX35COK7C6t+6qX9biY9Q71vQqYrWhYTniK9SjNywb6Cw2ci15lhhClu6TBKDfaxj7KehSU+3gsQ35/KoOaA0JYj13SbPl6Xq9wobk3hfXmKZmzhzWsmiiUJUNDjdmCOhhhgBtjzNcHycLsgWAWP6ZNPXBQFDRSqjR3XTIaoPEiCocaOxYyETE92aj7WEBUfYjpwgRiUITcC6Ck2xQ5T26fK1mKJbsZBHQyR7jCzUtZ6rDvprOXvDKfcVR72Z985q9MRMzZw/yqd33GLISi64rSsqwU0oN10pAprQuA+sU9+SWWlWDW3+yjCABjHmKNodhuchfooJuY/6LW969Nf2b17TCKidB7U1g0/sAbWNBVbZl+RLooIO7exuq86yTZyqjknp363Z0is1fqp4dU0vsKlhJwkKYBkiCMhBYUATxT5Dz6X4mjda/5Ftj2PhM/IdHsQzNeJ8gIAKYsYKKtyyTH+abFcl72vv6yKz9lg9bEdGH7uehVZl0MDGeirvQ0mz/6QSagxir8T6d/Yru/OzYwYRsQzjJeiJa93pcDCYeBnJ3qnNJtB8rXtN1QWYjEdmVd2u2HCwPNKGjdV76fxEfJP0QWRdqsL9M/ZSPWnT3IzuGGP1ggVUwX+R0WJxxDvD7xSaxRos1kMeFp9j8wnAnGZQ+xno+MTawwox5gLiGi4AqPA2ZoYlci2qhdmqI7q9Pf6TFqLvNZtSciRS55k90XCXJ+3ZqgWGCKzrWKH8T+XMXoQF4EhMiW0MBw4Oqv5WUGA2tIt+rFymb0Y2JVDMLT67kS74n4wSzoc9q7sjtdUJTcIBRT342cAwycqd6Hf5BszBANJ+2Gsm91zk75WovWcyWcEHOw9zv2XZ7yMrNwn1jN3k2i60lcH/aMtuqF3PxwdBUFcr9rbfcZ1gqYKfRMnDkglx2wTRcY3IJZe8VsE9M/VftSdxjB/rQYDOx5H3Qjq2uxcSW67IlGgIBQ5mLmFyRb7sc+ynrR/IOZMF45z34WpP7XsvdgbFfW2DT4s4YuwHpNdn7KXDf13uFNCBLMGqpFC7O3XTK0bgr2sFptLVo2+2gkwWy1MBHl7AOstTBbRcHsJQuzHqIPrrNAEDFgYtBNTFyvEl7qiWPYh1358bbHLavYx5jnged1shS0UFhoZnzBPsx/3G3rtwwwC+mer+X8oCLhbZnAAJi/brGQQ3jC00DHceye6TIRW0d8iZFjr2DLxJRQMYJPYPepso9sTGdm3QpvzbrNv57GXsJKq9Gl7zE/akA/sCQ0Vv1bGXDWYSRwl47bicEoW7IA1rAZMJOJk7MHWTCk6WXWAFF2N8d2kT+y/kHso6QcyERLXC/2Z4+wluzPHnofG71zueRN5+s0FErBGBDKBJk9/IPlFHueEN2JdcOL+AUwkQcArXqwP4BZy10htqt8jykbdQDrlg2+kFnZjq9yvq++QgaWoXeyhoHIiHtZDAMgN779Q1hDcs18OYg0KJJZm/tdLYsz/xBWLm3ZRC54gVnXJguZMhLHAH8Kfpz37FJbd4fcxiyp5zPYPc1bmRhMmu383JTcs5Pd7+J78aYlsHFdueA5tf+zPQJC9Ru/TQHt/fq/7bajcwLsvSUK/qu/ZetEd2QNhqJ09TUQXRL0/NqViIaTyATWQ+JKL+5FC9mfSGw3ebrtQPbenzSffS/7TAdvMrFlT57Vd0lTGiBu/Uf9HRxxD+tFnTSfNRI4Tm3xdvSsX/ujfmC4sp5GP8je/yMVjRPx/dplIovzUcaSSD24VczXXjnYDcDKJ/qix2katINnsV7OigK1yG+CkGDWwLJkGGDwtkuGqxZmax1gsJP+Ruwe9VaeYkfwPBsmN6qD3Aq2hzbntDeD/uxl3hAtzM5yCCsForK1O+NLliO2OBs4s8/+9vGDZeHIcawL8487gJm/sSGkq4psA+Ba9wXu3sySugPMAi2mr2o7gL14RcF8yyrmP/3PU7Jgju7EAmn8Am1EY21gtG2DZvAsllB/0I3q+UERrLtQTKOk9dVtP5x1/W1bpPZpFNETrN2nsryj7vgocxw7VvvhLP2e6WVbMa7koldYeqkQB+sQTRNnwaQBoez9UngCu7Zvgs44Y7Zo/UADw1jwWbuh8gAk/sHsuZmvcMf433Y53aPUm+LEGBAZD0xVDPU84DpmTas6r+8HGxrLXER6TmOW+fpg9FOnC+yUXL/9NDda6fQMGfyYi4yI0vf1svfZCJ/xg+V5I+5lBoEEJ3dS20Fs+56XMouxcqhyVwkXfMH9Q5kAv3+f/nr2GvrK97a2DB1GAk+5kJFFjx4XO18nJJr1ANqjk2ZEQPEc6qrUrnmuYjDIDe8mDAlmDTVmCywwel8wi1ZjZ9ZhS52tX6VIY7pkVBQwdwM9lwMtdoL+DK76XrvTIKjT6TavrZD3sfFV2+VKlJZTUTAHhMkWyDs3sC6pP+9hrfs/7pAtU4CcYUOk39VA+2HMN01shRv8WNCNjb+hwHWL2XCkIspR7OIHs+uuvOahsepgIWeEt2FdhvZo2Z25IOh9VEJjZb9jV7jqS2EQCSfCwx6hscynUekDqqXPlepUc/9GXMlk0pyY+CwbcMJe75mW2C6oCNNJt+UqyUIWB7HxbdD59EW0ZX8Asyye2ccs6O7CcfpiWcQvgPnKEp7xWIbj0QA7jLR9bxgM7H3sDI5j7l6eYDCwd7nS0uwK0z+VR0JsLnSbDLTupw4k/BfiM8HMcVwogA8A1AIw8Tzf0MMWNQg1daKF2cuBdKJ40hN4SvS6oEQkV4dGEMzK4Lmq844HSDBqLOHe9GHWDvtZW8EG4nAU2KNE18KsEXudJwAPCQNhtO7LRN3rQneTMqgEYC9eyU/tKjZYQkAYMFxnaFnlNgY//W5AqZEk3BfTP3McRKVk+P+Yn7Ij30IRV1wQ9Bg1l4kNEb9A5ubhCb0v92z75s69KY4FWHNkzINqy6CviIhng//YM0KIXPY+0P0i2wAqoungbFCepkD3i9zfpiFcp3xNcAt9l7t/GR5lyeA47guO4/I5jjukmT+F47ijHMed4DhO6APDdAC/8jx/O4BLbXbWRKgxW2DhfWBhFrswtCmctDiywjZmlgylSFcOBqKH1iVDGrikHhbmA06CWLQjbf14retiGdBYmIXoekcv5rhezO/qwSMsat4RE+cDj6TbFz9XfytHKz9yAnjIznDMgJx6qeskOYjOGVMWqLugvcEFz8lDgBMNQ6ydNFeE+1z5uf1MD0qCozy3MBIE8a/C07RyXwFQOTNyHGcE8D6AiwD0AnAdx3G9ACQAEAcxbwSnW9cQR/pz2fpZX0T/Y2eC2ZGFWezm9iSXc9lZFqHqLkoR68zHWBL2DWBhPuIk6E6bH/nURv31htwuB4A8eIRZXwGN5Unwh7YX8KMkoo3cnWsPg8HxvnpdylIsAUykK326gqLUQ7lOfIal4GoOVhaCaCqExrCcxARBEG7ikWDmeX4jAM1wOhgK4ATP8+k8z9cCWAzgMgA5YKLZ4+N6E+aSYXTd+llvBDHmVDA7cLcQBagnFuafbgCWP2xrmXWG8phOBbMmm4fkw+yiYFauV1EI/HUfYLbTkLDUMsuwsxGH4gcBDxxiFteINizK/RmNr23rfiy47bIP7O/HVzyYps6VazCS1ZEgCIIgfIQ3fJjjIVuSASaUhwF4F8AijuOmArBrJuQ47g4AdwBAXFwcTGLqFR9xILMOnWGApbYGmxrg2MnCf+159Mo7i1YAzmQex1Gd44jb7di+BVUhmbr7js85gq4A8s+exuF6lnXoudMIAVD0zc0IqC3B7iFvu7RdaPkpKWJ95/ZtqAzNtrtux5xcdACQfvI4sswmdD+TizYAwJtdur4dMk5C6kDN3AJkbsGBuvYIK89Ap1PfwjTuD4AzwGiuxJjtTNyezTgKR56zR9IO42yx82Oj7d1AWj77a4aUl5f7/Bn6L0L17H2ojn0D1bNvoHr2Pg1dxz4L+uN5vgKA04STPM9/AuATAEhKSuKTk5O9XDI1xzemw3zcCH8j0CDHNrF/NvvK+xwoANrERKCN3nGE7YYNHmibt1BkexpwAmgVG4NW9S3roXCgCog+v0+/nPbIjQR2s8mhQ5Lk/Kt6WLcAWUCnDu3RKTkZOL8YOAsYeItrx1u/FchQz+rXozOwhOXlTR7SF9j3HWCaLy1vffUbwHuKJPuDZwEpX0k/e3RJRI8hLhy7mWMymRrmPiYcQvXsfaiOfQPVs2+gevY+DV3H3nCNOA1AMWA5EoR5zQIxrZxHfsGuILoxeOSSoR1quh5o0/L8druci9QRKh9mJ64VWh9mKejPwXarn2WjzmmPJVJZJAfllZ9lAxAoienMRlUSmfA0MEmRyN+eSwdBEARBEIQGbwjmXQC6chzXkeO4AADXAvjLyTZNBinoz9uZJ8QBNuoqHa/32UR5IAktmiC6eqEdeezgz2yoYWcohbwzX2TRL1jyYRaC/sDrb2sxs1Galj3Ehho+/KccJClSUcAG2gDkEey05CmStwRFsWE+2wvp0iw1upsQBEEQBEFo8cglg+O4H8HcbWM5jssB8CzP859zHHcvgFUAjAC+4Hk+1c39TgMwLT4+3uc+PsfTa9CbMwC8Bab16+s/4IJAsvBfex59CvMRC6D4/Dnsc+DDDKsZBT/NQWqfJ2zWaZ95HJ0AFBYW4FA962lwRSW0o7efzs3FcSf7izp/EAOE6d27d6E8XB372f3IOzjfYiDy48Yi8dRJJALIysxEwV+fol3eGYgDYG5cvxZWzShwIRXZGCr++JLlsbQYAnCu5Wi0KtjM5otD3QJAzi6b8plMJqkOC2OG4tAmtl1HJKADgFMnjiLT7Pgc/w2Qn5xvoHr2PlTHvoHq2TdQPXufJuXDzPP8dXbmLwew3IP9LgWwNCkp6XZf+/isKzkEPpdZXZPHjnFtkAdHmNg/m/M4/QFwDogKD9X3sTHJky1btdZfZ8NO4BQQG91Cf/n5TAC8PHCGHscigXL1rPj4eMQ7q/eTPLCfTSYNGqAefhQATJehzdl16HXNM8yHORNoX3MU7ff8rlpt7IDO6jHsASB7F+unUGA0+qPV3X8xq3PKl47LBqG+TWw69u5lSBZH7ArPALJ+Qcdeg9FxqJNz/BdAfnK+gerZ+1Ad+waqZ99A9ex9moMPc7Omps5qO5RzfRHdLnSXWV0/ht4wrspt7e3jnX7AO/0d75szOl5uD6UrhdWJS4h4roU6A3F8foHtvNpy23kGI/ub9rbrA3WIKIe3HXgTMONLIOkW9/ZBEARBEMR/Fp9lyWgu9ImPQGCGH7O6WusABNV/Zy4JZhdyEdsTteK2jgIDnaH1YWYHdL6dozzMWgEtBvfpDeFdeU79++gKNjqflhrFaIJaf2aADXlbqoktvXsbUJylnmcwAH2m225PEARBEARhhyYpmBvTh7kdgJYtAJQDmzdugNk/rP474y12fZj7FZ1DNIDyshLs1jnHceBYUByAs/mFOKKzTqeMdLQHUFJUiL0O/KAd1eGA0jJEaebl5ObihJN6jy3YCzEHxd49u1GSXiUtM1hqMFZx7E6ZmWjvYF8b1q1BjyPvILPD1eh27COb8oiI5zHCzCNQs2xXt8cwZPd9NusCQcAZx+fyb4b85HwD1bP3oTr2DVTPvoHq2fs0KR9mb9GYPswAcOz0MgDA6JHDgdDY+u/IagE2sEmb88iMBM4DYcFB+j42G42SFbd123i01lundg2QDUSGBTv0g3ZYhxkxQIl6VkJ8PBKU26x9AYhqDwy+WZ6Xeh4QQjkH9u8HdBwjL6sqBjYpji2U0x7jukcDGzciji8Agv1sygMAaN1PPo99YUCtYJmObA9c9RWGJAwG+vcCMjYB7YcjucNI+wf8D0F+cr6B6tn7UB37Bqpn30D17H0auo6bpGBubHjRBcIXPsz2chEr8yOLPszmGpa3WRwSWXR90HN1cBVtHmY9Nr3O/isFsyoPs3guPLDuBaDbRertHdUDAPx8E/tfngfUVemvM0MR6KfMqtGiA5AgBBy2G8L+CIIgCIIgGhAK+tOhwQQzHAlm3vYYmVtlIaonmL+9Ani1ozxf3NYTH2ZXBLMeKh9mC7D7C+C5KGDTG8C3l8vLzDXO/bRLBPNzVRFg1hHMd5iA2C7yb6PCh3nATDcLThAEQRAE4R4kmHXwqYVZtBJnbGE5hzcK1lxloJ/BDygvADK3aPYhBv3Vc9Q6Sx2Qvt5O+YSyn96jv1xZN1arevAQZZaL1D+AHR/abp8w1HaeSO/pQExX+bc2yE9sQAyYCQzQzWxIEARBEATRYDRJl4zGDPoDgMgaZrHdsW0LqkIy6r0fzlqHccK09jwGFp9HJICaqgpsM5nQKs+EXgDyDm9CGoZhtNUqXZzs02dQ88dLEG2s4oAq3XKy0RZAdUUZttcj6K9F0T7oJZ2r3fszAnZ+gi0jv8aorbIbxrHvH0Vu/MUAgDa5h9FdmH/gwD70s1cJf9ypO7s27ygCdJcAu4LHge80HkPPzQEAbDqUCcsRebjupLIyhAFILzEgi4ImHEKBJb6B6tn7UB37Bqpn30D17H0o6M8HpP7MItaGJQ0GWvWo/47qqoGNbNLmPE6EAaVAoL+RLdt/FkgD4uLaIC45GdgeAFiYe0K7DolAdCfgJPPjTR7WH/APBkp+Bc4AQf4Gx0F/48axEQsrzrGguN6XswWZAcAB280C6ooBAKNiilXzux3/GN1mvsp+7DwOCGmV+/XpDRwOdGu46YC6EmQnXIp2Z1fLbhh3mIDwthgSHses3xVrgDEPYUwbjaw/6AdUAJ169ken/8DgI55AgSW+gerZ+1Ad+waqZ99A9ex9aOASH8BzQjvCqz7MmqA/8bfoU6z1YVbmIX61I/BaV0UeZicuGeLyX25mf+X5wn518hkrKTplf5lq4BIL4KdN9Oack11uBZ46K88IbwuEx7Fpoz9w9TeAViwDzC8aAAI8SPlHEARBEAThIk3SwtzY8KJY9eVIf6IAPbCYWY9VgtkIVGtyrdWWydkx6qodl8NcwwStOIhHTRkQ1sq5RfjI3/aXaYP+jPYcLOxw7Q+AqJUj27HAP/9g17Y1C+cbGO7eMQmCIAiCIOoBWZh1kIP+XBiFz/GeHCzSjPSnTC+X8qV63Q2vAKW5tvsQU7CZq4DaSjZ97iSwoB1QlC6vJ1pkRVGbdwg4s18WnvY4d0Kn3DxQnA3886T6XNwVzD2mytM3LwWmLASCIlzbVjyfQLIwEwRBEAThfZqkhbmxg/6CqpkLw56UnSg9UVbv/RjNVRCH89Cex+CyUoQDsJhrsclkQpvcI1IQHQDU1dZA6TBRkr4bkZr9n8vPRYwwfWDpRyiKGYTEU98jsaYUp/56FWICun2rf0Dfgy+D4y2shSTkPT7d9iLE2yk7rxhpUEneh5ehKHogeirmHTmQgh5lOoLeASaTSeOQ3xNw8Von1zBr+67DmajIcm2b/yoUWOIbqJ69D9Wxb6B69g1Uz96Hgv58wL4/WCTcoP59gcTR9d9RTRmwmU3anEdaKFAOGMGzZYogOgDwN5erVo8MMgKl6l3EhAUBRWy638HngCfzAMsmIBPo2KE9kMGWDajZCVhtrcnxuSvsFp0DD4S3AcrOqObH5W9A3LDpwBF5Xo/qvbY7mPIKsPIxu/tPTk6uv0N+3jQgbSmGTL2JBTMSdqHAEt9A9ex9qI59A9Wzb6B69j400p8PaJSR/sTf9qirtJ1XngcERcr+zVXn5WXKwUw0otcl4voCfgH62x74Wf1bb6TBmM7MTaO+OaIdcdXXbL8klgmCIAiC8AHkw6yDT0b6E4UkbwVy9wErHnW8q/MZtvPKzrCAOZHKc/K0UsSWKTJRuMrU15mFWcldm4GgKNsBVPT8qwMjvBeUZzC6HiBIEARBEAThISSYdWiwoD9HFmazwvKattT1fcYqPJ3rKoHIBPl3VZE8bVGIfaWgje7k2nGCooAIjYdzXB8gtqvtumVngZAYOfDvsveBdkPtC2a/INfKQBAEQRAE0QQglwwdJMFs0XE1aCiUrgp6Lg16BIQBrXoChUfleaGx8nRlkeymoNqnQrhHJgDVpUBlIRwS3AKIaCv/HiT4C0e1B3J2qde11gF+wcBta1n6OnE7rTC+cyMQHA0EhDo+NkEQBEEQRBOCLMw6NFgeZocuGYocyGYdP1//UBbEp4Qz2opQP4VrQnWJbNWurdA/rn8ocMNv9sslEhzF/kTE/Ya11l/f6A9Ed1SLbKNmYJQ2/YGodkBItPPjEwRBEARBNBGapIW5sdPKoYqJ2cOHDiC/IKreu/GrK4OYY0N7HmNqqmCAARysOJ2dYZPeLa3z7cjbsh3Jinlmcy3yC4qgkKTIOlsALuEytMtZAiy9D7ltLkRbAOeyj0kp55Tkny9Dxt6DGOqk7KbN2xBc6YehMKAquA32Bk9CncmE9nml0HPqqKipwy7NOQ6qqIYys7K2DiitjvehOvYNVM/eh+rYN1A9+waqZ+9DaeV8wI7lLDNErx7d0au/B8evLAKE+Dib89hoBgJCgNpyxIfbZnvo2bsvevZNBkzyPD+jEW3bdQQUiSvad+oOjJoLvLwEANDWwAL/Yvz1s1O0ik9Eq1HjANGrIigKqC5m09d8D6T+AYS3lst78Q0IATBK3EFKJnDqW5v9hka0sD3H9Fig7Lj0U7uc0up4H6pj30D17H2ojn0D1bNvoHr2PpRWzgd4fWhsq5Xtu1bItXx0ue06eiPn8TzzEVYSEKZ20zidwv6XazJjxHYDCo8xNwmlG8clbwFtBzB/7ZbdgZ6XODwllc+0krI823mVRbbzCIIgCIIgmhkkmHXwelo5V3ITa/1/xf1pfZgDwwGDjit6RYHtegDL++yv2Eef6c7LoqR1X6B1P+DsAcfHA+TjTHzW/aGzCYIgCIIgmggkmHXw+sAlYsDfqLnAnq/VA46IGHQEM2+1tTC7mutYzKlstaotzO4S1R64axNwahNg8AO+nCIWznbdq78FsrYD/a+p//EIgiAIgiAaGcqSoUOD5WG2Z2EWs2JEJgAXPK+/jp7VWM8lw5FgDhCWhbYEul/Mpq1mwNgA7aSOY5grhyNadCCxTBAEQRBEs4cEsw6yD7OHeZidWZiNAcCAmXY21hv2mbe1POsJ5mAhbVtEW+Dx08BDx5g1GJCH4gaAzhPtldw1jIEsaJAgCIIgCOJfDAlmHayiuPS2D7MxgA3zfMPvtutwOoKZ522tw7zV/nH9g4HAMGatNmis5o9lANctdnYCjjEYgDs3eLYPgiAIgiCIJk6T9GFu7DzMlRVVAID0E8eRVVf/4wfUnMNIYVp5HiEVWRgKIPXYCRQUmwAYVfmWAWDf/gMozoJqPm+14NjxdHQHUBzZB3X+YUg7WQFrhkm1nqWmAkYAB2MuwTnhuC2KctAfQHaJGScbsE4Das7rnqMrUB5K70N17Buonr0P1bFvoHr2DVTP3ofyMPsA0/q1AIBOie3RaZwHxy/NBbaxSdV55O4DdgG9+w0CegjzTepNBwwYAHQcCxifBfxDgJWPgeOA7j17AceAqMR+wBUfoqW4AT8P2LAQAGDkmWW878hJQNuBwvJxQOc2aNfrUrTz9yDoT0t1if45ugDlofQ+VMe+gerZ+1Ad+waqZ99A9ex9GrqOySVDFy/nYa6rZP/9Q5zvY8yDwLA72fSIe2QfZm3Zxj+uOK7gphGoGGeP41gAXkOKZcC1cyAIgiAIgmjGkGDWg+NYkJy3fJhrK9j/gDB53iPpwJWfy79DFAOEcBzwbDFw4YsKX2Sdst38NxutT0QpmL2Fbr5ogiAIgiCIfw9N0iWjSWDwY6PfeYI9C7MkmBXW2dAYoO8MoOc0NlpfXC/1NmIQoBSQqFO2jmPUv13N0dwQDJ7tu2MRBEEQBEH4ELIw28Pg1wB5mDVk7wSeawGcP8V+B4TaruMXCHQYaTtfRLToOipbaCt5X75gfgkw7W3fHIsgCIIgCMLHkIXZHt5wydi2iPkXH1/NfvvrCGZnuDIK4e1rgbzD+qnpCIIgCIIgCLcgwWyPhhDMWpcMcUCUzC3sv56F2RnRndj/xNH214lqz/4IgiAIgiAIjyHBbA+vBP1x6un6ZKxo2Q144DAbxY8gCIIgCILwOiSY7dEQPsw2FmaFYPYPrr/LRGR8/ctEEARBEARBuEWTFMyNPdJfeXk5qmrrUHImB0c8OH5Q1RkMF6ZNJhN65hcgTvhttnLY/B8f5YdGOvI+VMe+gerZ+1Ad+waqZ99A9ex9aKQ/H2AymRAcEobgljFo7cnxz50EdrDJ5ORk4Nz3QD777Wc0/OdH+aGRjrwP1bFvoHr2PlTHvoHq2TdQPXsfGunPVxj9G8CHWQHPy0F/gH4eZYIgCIIgCKLJQYLZHg3tw2y1qH2WPR0UhSAIgiAIgvAJJJjtYTA2bJYM3gJVlgy+gQdFIQiCIAiCILwCCWZ7NHQeZt6qdskgCIIgCIIgmgWk4OzR0HmYrRZ1GmaCIAiCIAiiWUCC2R4GP8DSkBZmcsEgCIIgCIJojpBgtkeD+zBbPRfgBEEQBEEQhM8hwWwPQwOnlbNaAUstYAxouH0SBEEQBEEQXocEsz0aPOjPwgRzUKRn+yQIgiAIgiB8CglmezREHmatS4bVTIKZIAiCIAiimUGC2R4N4cOsHbjEagYCwjzbJ0EQBEEQBOFTSDDbw+BXv+Grc1KAolPCD41LhtXChtwmCIIgCIIgmg0cr7SCNhE4jpsGYFp8fPzt3333nc+PX15ejiFZnyCi9Ch2DP/YrW2TTZcBAEzJSxBWlo6klAcAANuHfYLuRxeB482IKjksrfNfpry8HGFhZHH3JlTHvoHq2ftQHfsGqmffQPXsfdyt4/Hjx6fwPJ9kb7lfg5SqgeF5fimApUlJSbcnJyf7/PgmkwlxbROAmnS4fXwT+5ecnAycaQGksN/DhyYBZ8MBcMCYt4FWvZDcfliDlbk5YjKZ3K9fwi2ojn0D1bP3oTr2DVTPvoHq2fs0dB03ScHcJGhoH2beylwy/AKApNme7ZcgCIIgCILwGeTDbA9P08pZLbDJksFb2H4JgiAIgiCIZgMJZnt4KpgttWoLs6UOMFcDnNHzshEEQRAEQRA+g8yd9vA0D7OlFioL80ej2P9u8R4ViyAIgiAIgvAtZGG2h8HIrML1xVKn0svyfqmNQhAEQRAE0ZwgwWwPg7/7LhlaFww9xVxT6lGxCIIgCIIgCN9Cgtke9fFhVlqktT7MIuZaz8pFEARBEARB+BQSzPYw+AHgAavV9W2UIwPaszDzbuyPIAiCIAiCaHRIMNvDIGSzcGd4bK2FWQ8SzARBEARBEM0KEsz2MAaw/+4E/ildOKx1+i4ZJJgJgiAIgiCaFSSY7SEJZjd8ji3kkkEQBEEQBPFvg3Kc2cPoz/67ZWHWumRwtuuQYCYIgiAIgmhWkIXZHpKFucb1bVyyMOslZyYIgiAIgiCaKiSY7eGpD7OFfJgJgiAIgiD+DZBgtofkkmHHh3l+JLDkXvU8mywZeoLZg+G2CYIgCIIgCJ9DgtkefoHsv6Ogv73fqn9rfZhFC3O/a4EZX7BpsjATBEEQBEE0Kyjozx71ccmwaFwyRAvzwBuA4BZsmgQzQRAEQRBEs4IszPZw5JKx8XX9bZRimLfIFmaOk/dHgpkgCIIgCKJZQYLZHo7yMK97wc5GCp9l3qr4zQlDbYMEM0EQBEEQRDPDZ4KZ47hOHMd9znHcr746pkfUxyVDKYatGgszZ7BdhyAIgiAIgmjyuCSYOY77guO4fI7jDmnmT+E47ijHcSc4jpvnaB88z6fzPH+rJ4X1KaILhdmNPMxKMfzXvcCOj4UfHGAwCutQHmaCIAiCIIjmhKtBf18BWATgG3EGx3FGAO8DuABADoBdHMf9BcAIYIFm+1t4ns/3uLS+pD5DY2utx8dWsP9kYSYIgiAIgmi2uCSYeZ7fyHFcomb2UAAneJ5PBwCO4xYDuIzn+QUALmnQUjYG9XLJsGc95oDAcDbZebxHxSIIgiAIgiB8iydp5eIBZCt+5wAYZm9ljuNiALwEYCDHcY8LwlpvvTsA3AEAcXFxMJlMHhSxfpSXl2Pbrj0YAeDI4QM4ez5OtTxZMa0sX4uifeivs7/d+1NRHl6FoGGfoCYwGnwjnFNTpLy8vFGu738JqmPfQPXsfaiOfQPVs2+gevY+DV3HPsvDzPP8OQB3ubDeJwA+AYCkpCQ+OTnZyyWzxWQyYcSw0cB2oEeHNugxUlMGkzypKt8JC3DAdn9JyVOB8DjbBf9xTCYTGuP6/pegOvYNVM/eh+rYN1A9+waqZ+/T0HXsSZaM0wDaKX4nCPP+HQRGAOCA6hLXt9F1yeCAkJiGKhVBEARBEAThYzjexawNgg/z3zzP9xF++wE4BmAimFDeBeB6nudTPS4Ux00DMC0+Pv727777ztPduU15eTnCwsIwavNM5MWNw4mud6iWJ5suk6ZNyUuk6ehzKeh38HnVurX+kdg66hsQtoj1THgPqmPfQPXsfaiOfQPVs2+gevY+7tbx+PHjU3ieT7K33CWXDI7jfgRz3Y3lOC4HwLM8z3/Ocdy9AFaBZcb4oiHEMgDwPL8UwNKkpKTbG8slIzk5Gdgfi4ToUCRoy2CSJ6XyZW4FTGqxDAABLRKo28UO1CXlfaiOfQPVs/ehOvYNVM++gerZ+zR0HbuaJeM6O/OXA1jeYKVpagRFuu6Sceg3/flhLRuuPARBEARBEITPoaGxHREQDtRWeLaPMAr2IwiCIAiCaM647MPsS5qKD3O//c/AaKnB3kGvqJbr+TB3PfYR4nNX2OwrO+FynOwy27sFbqaQD5f3oTr2DVTP3ofq2DdQPfsGqmfv0yg+zL6myfgwn44DKgpsfWBM8qS0rGIpkGu7r3ZdeqId+SnpQj5c3ofq2DdQPXsfqmPfQPXsG6ievU9TSiv378fgD1jMHu7D2DBlIQiCIAiCIBoFEsyOMPoBVs3Q2O66sBiapBGfIAiCIAiCcBESzI4w+AOWWvl3xTnguSg390GCmSAIgiAIojlDQX86iI7iPdLeQVTxIWwf8SkAIKzsBJJSHlKt6yzo73iX23A6YZr3C90MoaAH70N17Buonr0P1bFvoHr2DVTP3oeC/nyA5Che+htQmSY7jedGAinqdZ0F/XXt1gNdhyZ7r7DNGAp68D5Ux76B6tn7UB37Bqpn30D17H0o6M+XaF0ywNVjHxT0RxAEQRAE0ZwhwewIY4AbWTLsiGnyYSYIgiAIgmjWkGB2hDZLRt4h9/dBgpkgCIIgCKJZQ4LZEUqXjKwdwJJ76rEPEswEQRAEQRDNGcqSoYMYWZl46gckZv6Ewz0fBMdb0PPIOzbrylkyPkZ87nKb5am9HkZBqzFeL3NzhKKEvQ/VsW+gevY+VMe+gerZN1A9ex/KkuEDpMhKwy4gE+iV9ibQ63LddeUsGX/rZsno3acf0CvZSyVt3lCUsPehOvYNVM/eh+rYN1A9+waqZ+9DWTJ8icFfnq48V899NMk2CUEQBEEQBOEiJJgdYVQIZquzbBl2XFtIMBMEQRAEQTRrSDA7wuCCYBZ9wO0tpzzMBEEQBEEQzRoSzI7wC5Sn7Qliq4X9t5evmSzMBEEQBEEQzRrKkqGDGFkZW7ANfVIXsnmhHRFWccpm3Q1jfwVv8EePtLfQOs9ks3zvgJdQEtXH20VullCUsPehOvYNVM/eh+rYN1A9+waqZ+9DWTJ8gBRZmeEPCII5LCQQqFCsFN0JKErHuDFjAP8goPAbIM92XwMHJQHth/uk3M0NihL2PlTHvoHq2ftQHfsGqmffQPXsfShLhi8JiZGntS4ZAUKrhbey/+Ya/X2QSwZBEARBEESzhgSzI0Ki5WmtYDYGsP+iYK6r0t8HBf0RBEEQBEE0a0gwOyIwQp621KmXSYJZCPozV+vvgyzMBEEQBEEQzRoSzI5QZsmoLdcsc9XCTIKZIAiCIAiiOUOC2REcJ09Xl6iXSRZmIcuIPR/mwPCGLxdBEARBEAThM0gw1xelD/P5TCD/sO06UxYCkQm+LRdBEARBEATRoFAeZh2UufuSTZfprpPfchRaFWzBlpFfY9TWm3XXMSUv8VoZ/w1QHkrvQ3XsG6ievQ/VsW+gevYNVM/eh/Iw+wBV7j6T/jqt2iQABcCo4cOArZqFd24C/IKQ3LKbF0vZ/KE8lN6H6tg3UD17H6pj30D17Buonr1PQ9dxkxTMzQJtWjklrfuq/Z8JgiAIgiCIZgv5MNcXR4KZxDJBEARBEMS/BhLM9cWRYCYIgiAIgiD+NZBgri9Gf/afBDNBEARBEMS/GhLM9YUszARBEARBEP8JSDA7Y8aXQFhr2/kkmAmCIAiCIP4TkGB2Rp/pwM1Lbedb69h/EswEQRAEQRD/aiitnCu07AbMLwGKs4A1zwHFmUBMF7aMBDNBEARBEMS/GhrpTwdXRoeJLdiKPqmvYFfSOxiy+37VMhrhzzVopCPvQ3XsG6ievQ/VsW+gevYNVM/eh0b68wEujQ6TVgakAkOSBgO71Yto9B7XoJGOvA/VsW+gevY+VMe+gerZN1A9e5+GrmPyYa4vnFB1VkvjloMgCIIgCILwKiSY6wtnZP+tZnmeoUka7AmCIAiCIAgPIIVXX0QLs7lGnve/HUBkfOOUhyAIgiAIgvAKJJjriySYq9n/MQ8BsV0arzwEQRAEQRCEVyCXjPrCcey/aGEObdV4ZSEIgiAIgiC8Bgnm+iJZmKvYf7/AxisLQRAEQRAE4TVIMNcXgxD0d2oT++8f3HhlIQiCIAiCILwGCWZPSfmS/ScLM0EQBEEQxL8SEsz1peS0+rcfWZgJgiAIgiD+jZBgri+dktW//YMapRgEQRAEQRCEdyHBXF8i2gDjn5J/+5FgJgiCIAiC+DdCgtkTjP7yNAlmgiAIgiCIfyUcz/ONXQYbOI6bBmBafHz87d99953Pj19eXo6wsDCn6yVkL0GXk18AAHYOWYTK0HbeLtq/Clfrmag/VMe+gerZ+1Ad+waqZ99A9ex93K3j8ePHp/A8n2RveZMc6Y/n+aUAliYlJd2enJzs8+ObTCa4dNwdx4CTbHLoyDFAi0RvFutfh8v1TNQbqmPfQPXsfaiOfQPVs2+gevY+DV3H5JLhCSqXDMqSQRAEQRAE8W+EBLMnqAQz5WEmCIIgCIL4N0KC2ROMAfK0oUl6txAEQRAEQRAeQirPE5QimQQzQRAEQTQL6urqkJOTg+rq6kY5fmRkJNLS0hrl2P8V7NVxUFAQEhIS4O/vr7OVfUjleYLKwmxsvHIQBEEQBOEyOTk5CA8PR2JiIjiO8/nxy8rKEB4e7vPj/pfQq2Oe53Hu3Dnk5OSgY8eObu2PXDI8QenDzJFgJgiCIIjmQHV1NWJiYhpFLBONB8dxiImJqVfPAglmT1AKZgNVJUEQBEE0F0gs/zep73UnlecJBvf8XwiCIAiCIAAgLy8P119/PTp16oTBgwdjxIgR+OOPPxqtPCaTCVu3bvV4H5dcckkDlahpQYLZE5Q+zARBEARBEC7A8zwuv/xyjB07Funp6UhJScHixYuRk5Pj1eOazWa7y+ojmB3t798GCWZPMFLMJEEQBEEQ7rFhwwYEBATgrrvukuZ16NABc+bMAQBYLBY88sgjGDJkCPr164ePP/4YgDx63YwZM9CjRw/MnDkTPM8DAFJSUjBu3DgMHjwYkydPxpkzZwAAycnJmDt3LpKSkvDOO+9g6dKlGDZsGAYOHIhJkyYhLy8PGRkZ+Oijj/DWW29hwIAB2LRpEzIyMjBhwgT069cPEydORFZWFgBg1qxZuOuuuzBs2DA8+uijLp3vjz/+iL59+6JPnz547LHHpHOcNWsW+vTpg759++Ktt94CALz77rvo1asX+vXrh2uvvbYBarthIMXnCWRhJgiCIIhmzXNLU3E4t7RB99mrbQSendbb7vK0tDQMGjTI7vLPP/8ckZGR2LVrF2pqajBq1ChceOGFAIC9e/ciNTUVbdu2xahRo7BlyxYMGzYMc+bMwZIlS9CyZUv89NNPePLJJ/HFF18AAGpra7F7924AwPnz57F9+3ZwHIfPPvsMr776Kt544w3cddddCAsLw8MPPwwAmDZtGm6++WbcfPPN+OKLL3Dffffhzz//BMCyjGzduhVGo/OEB7m5uXjssceQkpKCFi1a4MILL8Sff/6Jdu3a4fTp0zh06BAAoLi4GACwcOFCnDp1CoGBgdK8pgAJZk8gH2aCIAiCIDzknnvuwebNmxEQEIBdu3bhn3/+wYEDB/Drr78CAEpKSnD8+HEEBARg6NChSEhIAAAMGDAAGRkZiIqKwqFDh3DBBRcAYNbbNm3aSPu/5pprpOmcnBxcc801OHPmDGpra+2mV9u2bRt+//13AMCNN96osiZfddVVLollANi1axeSk5PRsmVLAMDMmTOxceNGPP3000hPT8ecOXMwdepUqUHQr18/zJw5E5dffjkuv/xyl47hC0gwe4KRBDNBEARBNGccWYK9Rc+ePbFs2TLp9/vvv4/CwkIkJSUBYD7O7733HiZPnqzazmQyITAwUPptNBphNpvB8zx69+6Nbdu26R4vNDRUmp4zZw4efPBBXHrppTCZTJg/f77b5Vfur760aNEC+/fvx6pVq/DRRx/h559/xhdffIFly5Zh48aNWLp0KV566SUcPHgQfn6NL1fJh9kTSDATBEEQBOEm48aNQ3V1NT788ENpXmVlpTQ9efJkfPjhh6irqwMAHDt2DBUVFXb31717dxQUFEiCua6uDqmpqbrrlpSUID4+HgDw9ddfS/PDw8NRVlYm/R45ciQWL14MAPj+++8xZswYd08TADB06FBs2LABhYWFsFgs+PHHHzFu3DgUFhbCarXiyiuvxIsvvog9e/bAarUiOzsb48ePxyuvvIKSkhKUl5fX67gNTeNL9uYM+TATBEEQBOEmHMfhzz//xAMPPIBXX30VLVu2RGhoKF555RUAwG233YaMjAwMGjQIPM+jZcuWkv+wHgEBAfj1119x3333oaSkBGazGXPnzkXv3rbW8/nz5+Oqq65CixYtMGHCBJw6dQoA81meMWMGlixZgvfeew/vvfceZs+ejddeew0tW7bEl19+6dK5rV27VnIZAYBffvkFCxcuxPjx48HzPKZOnYrLLrsM+/fvx+zZs2G1WgEACxYsgMViwQ033ICSkhLwPI/77rsPUVFRLtaqd+HE6MqmSFJSEi86qfsSMQrVKRXngNc6sen5JV4t078Rl+uZqDdUx76B6tn7UB37hv9KPaelpaFnz56NdnwaGtv7OKpjvevPcVwKz/NJ9vZHLhmeQC4ZBEEQBEEQ/3pIMHsCCWaCIAiCIIh/PSSYPYF8mAmCIAiCIP71+Czoj+O4ywFMBRAB4HOe5//x1bG9hsG1HIQEQRAEQRBE88UlCzPHcV9wHJfPcdwhzfwpHMcd5TjuBMdx8xztg+f5P3mevx3AXQCucbQuQRAEQRAEQTQVXLUwfwVgEYBvxBkcxxkBvA/gAgA5AHZxHPcXACOABZrtb+F5Pl+YfkrYjiAIgiAIgiCaPC5ZmHme3wigSDN7KIATPM+n8zxfC2AxgMt4nj/I8/wlmr98jvEKgBU8z+9p2NMgCIIgCIJoPhiNRgwYMAC9e/dG//798cYbb0g5iXfv3o377rvP42N89NFH+Oabb5yvqGDkyJH1Pt5XX32F3Nzcem8PsDzRr7/+ukf78Aae+DDHA8hW/M4BMMzB+nMATAIQyXFcF57nP9JbieO4OwDcAQBxcXEwmUweFLF+lJeXu3zcZOF/Y5SzueNOPRP1g+rYN1A9ex+qY9/wX6nnyMhI1ah2vsZisSA4OBibNm0CABQUFODWW29FQUEBnnzySXTv3h0vvfSSR2U0m82YOXMmALi1n1WrVtX7uJ9//jk6duzoVo5pi8UCo1GOCaupqYG/v7/H18disdjdR3V1tfv3Oc/zLv0BSARwSPF7BoDPFL9vBLDI1f258jd48GC+MVi/fr3rKz8bwf4It3Grnol6QXXsG6ievQ/VsW/4r9Tz4cOHG/X4paWlfGhoqGreyZMn+ejoaN5qtfLr16/np06dyvM8z5tMJr5///58//79+QEDBvClpaU8z/P8woUL+T59+vD9+vXjH3vsMZ7neX7cuHH8/fffzw8ePJh//fXX+WeffZZ/7bXXpGVz587lBw8ezPfo0YPfuXMnf8UVV/BdunThn3zySakcYrnWr1/Pjxs3jr/yyiv57t2789dffz1vtVp5nuf55557jk9KSuJ79+7N33777bzVauV/+eUXPjQ0lO/WrRvfv39/vrKykl+zZg0/YMAAvk+fPvzs2bP56upqnud5vkOHDvyjjz7KDxw4kP/xxx9V9aAss4jVauUffvhhvnfv3nyfPn34xYsX8zzP87m5ufyYMWP4/v3787179+Y3btzIm81m/uabb+Z79uzJ9+nTh3/zzTdt6l/v+gPYzTvQpJ5YmE8DaKf4nSDMIwiCIAiCaB6smAecPdiw+2zdF7hooVubdOrUCRaLBfn5+ar5r7/+Ot5//32MGjUK5eXlCAoKwooVK7BkyRLs2LEDISEhKCqSvWZra2shjpI8f/581b4CAgKwe/duvPPOO7jsssuQkpKC6OhodO7cGQ888ABiYmJU6+/duxepqalo27YtRo0ahS1btmD06NG499578cwzzwAAbrzxRvz999+YMWMGFi1ahNdffx1JSUmorq7GrFmzsHbtWnTr1g033XQTPvzwQ8ydOxcAEBMTgz17XPPQ/f3337Fv3z7s378fhYWFGDJkCMaOHYsffvgBkydPxpNPPgmLxYLKykrs27cPp0+fxo4dOxAeHo7i4mI3roJ9PMnDvAtAV47jOnIcFwDgWgB/NUipCIIgCIIgCIwaNQoPPvgg3n33XRQXF8PPzw9r1qzB7NmzERISAgCIjo6W1r/mGvuJyC699FIAQN++fdG7d2+0adMGgYGB6NSpE7Kzs23WHzp0KBISEmAwGDBgwABkZGQAANavX49hw4ahb9++WLduHVJTU222PXr0KDp27Ihu3boBAG6++WZs3LjRpXJq2bx5M6677joYjUbExcVh3Lhx2LVrF4YMGYIvv/wS8+fPx8GDBxEeHo5OnTohPT0dDz/8MFauXImIiAiXj+MIlyzMHMf9COauG8txXA6AZ3me/5zjuHsBrALLjPEFz/O2NVYPOI6bBmBafHw8+TD/i/mv+Mo1JlTHvoHq2ftQHfuG/0o9q3yYRz/pnYM48MG1WCzCKvI6p06dgsFgQHBwMCorK2E2m1FWVoZ77rkHycnJ+OeffzBy5Ej88ccfqK2tRXV1tY2Prna/Sn9gi8Ui7bO6uhpGo1Faj+d5lJSUSL/LyspQWVmpWsdisaC8vBwFBQW4++67sWHDBiQkJODll1+WtrVYLKioqEBZWRkqKipUfsTKcxLdHPR8jPV8mLXnW1dXh6qqKowfPx7Lly/HqlWrcNNNN+Gee+7B9ddfj82bN2P16tVYtGgRvv/+e3zwwQeqY9THh9klwczz/HV25i8HsNytI7p2vKUAliYlJd2enJzc0Lt3islkgsvHNQEIiXF9fULCrXom6gXVsW+gevY+VMe+4b9Sz2lpaW4FpjU0ovATy1BQUICHH34Yc+bMQUREBEJCQuDn54fw8HCcPHkSw4cPx/Dhw3HgwAFkZ2dj6tSpeP7553HrrbdKLhnR0dEwGo0IDQ2V9hsYGIjAwECEh4erlin3D8BmO711AgICEBQUBH9/f3Ach8TERFgsFixduhQzZsxAeHg4oqKiYLVaER4ejkGDBiE7Oxt5eXno0qULfvvtN0ycOBHh4eHgOA5hYWG610BZZpGJEyfi448/xp133omioiJs27YNb7/9NoqKitC5c2fMmTMHHMchLS0NNTU1CA0NxRX/b+9+Y+So6ziOvz/tXXuNB20JpCUU4RA0/ElozzvTRCEQFWhjQEwwECm0mupFSCSNMYCJEmyKtNE0PtFoANvw3yiRB/6hD1p9ckX+WIVSkANL2loOFVPa0OodfH2wv6N7R3e43duZue1+XsnkZn+7tzP7mW8mv535zezVV9Pb28v111//vuV0dXWxZMmSurZZYb/0d9y6/R8g/8K4mZmZTd7hw4dZvHgxIyMjdHR0sGLFCtasWfO+123cuJGtW7cyY8YMzj//fJYtW8bs2bPZsWMHfX19zJo1i+XLl7Nu3bpC1nvevHmsXr2aCy64gIULF9Lf3//ecytXrmRgYIA5c+YwODjIfffdxzXXXMPo6Cj9/f0MDAxMahlr165l48aN7z3es2cPg4ODXHjhhUhi/fr1LFy4kE2bNrFhwwY6Ozvp7u5m8+bN7Nu3j1WrVjE6OsqMGTO4666JPw3SGFUuDJye+vr6YmzgepHa5Rt22Zxz/pxxMZxz/pxxMdol5127dnHuueeWtvyDBw+WeoS7HWRlfKztL+mZiOir9X7TssNcNYZ59f3331/48g8dOkR3d3fhy203zjl/zrgYzjl/zrgY7ZLz3LlzOfvss0tb/sR7D1vzZWU8NDTEgQMHxrVdeumlrddhHuMjzMc355w/Z1wM55w/Z1yMdsnZR5iPf80+wuzBt2ZmZmZmGdxhNjMzs7Yznc+wW34a3e7TckiGxzC3B+ecP2dcDOecP2dcjHbJubu7mwULFjB37lwkFb58j2HO37EyHrvf9PDwMIcOHRr3nMcwN6BdxnCVzTnnzxkXwznnzxkXo11yHhkZYe/evRw5cqSU5R85coSurq5Slt0uamXc1dXFokWL6OzsHNf+QWOYfR9mMzMzayudnZ309PSUtvxt27bV/cMZVp9mZ+wxzGZmZmZmGdxhNjMzMzPL4A6zmZmZmVmGaX3Rn6R/Aq+VsOiTgX+VsNx245zz54yL4Zzz54yL4ZyL4ZzzV2/GZ0TEKbWenNYd5rJIejrrSklrDuecP2dcDOecP2dcDOdcDOecv2Zn7CEZZmZmZmYZ3GE2MzMzM8vgDvOx/bTsFWgTzjl/zrgYzjl/zrgYzrkYzjl/Tc3YY5jNzMzMzDL4CLOZmZmZWQZ3mCeQdIWklyQNSbq17PVpVZJOl7RV0guSdkr6Rmq/Q9I+STvStLzqf25Lub8k6fLy1r61SNot6bmU59Op7SRJWyS9nP7OT+2S9KOU818l9Za79tOfpI9V1esOSW9JusW1PHWS7pX0hqTnq9rqrl1JN6bXvyzpxjI+y3RVI+MNkl5MOT4maV5qP1PS4aqa/knV/3w87WeG0nZQCR9n2qqRc937CPdBstXI+ZGqjHdL2pHam1vPEeEpTcBM4BXgLGAW8BfgvLLXqxUn4FSgN82fAPwNOA+4A/jmMV5/Xsp7NtCTtsPMsj9HK0zAbuDkCW3rgVvT/K3A3Wl+OfBbQMBS4Mmy17+VprSPeB04w7XclDwvBnqB56va6qpd4CTg1fR3fpqfX/Znmy5TjYwvAzrS/N1VGZ9Z/boJ7/OnlLvSdlhW9mebTlONnOvaR7gP0ljOE57/AfCdNN/UevYR5vE+AQxFxKsR8T/gYeCqktepJUXE/oh4Ns0fBHYBp2X8y1XAwxHx34j4OzBEZXtYY64CNqX5TcDnq9o3R8V2YJ6kU0tYv1b1aeCViMj6QSXX8iRFxB+BNyc011u7lwNbIuLNiPgPsAW4IveVbxHHyjginoiI0fRwO7Ao6z1SzidGxPao9DY2c3S7GDVruZZa+wj3QT5AVs7pKPEXgYey3qPRenaHebzTgD1Vj/eS3cmzSZB0JrAEeDI13ZxOBd47droVZz8VATwh6RlJX01tCyJif5p/HViQ5p3z1FzL+J2xa7n56q1d5z01X6ZyhG1Mj6Q/S/qDpItS22lUch3jjCevnn2Ea3lqLgKGI+Llqram1bM7zJYrSd3AL4FbIuIt4MfAR4DFwH4qp09saj4VEb3AMuAmSRdXP5m+Qft2OFMkaRZwJfCL1ORazplrN1+Svg2MAg+kpv3AhyNiCbAGeFDSiWWt33HA+4hiXcf4AxpNrWd3mMfbB5xe9XhRarMGSOqk0ll+ICJ+BRARwxHxTkS8C/yMo6eqnX2DImJf+vsG8BiVTIfHhlqkv2+klzvnxi0Dno2IYXAt56je2nXeDZC0Evgc8KX0xYQ0RODfaf4ZKuNpP0olz+phG854EhrYR7iWGySpA/gC8MhYW7Pr2R3m8Z4CzpHUk44mXQs8XvI6taQ0lugeYFdE/LCqvXq87NXA2JWujwPXSpotqQc4h8qgfMsg6UOSThibp3Ixz/NU8hy7W8CNwK/T/OPADemOA0uBA1Wnvy3buKMXruXc1Fu7vwcukzQ/nfK+LLVZDZKuAL4FXBkRb1e1nyJpZpo/i0rtvppyfkvS0rRvv4Gj28VqaGAf4T5I4z4DvBgR7w21aHY9d+Sz3q0pIkYl3UxlZzsTuDcidpa8Wq3qk8AK4LmxW7wAtwPXSVpM5TTrbuBrABGxU9KjwAtUThHeFBHvFLzOrWgB8Fi6I04H8GBE/E7SU8Cjkr4CvEblQgiA31C528AQ8DawqvhVbj3py8hnSfWarHctT42kh4BLgJMl7QW+C3yfOmo3It6U9D0qnQ2AOyNishdfHfdqZHwblTs0bEn7ju0RMUDlDgR3ShoB3gUGqrL8OvBzYA6VMc/V457bXo2cL6l3H+E+SLZj5RwR9/D+60ugyfXsX/ozMzMzM8vgIRlmZmZmZhncYTYzMzMzy+AOs5mZmZlZBneYzczMzMwyuMNsZmZmZpbBHWYzMzMzswzuMJuZmZmZZXCH2czMzMwsw/8BEDI/MQWzH0cAAAAASUVORK5CYII=\n", + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2020-08-05T18:23:17.519994\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.3.0, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] }, "metadata": { "needs_background": "light" - } + }, + "output_type": "display_data" } ], "source": [ @@ -580,15 +4911,143 @@ }, "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n 2020-08-05T18:23:18.381179\n image/svg+xml\n \n \n Matplotlib v3.3.0, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAABGoAAAG8CAYAAACG6EOTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAADp1klEQVR4nO39SbMmx3mej5dmUQPGnuduoBsNgABImJRESpQiKNsrRdgbhxeOcIQ2/hL+Jt56YYUdlsO0LFlWiKQkUgQJkiDQGBpDzwPQQDdAANQ8/Rb/P9LXqXivt59EvadPVeO+VtnV9VZlZeWTmXXivvP5sX/6p38aQgghhBBCCCGEEMLO8+M7XYEQQgghhBBCCCGE8P8jf6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmQv5QE0IIIYQQQgghhDAT8oeaEEIIIYQQQgghhJnwk+v+8/Dhwy13N9N4W9n4sR/7sZXlf/zHf2zlH//x//c3I7smz/+Jn/iJlcd5/b/7u7/rus4999zTyl/60pda+fTp0638K7/yK6188ODBVj506FAr81l+8if/XxPb8xLWf9wO9mx/+Zd/2cp//Md/3Mp/8id/0sr/83/+z1Z+//33W/mv//qvW/kf/uEfVt6LbWTvyd4xsfdqz2zXnHIdHrd3wOPvvffe6ofZYb7whS+0B/npn/7pdvxv//ZvV55f6Xu9ffWnfuqnWvlv/uZvbnv8Z37mZ1Yet/vyudjfef2///u/X3mcfZn3ZfvYddjfeR3Wzdp53TPwHnxmPpsdr9SVx/nO7L48bvW36/C4jafExn0e5/Utfvk+zpw5M8vYvO+++1rl+awWI+xL9n7Y3mwDG495HbafzU08XhnLbUww7JqVfsEy62zXH88PFsOVNQ1/y+N2HZ5PetdJ9ltrl971RO96zo7zvoz9H/7wh7OMzUOHDt32RVg/JHxWez+VNS37y6c+9alW5tryt3/7t1v5l3/5l1v5/vvvb2XOFbt3715ZT6uzjS1WT+v7vP4HH3zQylyffvWrX91y3W984xut/K1vfauVb9682cp8Npt3rK15DqmMcZX1JKnEYG//IFYHm3/tvlevXp1lbH7lK19pD8i58pVXXmllPse3v/3tVr506VIrf/jhhyuvb32b/YttaWO/xZHNTVx/2nhp8zXhOTZ325rBvnN/9md/tpXvu+++LffjGoVtynZhbPNafH/WXlwbs434TcoxkedwjOP5vOZf/MVftPJf/dVftTLXW3z3P/zhD1de09b9tla3PvFzP/dzrfyLv/iLrfwLv/ALrfxf/+t/Xfnyo6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTFhrfaKsiTIoszaYHakikzYZfsXmYlYAypHMIsDyj370o1am9JJypzfeeKOVT5w40cqUg1F+RcwWYJgEbhi2vgNKzp5++ulWpvz0T//0T1v53XffbWU+v1mfKnahirS98i6NiiS711ZndTPL3JygNI+w77E/V+SR9tzsF+zDjAtek2MCf8vrm32D8Bl5Dq9feS6Tdpu01cYi1md8TsWmUrF58Hyzcpk1q2JHsnqalavy7u0dmO3L2oFY37J+PydsPqL0lW127733tjL7IaW+lPHy+HvvvbfyXnxvlN+yXStWiIoNmVQsNbZOMMuCxbLZtcbzLK9lcVexMln9ei23U+zf9p4q9alYnHqfi+1j4+ac4PjB8dXGqoolsGKLqViNuN6+detWKzP2H3zwwVY2ayznR0rsK3afylxB6zzHLrMo2ng4DFv7G9crfGaeY5YPUrEy9b7LXktg7/qzMo9Xxqslx+bhw4dbmVab5557rpVpheE3Gm0rZqu3djXsvdlxxqC9f7uvzTOMcT4XMduNWXAYgxz32LbDsNWSU9nOg+ubyve8/U2B4yDbhde/du3aynPM1sTxxGCd+Vy2Drc5o/KO131LrCKKmhBCCCGEEEIIIYSZkD/UhBBCCCGEEEIIIcyEtdYnyp0o/yGVHc3N8lORE1ayDZjs2SSQll2EUIZ58eLFVv75n//5Vn7zzTdbmTtmV7KgGOt2f69YdSgBZJ1YplWKMjOrR2XnfPttr+2oIjc1KjJ6YraUJWCSRbPOVKyCvdlFrEwqtkezJlQyPFhGI5NqVu7LNmHb8l4cB4bBZcYVmxKpZOQi9p4q8v2KJNfa3ca1StYJYu/SsHaYE4xNyrnZl2hRPXLkSCv/+q//eiuzv+zZs6eVb9y40crPPPNMK3//+99vZc4DnKeuXLnSyr3ztVGxspkVq2IBrNx3nfXJfjPFptSbpaVSrsjx7fq9528qA1RvBtCdpjcjZyWzVmXNWbEZ0tpAezrjnes1zkHMakI7Uu9a1CT8HE/eeuutVuaz0Jpw/vz5VqZN4dy5c3pvyyxVWX9OiQU7PqU/99r5K3YtO16xZPZm6dsJmI2ImD2Q32i9tvopY7O1vc1ZFdu3lSvWJ9sKwGzrlUxtw7DVfsZvRo47lXVsydoj4yDryvrR4mQ2eZbNqm91IDb+WJ171zG2VcqWe932jBBCCCGEEEIIIYRwR8gfakIIIYQQQgghhBBmQllH3isD7JXy2b2sTEkRZUcsc6fnym72lDi98847rczdrx944IFWptyUuzhTJtab1WGdLcukjJQDMgsIM1RRDmtU5KC90sopUtIpFiq7jrEEaahh2ZoqdpPK8UqmhV57o8VdRWZYsenwvpQ9VqxVfBbaxxhDu3btWlmHYdiasYPjEceLynMavRlkzOJnktRKRp/tyNRWoSIT3Wk4R/zSL/1SK//qr/5qKx88eLCVP/vZz7Yy7QPM7sR3dfz48ZXlf/Wv/lUr//mf/3krnzlzppV/93d/t5VtPu3NPlSZHziGUDrN44w1Pq9JniuZUsb1680IY89WycYyZW7qnSsr8y+xsbLXDrY0KpnFptiyK5kz2ecr59OuSAsS4ZrTMu8Z9iycu7gGZplzItchzDZl1xkGf57eLGyVDFC9fXiKFbESv5V5dgpLsz5xvuNcwPUYv+n4fJb5qGI76rV7GhbL9h6sL1fG4147e2X9PH7GKTYijjs8n2OfWZxsXWptZ5mLezMnVtYANn/Yu2e/pPW98s1D5h+9IYQQQgghhBBCCJ8Q8oeaEEIIIYQQQgghhJlQtj6ZpNfolXKRyvVN7lWRpJp8iRI7kyxRukkJt1k/ep+R0jCztAzD1megZJDSecrPKI3tzZzSm+Gi97fbcf4UCfcSpN2VDCQmIbRMSbYbvMVIJWNJ5Rwet4xJvTJkwjiy6/BelGref//9rUyZ9+OPP77l9+wzly9fbmVaKG/evNnKtEHxHdi7ISYfNXtnJRtU5d2Qihy0dxd96wdLgxlb/s//+T+t/OKLL7Yy+xUtS1/+8pdbee/eva1M+w+tddevX29lzkeUiL/00kutzFgwW0RvBiTLFMP+yDIzEDKbFbN+sF9fuHChlc1WWM0AY2sFy9xTkWSbZLqSFbH3eEWSXbmmndN7/pTMOztN5f30WtQtcxH7F23yPN8sulevXm1lZlN69NFHV16/d31n7cA1I+u5b9++lfe18YFjDuN3GLaOX++///7K+5GKtXBTGUWnfOf0UlmX9o4Dle+iOcH5iP2KWzvQBmjrKWKZT6dQsZPavSqZaStrZsteNyUz3XjcsP5TWZtVvk8qdjzLLMv3yrGCYxbHHbOb2jeGla0dKpnpzKLF7FpGFDUhhBBCCCGEEEIIMyF/qAkhhBBCCCGEEEKYCWs1kiafJya1q0iBDJOP2s7KJpPs3eWd16E8lZJMyu24Yz2l5pRf2W7/JotdJxmj1JvSL2Z6Yl0ppeX5Ztnq3Ql9UxJTuybZlLVqSraaOcF3WzmnYjexPlnJFGRUdje3fsf+XtnN3saE3h3vGSusw+HDh1v5xIkTW35PeySz/jDzGscIji+8h9WJ2HvlNUnvDvO9UmobfyuZwCpjDq/fK+vfCTgGc46ghYFtSXsUbaxmZzDbHPstj1NayxjhvcwaW7Gvsd+ZdY9ZYBgfhw4damXLFEH7INuzYmce/x9he5l9+MaNG6V7fFy2O5vSpixRFUvX0izDlbnArKKWEcXk7VPqQyvtK6+80sqMqdOnT7ey2RsrfYF1sOwujHden89LuwrXzD/60Y/03r1bGFSuM6VPVta9ZMo3TyWDlZ3fu93DXOF8xzbg+ojjv30bkikZ/3qzpvZm/LPYt+9fji2McfsutmtWv9Uq9kPbOsG+E2xtYVZSqyufn2WzlZpNyb4NzBZtxyuZdzlW9tr8o6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTFirI++VwJuUq1d+WLkmocTJJF69sk9m2aC1iJJOyqKZoYOZoSqZWKpSNMqzWVdKtSkrP3nyZCszW8CuXbtambvur8sytapOvVkqevvBFAvVFEn5EiTcJo+sSOoqWZwMkzqa5JJjRUWi2SvJt9+aXcvkoCZjZOxTtj2OFWaEoiSdGTIYa7Sj2DszKwhtKrwOrRxmjzHZeuWd2fhr9oApmThsvqnIwneayhhpbWn2NYP9sJJJzOYje4e9Y2FFqs26ce7icVoJmSHLrEgmnR4GfwbOpwcPHmxlZqXifE/rYsXWst12oV6b8HZcf2mZZXqzZhHrzxXrk7WTWTxZT1o/aCMy+6xZgG2ut7pZdsFK5jTORZwbGVvDsDW2e7Nw9WZK6mUJ68Ax222lvFNUtrZgDPauCUnv+qI369OU7HKkModU1l/V69t1OTf3WvbMDm9rTlJZi5LK+9jU94b93cG+K3rrMP9VbwghhBBCCCGEEMInhPyhJoQQQgghhBBCCGEmrLU+9WYI6aWyW7nt3EzZfmXn5orUiMcpI7927VorM/OLZYCitciycpDKrtLj/+Pz8x4sU2rFTE+Um9KmRXlrRdrdK0O1325Kttorazb7zRKoZGSrZkVZdXyKBNSuWZGC91q3TDJpscbfMj5ocSCMcWbtoTVyGLZKumnnoEyUscb6UcJuu9bzHXNsInwee36ziFRisJLtotKHKn3LxvElZH0i1mZ8P5ZdpZIZsDJ39Ga3Yd0sGxqfi7FjcmCWOXcxVizrB2PLLF2WBWN8Lct+SIsi5+9Lly61ss0vFZt3xfpSsQeSXnm90WvLsvsuwZZo86a9Q7MNmu2CsD1M8m/ZGy2rGu13tOWynrymZWWyPliZf21esrGC7UBb8DBsnR9pRaTNuLJ2qWTumdLPt+M4WYJtcLupWPZsLDcqY7P1L4tZw8b43nFxyvhaWXNVshsNw9b2PXDgQCtzPuZ7evfdd1uZY5BZQ4l9b7LenPtZ18p3a2VM6LVTVWy/1r69drv5z6whhBBCCCGEEEIInxDyh5oQQgghhBBCCCGEmbBWR17J/tCbBYhUpIL2W7M+UQZF+VVvFipKW1mmDerixYutTGnY/v37W9lk5MzcQtZJsfjMPI+76rPMTBas01tvvbWyfnPYJX6KhWrKvZaWvaJSR5M6E5MiEpNNVqSCZlUx+aFZG4hZqMwaSXm1ZcowCxWvSak5ZZ7DsDW+TH5pMc970EZCWwjrR8sG60RZOeOaknJev2IT7bVAkooNqmLRmZI5bqcxaxLfLeG74rzD8/lOaNNhf2YcmUWiMv/Srrdnz56V9Tl37lwrv/POOyvvZWMtY5Mxy2dnm7BcsRON/812oYSbz8by7t27W/ny5cutbJYVs7tU1ka9WUAq9NqpNnX9uVKZy8yuW5HwWxuz3/Ic9iOzYNDu9Pbbb7fy+++/38q04j744IMr69CbWYVYPS2uqxZVy5Jl9GaA6rX+bSpGtjvDaeX8pcUm68u1Etc7vVY+UrEo9m6RQSrrYYvHiv2lYqvlnGPrZLM3jq/PuZlzJbMJcwxiu9y6dWvl8Ur7sk4cR/juOZ6ynrRMkopd09ailSx9lbX0lEzYUdSEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJpSzPlUytvRSyT5TsVpQJkcZFLOjmBypkmWDdglKq65fv97KtBPduHGjlSnhNkkq5V1sZ/52XNdKBilCqTrtUcx2QTtHxRKzqawxletXjts5n9SsT73y7HU7wH8E+2pvVriKTJqSRsad7SJvcnHGx6FDh1qZcUq5OK/PZ+dxnv/hhx8OhL8x2TfHKco4iVkq+FtK4U32yux0ZqfiM/C+JimuWGH5Dqyv8N1U5O42Dy0Ba0uTDFvftiwzPG5tbLJcYhlb7rnnnlZmn+Jx2jFos7JMTBYrZu2141UJus33tHXZGMRzeNzWFqR37tvUfNRrp9pum8acYJ+07E69mQcrWP+vZGakpZHzFzONsj+yzDitWA0q9pDxuvQj2J5m1RzPb5U1bSXOrR0t9nvXkKRileq1Odj5U7K/Vcb9OcG44HNYVkyzC/U+a2879WbY67W9VixOvXWr9ItxPXk/zsGWVY4WNY5B/K6sZJwyy7zZ4Tg+mvXJ/o5gsWa2JvvuqmQTNKtbxSYaRU0IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmQm1r9jX0ymB75V52DmWStBQx0xHl5ZREmQTJJISUQVF6+sADD7Qy5d/c8dp2qqaMy2S0Y5moZY3hM1DqyuvSpsU2YoYLZrGinKySjcW4k7LqKedXZIVzZcpz98ajSQhNVlyx0bBfM3sauXnzZitXbDrMhvPUU0+18v3339/KlI5bvzOL0lj+TamnxbzJHSmb5HUpB63shH/q1KlW5s78V65caWU+M9+fWWjM8tq7Q37lWTaZTWSpVGTSlQxa9q7Y9jzOMmXFDz30UCvv3bu3lRmzNpfZs3BuqVhCzJL8ceYKszWZLZFzPMcOyy5pY6jVu1d232uz2o45ejuyR+00ZjuqyOQNO7/3PbMO7Gu0gTDbGuc+ZmthH7dxnVg82vxrfYHxNLY3mUVzO9gO+88Um0qvrak3e87SYtOeg/2tsvarXJNsx/i3qb7Wm3nZ5hxi88/YVm6WbPt+ZtZRbhPANVtlOxJbf3MuNpsVrde9aymz1ffGXe+7t/dElvt1GkIIIYQQQgghhHCXkT/UhBBCCCGEEEIIIcyEjVqfjGp2ho8w2bP9lhLmJ554opXPnDnTysx8QqmR7WZNuZbtcs/sTrRE0WbE3e9ZZn2YqWpdtiW2C+tnu+3T7mX1oEXi8uXLrcyMMJZxZDvY1A7pvdkulrArPqlkQyMmpTaLn1mZbAd0O7+SCYFl2ivY79iXmfWIdWC/3r9/fys/8sgjrcwY57hBqSbHB1ocaJsY2xL5G8q5TfZtUnLLlGN2oePHj7cybSpHjhxZ+Qznz59fWTfel+fzXfK+ZrOxrFVmkzPrC+m1DSyBKbJZs6zx/Zhkmm1MqTJjhxa6xx57rJWZLZAWOusLpDImsD9adqbezDBj2EZ8Zs7BLNNGwjGFMcKsFmaDqlCxLG0q42Hlt3bcxvolxKaNN9vxHJa5jH24kkGJcB7gGpLrNZZ5jmUp6c1CZfW0TFW85theYJllKvTWz8bEKdl67F6bitMpY8gS4pGwvmaRMbvupu5bOW7n9Gbbq5xTyaJp1zQrj8X4+HzOZWZRNFu1jVNcu/Peti0ILU60HlsWOvue6W0vG1usTStZ3uzvDlxvGFHUhBBCCCGEEEIIIcyE/KEmhBBCCCGEEEIIYSastT717jjem2GgsmM65UKURx09erSVH3300Vam9YmSIpNY8vo837IxUNJFGRetGbRE7d69u5Up3apIFMdyLauTyTsp7TZZKSVtrB/PXydd7WFTsswpmaQ2dc2dpjdLVa+80/paJcOP2VzM1keZNM+nfYcwmxvvxb68b9++VqaUspLphZJPy9Yy7i9mwWJmDo5f9luTX/Ic1pVZ25j9js/JcY32Fdq9Ku+PbcFn5Pszeb3Znax/WB2WxpRMMZXjJgu3bFpsV/Z/9iP2EZZ5vr0Tmx9Yf/YX1pMZahg3lD+zDh9nzK5YMTmO8PnZRrR+ce6vZMfozd7Rm3WCVCypRm+GqSVg76Ri57K2t99y3D18+HArs8+fPXu2lW1+5DUZF5T8M+so+ymzKLI+Ns+YdYAxa/YT/pbPSIvlOHOpZT/cFL0Z0KZcv3K8cp0pmcYq/XKumIWF6xrOEcadzO41pU/dyXfSm2FsGLaOF4xhftOyr9qWBJbV1Po5xwjel2t69m2uD5i5uLLmJFNizaisXSuZTJe7Ag4hhBBCCCGEEEK4y8gfakIIIYQQQgghhBBmwsfK+lTZ9dyoSBEpPaa08vTp0638q7/6q6385JNPtrLJpnhN2gJoI6B0izYFs1pwN+ubN2+2MjNAUSbGMuXSlPOtk2hxJ3SzUZiE0s63DBeUk9EKUskwNCVjReX83uuYxK6SoWSuVLIc9ErXK5l5eD5ljIxTa2+z+DAWbt261coHDx5sZWY3unLlSivTgsBY5jjAPs5zKDmsZF6qxNP4NyZVp5TcJN+2uz6fjRZQy5JlfYL3tfpw3GQ7cnxgO3KMMstkxU5mFrsp1sudoCIzrsynjMdKtsRKRhTLksbMa3znnDc5V9o7rFhIzIplVDJbVcdvswbYccZCb3YJxlSvrWm7582KtZUs2YpYGVd6297Ot37BdWPlmvztO++808rvvfdeK3Me4PUtY4nV2bK7WCZD6ws8n3PCOCsg51GOR7b+qNCbfWdTGaAqNsNNZZiy629q7b0T2NqEmL3Ozpny3NuR9am3v9jauzKfsg0r9Rn3HbbvPffc08q27mdsV9aWVg+OA9yOw7by4PjC+rCelex69n1iY2jFrmjfDBwf+VzGcmfcEEIIIYQQQgghhLuM/KEmhBBCCCGEEEIIYSZ8LOuTMSUDlP2Wcut/82/+TSv/yq/8Siu/+eabrfzhhx+2MrMvmQyfZbMzWEYYSqUoSaWFiDLU69evrzzHJKa0TQyDS+Io9+JxXotQ5k4JOy1YtGlRusb27ZUI9+5C37ujekXaWsk0VrF37TSWsYL07lRfkd6bJND6prUrz6d08dKlS61M28UjjzzSyg899FArM6ZMOsvrs48zOwZ3i7csVOvk2Lw3f2/nWMyy3pSeMpaZDYsZEdimtD4xZs1yxnHNxmKOj2xH2j6tr5jE1GLTbD+VHfJ3Gqu7vf/KO6ctiHMK72XZWCoZ3DjPUorL+/L9MxsS61kZg/m8lFTzmpZtzOa0j2N34nPa81g7ckyxbGVm8TM2ZU+YYn/ttbVvymZwp6jMlb3PxPdsMT5lfWFZn7jmpD2f/XFsNfqIyjqxUmezcnAc41qSdq1h2Dp/MR7NwtDLptZAvdfZVGaZCpW6LcGuaH3Jvo8qzGF8mmJrq9hSGWss27rS7suYG4atW4cQvgP7lub8aJme7JqWKZlrBVKxL9latBIX22FL7P52vu0ZIYQQQgghhBBCCOGOkD/UhBBCCCGEEEIIIcyEjWZ96pUKmgSJViNahP7Fv/gXrUyZJOWg586da2VKqCgNNakYJeV2fdsVnzYCZqLhfSklo13r0KFDK+vDzCrD4JYB2xWf5/NalLnTBkVZKq0mfM7Lly+3Mi0ellGA9GaMmpL1qSItuxuzyVTO75Xhm92JksaKRNPeP+XZ7F+MO9aZffPAgQOtTIsPLRtm/aGssrLrPhk/i9kfCK1chllZOJadOHGilWnf+uCDD1qZz8w4ZYzzfJOGsszxi+1rUlhrBx43q0hVnjtHrC+x7pbpj/YiZl/i+cwqSImxtaVl0LB50OxlJrfm3MK+wH5n4wnLlDazzpyL2T5cJ6ybN/hvW1uwb/MeHOPY1hybOH5V4qjXRtFrKa/Ma5UsFXeL3YlYZkOjt+0tS97DDz/cyq+//vrKOlSuz7ig5ZQWdq45Od6zPmZ5Z9+fYhPjdTg+8F7DsDXmT5482cq0dVWyjm4qQyiZYlfcjmxuVrfetd1cYXvwW4zjrvWxSgbX7R63KpalTV2Tz8Ixh/NyJYsRGc/7lkXVsilxrOH7M+uT2ZDN+sT68Ppcx9o6fFPxUulPdk3L7mSWLhJFTQghhBBCCCGEEMJMyB9qQgghhBBCCCGEEGbCWuvTFOnrlN/y+LFjx1qZO8RT1vTMM8+08nPPPdfKlCebNK6SicYkZLwmrQaUnvJZKB/jvSgRX5fhgv+2djT5u+2qTVkpM1/QXmHPT/sWpWhT5J13UkrdK2ueE5WdyysZlyo2tYqVyaSVFQkopZHsa+xflA1yHDh9+vTK37I/WpYcWgBZpizcMkmN25zWCZbZLpRu2nUtmxttMIxTwmejjPXWrVutTNuMWcJ4X16Hxy0LkfWDimXJzl9y1ifCun/5y19u5aNHj7YyY4E2AcqKae/lcfbhd999t5XNpsPjZqtl21Nqzr7D2DQrB98t68z3bFkXaZ2gfaNiFRqfx3vwWmw7w2xQNt5ZO/ZaITYl37d72XWszlMyJO00lhmtd05k27B/MhZYps3uypUrK69jGeKsTMk/Y4rzF/spx2lilkY+L+cuG4PNjnHw4MFWHtswee+33367lfft29fK3ErAshNWuJPrvSnxUlmr9WbVXQLsG4xNxhfXHb0207mNT1MsrfaMbCt+V3LusjYZr9HMEsl50zJ+cm1h6357xxwraX1ifTiWVTKc2tqY2PdSZVy2bzDeyzLwjbM7r6zbbc8IIYQQQgghhBBCCHeE/KEmhBBCCCGEEEIIYSas1ZH3yn965Vv2W8qFKGWiRIi2iN///d9v5fPnz6+8L+tPiZ3JtSjLsl2reR3WkxJOylDNusRzeM3xDvkm2zXZOutNaRklWJSx8X48n9eknPeFF15oZcvWY9mgpshQNyV5nbMs8naYnNDke6RXcmvvkP3I7muZfCr1ZD+iZefGjRut/NRTT628ptkPGRN8Lsam7XDPcWmcwYlxYbvwm53M5O+sB2OT59gO/JS8m0S+IiM3OTvfDSW2lV33zQ7H629HFo+dhm1AO9rnP//5VqYFh5J/ns+5j++BEmDrI2xvvn/2F7Mj8f2wbNYP1oexxj7Cc/jsvCZjiBkSaAFkvI/tFfw9ZdW0V4xtxh/Btuid13ptTZVMTBVLqmV9smtafYwlZF4zerPxVNqJ/Y0xxeufPXu2lbk+tKxclTma47pZnNhnLXsp4butrP+tztbXGH/DsNWiyW0Orl692sq0V7DtLJtdJaZ6t2zonY967YqVuJuSLW4J8ybHafY3y1Rp77aSSc2+ASt9p5I1aEpm5N7r2BhCu6JlaLWsnsOwda7lOsBsR70WRZvXzT7K61gmU1vrVGyuveVeGyPptfNHURNCCCGEEEIIIYQwE/KHmhBCCCGEEEIIIYSZsFZzM0XG2yv9olSKsrRXX321lf/oj/6olb/5zW+2Mi04/C3lWmZZMqm+ZWIxuTHPpyyLv2WZcifKVmmhoiVqGLZma7JMG7bbNq/F8yljo53jgQceaGVaMJhxh+3Lc2g/sww6JgmrsKkd0klF2jsnTJY8BbPgUCZtNjuzAvTKje1ZKGmkFJrSywMHDqy8F2OFFhLaK2iDYExwXKKUdFxPthHPY1zYLvwWC4wvWp94fZO9cky5du1aK1uGJmLvg89o1pop8lFi2ab47HOlkmHg5MmTK48zy4H1Ecr/LWtfJSNBxTpgx3lfez92X7MYmxWRliiTRa+Tu/MenNcYXzaHssy5jLFs8ct6mAV0iiVqU/NphV5LwFyxfmL90OwDPJ9js9lsaQtg3zEq8ybryXg06y77L5+Llgdb93I+YTxatkCbN8f99PDhw61MSycz4dH2zPme5U19n0xZW9p1ejM0bcqytIR4JFZf9ltaXPmtZFYmi/E5tE1vP7LjjCmuN8yCb+s+jhvDsPV70MYsW0PYd7JlkeQYxPuO6/QRtMDZmtYyh1ayO1Uy5hI7zrHPtlNhnzaiqAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMKFufKudsKusT5UuUt/3O7/xOK1+5cmXl+ZR4UVplNiuTqlYyJBiWKYJlPpdJosYyfz4Py5bZgdelLJ7WEcrHWSfuzk+pK2VmlJHTOvL1r3+9lc+dO7fyt5TSTZF6TtkJv5LJbMn0yvcs4xD7EeOL/chsGpUsJRUovaZEmtZISiYtDvhcjAlaTg4dOtTK169fb+XxrvjEsklZhhTLmsOxac+ePa28f//+lfXmM1MKTjklZfcViTDhcY45lQwfZpdg2WwG/K1JeJcG+wLl/I888kgrMwaPHDnSyq+//vrKcziOMoMK28lky2x7kw/zt4wdvivaYZm9gRYtsxVfuHChlRnj7NeMO16fcxTjlHEwrjfnLJYrlg/OjxW7E5ky9m0qq5Qd780aY+VNWXC3k8rcRPh8Nj5xfVSxmFdsc4ZZZDg2mx2B9WF8VWxAlgXU1lCMOdaH681h2BprtINy7PjlX/7llfemxZ6xyTmUbMoeZedXrnMn15ZLXsfyHTJeaHnhOTa+boftrBIvleyyvbY5y9TG2Cdcb1hGTcbvOCMbY57XsiyiXHPaN6mNKdzWg3M8z+f1Kxa4ShZFsqltMex9c0y09jHmP7OGEEIIIYQQQgghfELIH2pCCCGEEEIIIYQQZsJaHfl274xdkZxRIvTKK6+0su1yT4kXy73WDFLJrmC2EdahYlHicWYTGF+LUlrCe1OSazIw2rEs8xahpH7v3r2tTLkaJcLMzkUb1DvvvLPyvrYj+RQqMkQ7/26kN6OE2RDYp2g3YJ+y91mREJpdgpmbaAmhJchikLFGu9NTTz3Vyt/4xjda2STfY0xWbvJcHrfMSrQ+sa6Ma9aJEmHanShPtbg2OTvbi2XGu41fFRuUtanZ7dbZz+aCZQ9g2eLIxir2Z8uIZVmZDN6X8wntGxUbH/smrQ2cB2xM4HHOCZz7KIumXYmWK8YE5/ph2BrDbHdbK1BWzXaxZ9iUjcjOL0mjO21HvXOczRlLsDuRSoZBO9/GNvYvjruMQcZsJYtXpQ5mReW9bCxnnPL8iq2J2PhgtqzxdRjnnNePHTvWyox/zq0854033mhlrjMZs+NxYVWdKraITWXr6aV3nKn0rTnBOlpfZZ+0Mdiuad9fNg5MydxFKtc3qzfLnLtsPcDMp7QD27YebGeOY+Pz+HuuITneWXyZfYvfj8ePH29lrnv5bGwjjhWW6djWrnZNG0Mt021lHrcMrbwmrVvGsmbZEEIIIYQQQgghhLuY/KEmhBBCCCGEEEIIYSZsNOvTlOMmU6JUyiRIhPIrWgEoOzLJXO8u0YTyNkrIKJ2u2B14X8q5h2GrjIp1ovzMZGO8Fo/zmpVn5vPwfF6H2UpMRs+2oDWjYkXrxeSgvTK2OVGR61asfCYNNZke+xH7OSXMzNjArCnsO9bGJp/ks/CalEAy6w0zN1nmGlonGDes2x//8R+3smVdGwa3EHKHfD5DJTYfeuihVmZWNZ5j97p69WorV9q9InmvSElJr92D74aYbWCuWGzy+Pe///1W5tjJ2GF7MLsZY8QsvfYObcwzqxxlubQgWCYlSpgpvTZJMvvsjRs3WpljC98/78X6MN7HUnP+xuyRFevmpqT2dv52Z3fqpdcavIR506w6trbk+ewvnFPYbxlHXNexf1X6kcG+zTmI9hAbfxhHfBZ7n4wDPguPc+wyqxfbajxXcC63LDNHjx5tZT7/iRMnWvn06dOt/L3vfa+VOW4yW6Rl3qpYn8zKUsmGNiVLbi9LW9Na3DGmKmuZCr1W7Mr5vVYpYr9lfHGNzTUjLVEcB3gOY5ZjHeNxnJGN8PfMWMk1N88h9m18+PDhVuY3I5+H16cl2b7zLX4rdiejYvu1LR6s3YkdJ1HUhBBCCCGEEEIIIcyE/KEmhBBCCCGEEEIIYSastT6RXlluZWd7Sod4vu16TfmSyeEppa5Id3vtIYbVrZJlwiRU47rxPMpMTdJJuwSlrpSM0yLB5+R1KDOj9JD14278lNBxF3LWme+A8lTLmmAWAtK70/6Ss1eQTWWpYntQjsf3QJk3M/8w8wstRdeuXWtl2pR4zUpGNhsrWGfKDNl/+SyUWlsGGfZBWjloAxn3QT4Dz6P1z2yNtsM845fjCO/F57HnN1mmybnNlsU6UIZrWRmIjaeU9vId8BnXjYlzxOKRz8E+8t3vfreV2QYcpxl3vZlZbP61+jD7EvsRyyZn5njP+KL1w2L28uXLrUyLEq/JPkjpNC1jYwm2ZYfiHMz5i32M8WvZCafYjjZlT9iOOcCuP0XiPydszCO0F+3fv7+VOe5+7nOfa+U//MM/bGWbv3rbz96J1Zl9mXBuMStiJeMb15K2pmMM8tk5hox/w/odPHhw5TMw5lk/jhEcj5hZ5plnnmllrpl7bWm2btxULEzJ1tRrrZoTtsZjn9wOC9emvicMi/eKJc7GKK4N2Wdp4bdsQmZR5Fps/G9+V9u3q9nheQ7j8YknnmhlrnXsO5fPY1mfKu1YyeRnGS4r8W5zOscZPlelTy/36zSEEEIIIYQQQgjhLiN/qAkhhBBCCCGEEEKYCWutT2YxMHtCRR5bkSYRyrooh6e0yjLU2G7KJm/c1A78lHyzzpRkUj5KmRVlXOMMONYWlKrzHN6P9gSTsfJ5KHszS4xJRvlb3pdyVr4/PsuFCxdamdlHTHa+KZa2Qz7jztqjksmiIsPmdWwHfr6fXbt2tTItMiaZ5nvmNQnfCaWXfBb2R8okaZdgHeydM35Zpm1iLBPl/RhHlIxyjKBElTBemMmGsWwZaizDFrF3zDGB0nk+P+vMd0CbisU1YfvweWktoDSd2DXnRMUOzP7C90lJL8t8tyyTypxLTFZ86dKlVqZUmXHELA1mq6UdwayIfJ+MFdaNscbrs49QCj5+Xo5HtGgypjiOmO3XrCPWvpUMMr1Uflt59xVreuX6S7NXVLLxmLz92LFjrUzLOOcvk+Gz7/S2MTGrwjhD6Kp7WX+0rCn8LecEs0Tx2W29MbZr8X60UvNalqHKtj+gXZm/Zfm5555r5TfeeKOVmVmm1wZVyfo0JTOf3ddYwjqW2Ps0G7fF6XZkyqqsn4ltZ9H7bi0eOZ5wjU0413GssPgdX4drPJ7HtQLXtLwHxwuuG774xS+28qOPPtrKXGdyPOWagLFp1qpKmVQy5rLMdmebcJ1gFlCbGyrfs1HUhBBCCCGEEEIIIcyE/KEmhBBCCCGEEEIIYSZMzvpk5/TS+9uK/aoiP6tkfTIofaJsn3JxyjkpBzMJHGXt47qZJM7sUhV5NtvFMjrx+jyfu7FTEkZJOSVqlLdRhkrpP9/ZuXPnWvndd99d+SzbIe9cspybVPq29RGLEcsGxb5DK55lCqKNhu/cbDQW77QHmfyb9TQJJPsjn/Hhhx9uZT7Xun5nsmfLcGQWRT6P2TsZO7Slme3Nnp9jmWVt41jGuvFZ+Izj7Dur7sXrU6rLeOc4w7rNFWtjk0/b+ZZ1oWJdtBg3OT/nHfYpypCZWeno0aOtTDsS60kLws2bN1den33k+vXrrcx5jBJsSq3ZF8wWPf63ZV5kDFqmSdIrW++1LFUyVlgdzFJhEutKxkMb0xjLS8vIZjYaPivnBY5DfFZaBadkcarA9uZ4zOPsv5V1smVgtOxRlXWlZZYZn894JpxfrO/ZdVlv2u15L7YR3/FLL73UyhUb1JS14qa+qWyttrRMpuzDZlG1rRrIpmxQpHKditWVZT4vj7Ofsi+bFYm/5bcn51bLREzG8c61OGOBscn53mzyn/3sZ1v5ySefbGVaSe1bomLzr3z/2xxayVJK7Hwbi+xvEGZjM5YVySGEEEIIIYQQQgh3MflDTQghhBBCCCGEEMJMWGt9quxoXtkluyLJppSLMijDdlKvyLx7d3C3+1JCduLEiVamDYrybErZTTJsFodxnUx+zN+zHe23ltWCO61Tikf5Gc/hTuC0uPC3bC/K7JiVg1I3yuoodavYuyqZxowl7JbP92ySS8uQ05uxxOSaPIf3Ypnvzd4nZa7sO7TUmD3OrDmWfYj9zixd7NeUm1LyOZaJmt2AMk6OBZSV8pn5DCZtJ7w+y7bDfKX/VzLC8HmtjcxKaRJewrGL78YyHs2JyvximVYsjirZW3ol3zYOsG6MOxtPKHlmv3vsscda+a233lpZtvGBNivCGGJ8EMrjh2Hr/MIy5ybaBtkulmVnp+aR3mya9ls7buNY5TpLwKxg1n6MBfbPGzdutDL7vMnYK3OuwXfCvs05yKwQ7LOWAYnPSPhbxoqtz3mcdbM15jB4pijem/MI68p2ZJzy2cw+zXWD2fkvXrzYyhwfSCWbV+UbaTuOL8GKSOwdWrZb0ts2m6Kyfq5sKWB2W7MfMm645uL17buK8ybPt3uN78GxgPYl1unTn/70yvLp06dbmZY2rgN4HY65Zm82W1MlM25lSxCbMyp/g7B47LUlRlETQgghhBBCCCGEMBPyh5oQQgghhBBCCCGEmfCxsj5VzjFZ0JQMA5Xds/lbswTZTswVKFGjtIwZLsziwPua3JTSS5aHwXfr5v0sYwftJRWZO+Vnlh2DclDuCs4yn9+krTyHGUQsm5XZrzYlbVyytJtUZJkVeWwlpsyKZbYOvkPa5nh99gXaK9h39u3bt7KehO/TslYx1tinGFt8xrFMlHU1CbhlpbJ6s70oBaZMlGXet5IZyMZW1pn3Zf1ZZhtxjOJ7Zbvzt7y+7fzPvrKETBZmQ+Bxs65S0luR1RsVC4vZ11gHvgdmZbp8+XIrM8MD+w4l1nzPlrmL57A+hH2HsmvOxZz3xnWizZD14P16ZdK91gZSsSNVzmEfMnuqWUXYPjaf2niyNCrvhG3GMYn9n+3EOLW4610/V94548XWVpZdxNZ9ZtW1+jATolmP2R95r2Fwqz77JOOZljPbVsAyHvJeHC94PrPS8BnOnj3bypxzp8T+prI+bcpeMSdse4be77U7yZR3aHZbxoFlIGR/ZKxYX7AMU+Prc83NcYFrPMYgz+e2BcxEZVthcFywbS4qttXebVkqGRUr20BYf7Xrk0qcLjeSQwghhBBCCCGEEO4y8oeaEEIIIYQQQgghhJmw1vpkWZkqO4vb8YqtidjxisyssvtyRcbLZ6f0+vDhw61MSZfZvlgHk/NRYja2PpkViJJRSt94P1qfLOsKJaCUtFLexjrx+teuXWtls47wOKWnfH5aq2hrYTveunWrld99992V9e+VwJElZH0ilWftPb9SZj+nbNIsUfwt+yzfId8J+86hQ4dauSJzNsmz9Xd7FvY7Ss1poRiGrf3WZNuV3fwtM5zZFSkTZXtVMvARe36zh/AcPjvlr9yxn++b53NMY1zTVmmZHpaAWSHsndj7Mdkzr2l9h+/Nxkiew+uwzHMYs+yPlpWGUmjWgXYJXt+sJZRLs004n4yz0jDDi2Wv4D1s3WNZdipWqd7sI/Zbk1vb+yOV5+J75Vqksn5awrxpmUBsvWrWnEpGxcqattJmZlUwbI7mWMt5ieOuxQGP06bAcdoyKrLdmPFtGLa2r4077Ie01fO42SZtnW1rYz4n68Dn5DOwDpW1SOV7Y1MZ5ZYQj4R9hv2T79wy2c6NitXVtghgv+N8xy0izGLMeZNzrsH7cl02DFvXuIwvs7HT4sQ6ccyyMcXsTvatyraozMWk8m6sXLEW2lzC81m2+XrLb297RgghhBBCCCGEEEK4I+QPNSGEEEIIIYQQQggzYa31qddSQUzeWZEXVbKUWCaaivXJpEx2jkmsaX2iTMwyelDiZPelrHQs46KVgLIxSgP5G8oHaWWiRI2WkldffXXlvWhr4vXffvvtVr569WorU0rLtqOsmm1HixOlbpTPsb34Dig9Zbl3V/ClUZHdWT8n22GDsvpYe7Mvs49cunSpldkXKPs0+T8lmSZnpq2H16R9h23IGBo/CyWqjHnGkWUDMnsJ68TjNvZVsviY3YvyVI4PzOjDe/F5eQ7HnJs3b7YypeOU57LMtqJMn89bkf7vNGz7XnuvZUupzKcVybRJj63vMJsZ44Uyaf6W53BOZFZEWpEuXrzYyrTVmuXEoHR6bEvk7y0jEvsVxw6LTYupKTaoyrrBrGWWTcMyirGezM5WsQP12irnhMWjZQLdlH2e9GaHsT5iWZ/M9sjn4hqN8xrXYuxTrAPP55rLbFZcJ/K+w7C1T3Ie4f0s+xTjjtmgWG+zPdtWBZz72b6nT58eVkEbFNfule8Kw9ZSUzLvLg2+H45/7C9Leb6K3dzi2jJqco4yGw3PsfGB8chYHteD629+b1pdzW7NcYH14BjBNWFvlq9K/6+smVlnwvrYmrzyXi17n7GMnh5CCCGEEEIIIYTwCSB/qAkhhBBCCCGEEEKYCWutT6SSyaj3eEXiV5EN9u7kX9n1mXWj5Gz//v2tPJZYr6oDr8PdrCnho+SbdaBMbBi2Pg9/QykXZWO8H6/Fe1MWT0uRZWChRI02h+vXr2u9P4LtbtL2o0ePtjJlfJR5s90pw6X83e5ru3YvzQbVa2Wyc2zn+U2db9J4qxv7LPsU5YFmtaBlh33cdp1n3LBM+TPjbJ3thv9nGZEYF2wLnsPrsB6WXYJwnOI12UaMEbM+MdYYgza2mESWv+X5LHNsMZk+6ZXC7gRmYemVvdt8ZHHH89mWfD+sD/u22WhojWV2FPZxxjL7F8d1Wl1Zf86nX//611uZ8mobs82iNLZKcb5gu7C9WG+zjvA6jLXKmsOwvmI2M1pT+D74zngdtgXLfPdmS+Rz9Y7jc6WyLq1Yn7bDQl25DuPO+nLFEkKLscWy9SP2F85FlqGF8x7tsMOwNaY4BnHM4nzB82mNZvzSyse24DMwvngvyzzFcZDX57OZpbe331TWqBXL4dJi02yatubkOZXsXjtF5T2zzuzLXPdZhkReh8c5R7GPWMa68brS1sqcdzg3mZ2HcW3vjM/M9mLmKtaBv61k0rKsmbbeqoyntiYz+zrHHLZ1rE8hhBBCCCGEEEIICyJ/qAkhhBBCCCGEEEKYCWXrk0n2TOpbOW477dvO7iYjr8jCjUoWG0rOjh07tvK42Ywoa+Izcod4PiMtR5SxDYPv3G2yOcpMaWuifJpyLNu1n/YiXpPHTWLNetIqZe1FCfeRI0da2bI+sQ6Uy5s9hMxBFvlxqUjRK1lmjIpEvDd7RS+UD1++fLmVKaWkNJKyaB5nHDHueH3LrMJrsv+ue0bGEevKdqR8mrFgdg7er7IrPi0lrA8zKzGOaDmkzJvnWCYaYuM168/xgW1tz26ZO+aKZRUwCa3NZZVMNCzbmEr4HiiN5lzG+YEZmmiTtYx8Zq/hPHPw4MGVdaPVkfMMY5bzg80VzFI4xmxNzG7FGGH801pJSTqlzhwjKplfLMsh78X3wXfG2OS7f/PNN1v5ypUrrWw2YbNVViziS8j0RCpSd1LJnNhL7/xo/cWsu8TWhixzPuH6lr9lv2B8MQYZ75x/+VvGx/g3jGGzQfG49XnWyTIx8dk473CM43HGJudWjmt8r7SWsX2tDpVvqt5tI5aSFWkV7Oecy+ZscerF3rlZkyyjIteSlbUHrUv83mSsDMPWTGqcd1hXxgjHFLNVM5Y5bzJG+L5Zb853nKPNutmbXdHsUfZ3h4o9iuMJ1xgcB9m2xnIjOYQQQgghhBBCCOEuI3+oCSGEEEIIIYQQQpgJa61PJs3qzbxhEm5imZLMEmXY7v12jsmXKNEyqSNl3pRiWUYUStQoB6Nlh5IxytKGYesO2yZxs6wevJZZoijvpAzMZF3sE2bLMssDn5nvibI8yyBj1hTKX3mvyq77S5NOVmR3fA+V+K1kd+ptsyntyt+yL1POv2fPnla2rEeUVFucmv3OrCLjDGO8ltkrKpYl3pu/5f04dvActgWtE+wrr7/+eiufOHGilSnL5DMz1nicdgmOLcwKx/HOxgeT+dr4ZvLUudKbkaMSdzxOWwHficUp288yazDbmGUhM+sE5dMcj2mt47ulNJhjPOdZs2BYZquxhLsiXa7IpxlfLHPseOutt1qZ8mbLzEhbE5+BWbIsKw3fGed0ZsO5ePFiK7N/TBnTp1hqd5re5zOrlNkuptiBK+tSWg3M2mBrYPZTjs2Ma8vKwjGeMWhZlQivOV7T8t6WKYm2Z8a2ZSBl/WjfsGxVrB/HHcYg453zL9eojK+rV6+2Mtud9eeapmKPMu7GjGzsJ+yHFWvm0p57HXz/bAf7DiWWhcmypo7XtGxr/h/XBGbJZqwxxvkM9p54X8vORns+1/pmdeS9bPyy7yiLQbObst05PvBbm3XjWt2IoiaEEEIIIYQQQghhJuQPNSGEEEIIIYQQQggzYa2OvDebDM8ZZyy63fkm17Qd0ClT4r1MJl2Rp1qmJ9oCKJOkzMpkzrTyEJOOMzMD6zA+j//H5zFpLDNq8Hlo52Db8Tkpk7XMASZPJCbj43FaMyixo0Scz0hZHZ+FctOKXJIsQcJt0mjb3byyGzrZDrvYpmxQjDtKZBmD7ON8/+xTtM3xOOPM7GOUYQ7DVksCY4d9lbYryrYrNjbbtZ9lnsN4ob2Edidm5uBvmbGCUM7KZzl//nwrMyMIz7GYsoxUbGuzuMyVXmtIJR7NamGyXMsqyHuxz1I+zOPsXzzO+YdxxNixMmOCcffwww+38pkzZ1qZY7nZbWlPpg1oGNwux77H56dEmf2N8wvjiFms2O6c48zqa5Zem09pr2CsvfDCC638xhtvrDx/Stai3rXgXOnNwlaxCW8Ks7AwRhiPtOCYvY/9y+wkloXPspFyHjh+/PjKe9kakGPFMGyNO8YpbUGMHa4PaS+iPYr1Y73NXkTYJ3h9xjvHqSeeeKKV+Q4ee+yxVua8RmskbVm8F+ffSrY/6zdLyJBoWHavStaspWDrPj4744M2IMsmals+sO8zBi1D7zBsbV/rhzzOe1gmZltPc43HZ+PYx/nXskHxW7WS+dLmMsuoZ1uxWKzZuorPxfWQEUVNCCGEEEIIIYQQwkzIH2pCCCGEEEIIIYQQZkL+UBNCCCGEEEIIIYQwE9buUWPest59MCr+NmKpuumBo6fN0nDR22heavpi6Y07duxYK3O/B3pv6Z2lN858xIR1HqdFW3XOMGz1uNF/Zyl0uY8APb+21wQ9kNzXgj47889OSVdpbcrUoqyD+RZZZ9vvYopPfwmY77WS5rH3ve2UL5jjAFMAHzhwoJUtPaD5uenbpV+c4wyfl+kBh8HTCHJc4LUsTTKvw37OuONxxgXjndfhcRs3LD0560+//8svv9zK3DeAe2xxfwzbD4KwPktOOVqJNRuHbA6tpOq2a9KHzmuyP9q+RLwX5zXOrZauk32QMUsslSXjkfHBfsrrW38fBt8Hg1g8cu7nvbknDud4lhkvPJ/72FgaesL3x/f0/e9/v5W5pw/n+u2OlyXEI5my35rFoF3fjlf29WG/YJ+y/Z1sbmE88pqMXztObO9Errn4jOynnEO4hh3/3vZX5PqY+9DZXjS8N+egyn5DfDeMO45fbHfu0cN03pW9Inn9s2fPtvI3v/nNlc9i+48YS9tLylLD8/3bt+ESnm+MzeO2pyb7oLUJYXtW1gzj9QP7uY2VrIftBWn7tDB+OQYxdjg+cBy0dYPtuWr7HNnfMlgfawfbS4hjMZ/X9u0dj4mriKImhBBCCCGEEEIIYSbkDzUhhBBCCCGEEEIIM6GcntuOm9WCsiuTqPXaZSp1M+yaloqU6fgop6KsmHJQSsD27Nmz8reUU1HSaBaqsVyc0mvKw0wSyfNZpvySsjG2qUnBKym2LYVZJfUsn5lyVlpcKDHl+6O8nJJXpmvl9U32tgQZpdXR0t9VLIebSsO93fBZGI8mi2U/ZV+mJYr9aO/evSvvxbim1WIYtlo1+A5o52F/tnSEZv9h/fg8/K1JLikxpXSc9kDKVk1Sfu7cuVZ+5ZVXWpnjoKVErKTnZp17rQVzwmTGlRTHlePE2tVi3MYEzkEcazkf0Yo6TrN7u3uZjYv1ZP9l37RzWObYz1S9w7B1jOB1zUpssmfaHSl1Zpp7zjVcT5htm/UxuT/n6+985zutTLsT7VSbihHrf3x/S5s3yaZsSptqb7Yl+x3td5x3zOrIvsy+zz5idkJL2815hnHDOZH9mv2d8cT18PgZLDYZa4TPxmeo2EIq75514zj42muvtTLXz7ReM4W3fRfxub74xS+2Mt8B7Y0cBzbVd+eE9X+u5dknK1bEOWN15jPa+Yxl9heuH22daNtIjGOF/YdzmVl4uLbkfGx2TcY4780YYVuYVZ/PQ6sU4frG2rey1QvrzPocOXJkZf05PpIrV660sq2ZSRQ1IYQQQgghhBBCCDMhf6gJIYQQQgghhBBCmAlrrU9T5Oe2gzLlVDzea52xTFJ2jknsaX/gDu6UdlPGee3atVam1ItQ+kSpF+VqtBfQBsV7UW45DFslW5QDsh0po2K78Lr8LZ+H8jZaHuydVTK5mPzd3istGGyvt99+u5UpnzWJHWXqlADynVk/WxomP7cYtPPvpMx7CqwD5c98tzyHUk3amojJMCkZtYxnY8wqyL5NuabJSvnOCOXWfE7GhVm/CGOT4wZlom+88cbKMu0xJt20fmbxbtmJ7Py5Yn2jYmXqtf32Zl20tjSLE+cHns93zhjZvXt3K7N/cSzne+aYbfJsszeaxXCckY19lb9hPRh3vAdjk23HcYS/5fm0YHAdwHjkXMznpM3h2WefXVlmm+5UNsM5W2RXUbEibuqZeu0pjGWuPymrZz/nnGXZUbmOY1/jOZyvaBukjYBz3zi+PoJxw/XturnSrNqWPc6sB5X1TcUWZO+e9eE648UXX2xly2zHMY5jAsc7zum09jMDJd9lxR6zZBsU5yPWnW1p59v2BnOm8q4ss5tdh+ew3Rg3jC2OD8OwtU9yPmZ83bhxo5VtPGKZ6wazsZnFiddhvWk95hrF+grXt5yLWWY7cmzhO9i1a1crM0s0z2eZ/ZJtNd5GYRVR1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEmlLM+mf2l9xxiMlSrQ+W4QRkYJZ2nT59uZdpoaCOg/JDSUO5Sb9Iyk0/yt5Q0MmsEd5Efhq3SNMrSeJxtSmmZydwpYzUpODH5Xe/7qEhPzbLE9rKMCGxryogtI0LFljBXzIJWsThZNpalSNr5ns1ewXhkn6U8m9Y6xhZhe45lopUxkbJn9lXaIohJMS07gslN2S4sW6anF154oZXPnj3byhyb+CzEJOiV7DD2vDavzJXerE+VtrE+xf7ce1+zQfHdsl9w7KTFifOmZSdjfL311lutzLmY4zTnPo79jDvWme3Aug3D1hgxaTjfAW1NlHZzXOD5HF84pxiW3enSpUutTIsTM79w7t6O7E5TzpnzPLGKijVpyjzYm7WN/ZT2F8rqKZ+3DJyMF5sHOI5aTNGaw3pybmXZ7La85tiix+dhvc3iZVapO2n54TNzXLN1P78NGL9sL66rmUWR3xtmYd7UN9JOY99KNlea5Xpp49AwuI3Xsu/yHM4h/K5kmbHMeGT8jbOrcY3KOZVzItcHdi2OL7YVgNmd2Ict4x23LFmXxeoj2D9YfzvHxlmew/tyDcDYtz5tNjYSRU0IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmwu01NyuoSMtMIlSRK/bKTe2alJNRinXq1KlWpmyKEiRKGl966aVWZkYMyrJMrkbpE2WMlEeZZWNsr6A8knI3y4LD821Xbd6D51MSRokay2a5qchQTc5ofYXPRSsapfMm7yOWCWkpVp+PMFlrxQZllrWlSWWHYWsfodTT+jv7C2XIZj9i/FJ6yewu4/uxrSl35BjEtqbNkljmHl7H7su4pmXp3Llzrcz24th04cKFlb+t7IpfydZk2T1sbFlavzTbkc1Tho2LPG7ZfnrbjG3PDC9XrlxpZWZX4BhC+yxtCpxbOZ9y7mI/5fhNuwdh/6UcmzExjmX+27K7cYxgW9CCwkxMtEGZrZrvgHM8pd20gdHi9N3vfreVGac7NTdV5vElsKk1Z++9DLalZSNlvFumFGYyYd802b7ZRrjuO3jwYCtzbch451jBvs9Y4W/HmZFYV86DPI/PxnpXtlfYDixbIrPLcb1qtg6+D74njokcKzkuWbYwsrTY5DPZWsPWPsT69pypZGzk+MBYMeut2eIZN4y/8XYXzGrEudks7Vwrs35m1eb74295Pu9r1i/2CY6bjB2u12ktJIwvi02Ov/x+4LthmTZqZtBct15ZRRQ1IYQQQgghhBBCCDMhf6gJIYQQQgghhBBCmAlrrU8mcbJzCOU/Jmk3ualJ2nrlt5RHUa5JyTRlR5QyUaZEu5PJnSqyKdbTMrFQ5knJ8/jflV21WQ/K2ng+Jaa0Odh7NbmpnV/Zkb4i62f7so1og6K8jfJHltk+LC/NAmR9vmKFMFtJJQvG3LBxw7JjsC+YVY6ST7aPZUgbhq2yTJMoc7zguMO6mkycMk5ek/diXNOy8txzz7Xy888/38qUuVcy6xCOAxUrXWWstwxGS6bXamHz45TMHmbxNFsW3/+ZM2damZmYaAOk3Jr3ohWC0mbaJfhbjt+0PjEmOEdZFkTWbRi29ivOoWYNZmxSwn3kyJFWNiupZaVhXbme+LM/+7NW/s53vrOynjam30nulswyZFNZnKYcZ3/Zs2dPKzMDGtd6XPvYOs7WiZwH2ae4/rR13OOPP97KjF/GB9fGfEZm6RyvablG5/hilli2I3/LmL2TfZL15BzNdQbryXWDrUXtPfVa6WzcnyusO213HM/ZPzl3jNdjS4PPxZjls1smU/YR/pbff7Y25pp0PM9wXLC1Ge3Q/D3HBdaJccGY5bNxLmdd2T94nP2c1+d4xNhkPc2Gb2tUnsNx8Pz5863MsZv2b66BOHZbNjcSRU0IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmwlrrU0UmbRJuyhUpF7LrV+5bOYcyKMqyuPsyZWOU/9NGc/bs2ZXn8FlsJ22TvJo8lbYDSrcocx1fi1Iu1oO/N4kXJd8mY2VdaRHhb61smQnsWXrtUbw+LWpsL7O78LmWnMmikunM+ifljhV5pN13DlTshMzGQPkhJYpsE/YXSk85boztFZZ9ie3IHek5PlJWWhlfLMvbjRs3Wpk2ih/84AetTEsU62ZZFmzH/krGjd6MfZWsFjaXzJWKpbJiG+3Nnmfvx+w+LLMvcG7ivWhr2rdvXytzruQ5zJ7EujEbFOXu7Gucu21esnYYBn8HlB8ztgll27wuZdu8t8WyZXd69tlnW5nz19zGWbJkG9Sm5vze31ofZL+j5ZZrV7PXcCxnTDEuaCey9R3HXcsayvvSAszrsO9zLmKcMaPguN779+9feV1aGGy9Ypn2prwnUvmt2YRtrWb1t3tVnsuss0uDdefa7OTJk61MG+zdZH3iGtXW8+xrjFP7TrdvMv52vLZi3LJOjHOOWYxNns/7cd1sGYc51rBOXNPzOfls7De8Ps+pZAS2NqpkJaZ1i2Mx+7FZW40oakIIIYQQQgghhBBmQv5QE0IIIYQQQgghhDATPlbWp4r01WRElUwgJgUnJuszeRHLlGhZNgZKvk2GbBIwyzJBSRelWJahiOVh2CoBpY2Cz2AWIT4zj7O9KN8ym4NleCEm0azYACrnU7rGNjL5Y8WWtjTrk7WNZSMhPM72q2Qum3M7Wb+wcYZScFoZbEd9xso6ewXjiG1H2Seva1nJbJd7ZtFgRqcXX3yxlWmvoL1xPKasupeN++w3NkZXJOgVi4T1rcrcsNNUrExT2qZiJ61Yg82mw9+aFffy5cutTGsS7Qtm6zDrB+9LuTHr/NBDD608vq5fWFYIk4lXskFV1jGWFeLb3/52K1fWGdvBFJtS71ptTvTatrbDzmVWRM5HbGPaCd94441Wpu2bfZxrQ5Y5/1BuT0sB11C0lnB84JrW1glcq77zzjsrn2UYtm43QHsk24gWSo4jvBZj075VNvUuK5n5KvYlvrMKZnGfMpfMFfuO43uubK8xZ9iP+Iy0ErPvV7KBmYWX7cnzac1hzI7vwXmTY4fZmjiOmH2Y9k5aJflbjh28fsWSz75iVNZqFu+sJ22oPJ/f5nwHfBaO+1rP254RQgghhBBCCCGEEO4I+UNNCCGEEEIIIYQQwkwoZ30ilR3KbXf23l3VK+dT+kR5kWVyoQWJ0kvKryx7EmVNvD4lZ3x2SrdoWaBsk9JTsyiN783fUO7F39hu4LZjNnerNouIycAqmcCIWTxMGmr9gNdh2xGTxpl0fgkyyortyGR9lN2xT95///2tTMme7TY/NxjX169fb2XGmmVbYptY9hz2cbOVjf/P7By8FuvNdme9aZ145plnWplZY2hHoTy9kiHMpJ6VbH9TsFizcWYJsdlrceq1O1Wk95VMI2ZhqdigOK9xDj137lwr08pgGdYs8xhjyMqWjWHcnpZBhBZF3tts271Zspg58qtf/WorUya9U/25knWxcn7vdXaa3myTdrxiPyS2bmSmM9p6aBdgxjDakWhFZFyYdZfrO/ZZi0f+lv2UdWNGRbYP5x9aKpjlbVxXjimsK8cdW9OaDaY3m5JRsTXZd84UO/CUTIFLw7JZckxlf1t6pieuv/iNxbUorUk8n7Fv9mGWGe+WXXNsFbJvK7MlW2ZS3s+yJfIZ+F5ZB8v4aBmzOG5UbFA2v7P+LHOM47PwXlzb2/uuWCCjqAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMWGt9Mkx6XTnH5H5TMh7wOpRx8pq0EVBKx8wMJvus3ItSLJOlWVYdk1nRBjEMW2V/vB+vRRmVydX4/HweysyYvYPtYvK2XltE7zmVDB8Vub9RsVnNicrz8bhZeHj85MmTrUxLlEklrT47hckSzV5BCTflioxrkzyPLWBmP+TvLdscxybK3Gl3+tM//dNW/t73vtfKFbtmb3+eYoWYYvUxWbvZXeZKJevIlMxXdk5vFsVKZkazEVCazv5LawOP09bBuYsxyHtVZNfGeDysWBY5XlCWzHvTwsEY51jJrDx/+Id/2MovvfRSK1vmtTvJpsaEJcyVpNfmUpnvKtdkrLF/McPLnj17WpmSeWZ34nqVfdDWkGZdNLsE5yXOm1zTWqYyns86cBwYZ31inNO2cOrUqVbmeMEy25HjCOdis2rbO55i8eu1I02xQVWyrc05Q+cqWEfLkEt7nPXzOWNbO3DbAc5RBw4caGXOM4RzMePD5jq2J88Zz5uc+xjbnIMtoxN/a7Yr1oNluw7HCvtOtgyqxLY2IPxtxYbPOnB85Dl8N1y3M/uVEUVNCCGEEEIIIYQQwkzIH2pCCCGEEEIIIYQQZkI561PF2mKyoIoMv1dmWJEBUs5MySjLzJ5UkUlSKmXWCcpKKcWiRI0yarNmjKVulFTx2Sibo6TKdqum3I33owSLz/DAAw+0srV1RYJvVHbRr1jRTMpvTLEl7DQWX/ae7TizsfzWb/1WK7OvXbp0qZWZdYJYxq07SSXDGLNJsL9Y3zEr4RjLOsHjlPOyHRmzr776aiszu9O3v/3tVqb8l3Wq2FAr42YlfnvHZbMvsa1pOTNJakXyvdNMsYJNsawZvXO3jbs25rD/cm5lFrJDhw61stlYzVrIMu9rWZ/Gz2g2Y87NlC6b7YrPxvh9+eWXW/nP//zPW5kWRcsQcSf5pNqdtoOKzcWyCtLOcOTIkVam/J+Z1JgljH3W+hHHUa5R77333pW/5drV5jg+L9cMFls2B9JCNQxb1982HzMzlmVnM9ss6Y273vNt7K7YqSpMyRK1BNge7Cccm2kfWYrdybB1GS19jM3jx4+vPN/WqxxzCMcHwm++cf0Yd1zHMs55XftWtbmV38Z892aH43XGdsqP4LhjWz+Y3bryfcX24bhsVnBmwaxkoSLzX/WGEEIIIYQQQgghfELIH2pCCCGEEEIIIYQQZsLHyvpk8naTfW6HLcLkSLQUUVbJ8ymhsp3DTUJosm2T89PWRLk05XwmO6cUdhi2ZoR57LHHVj4Pr8v7sa5sI9qaKD87duxYK1PaXsn4NYVeC9WULDNLl07eDttJnVJEyhWZgeLf//t/38qvvPJKKzP70IULF1p5DtYnPiNlnJSaUw7KcywzDPsOY3xd1ieWeS1KIq9fv97Kr732Wis/99xzrXzmzJlWpu3C5OZT5NC9lpteS6Ndk+/A2p3taTv5z4mKbWtT0vjeDCQV61OlbpbBkP2U/Z2ZazjnUAJMS4W9cytX283qSjgPcm6lHeXcuXOt/PWvf72Vz54928p8/ilZLaewHXanpdmEyZS629rPsqtwrmFGo6NHj7Yy7UiUyXNurfQjs04wpmgbYewwXrhepZyfdWOZvzUbLtch4/Gbz8a1K9clbEdal2nV53NyTJmSYW1TY3Hv+tP6qM0fRu9WADsNn4nvmfFlsbYUbD3J7St4nP3avr34PccYN0sUsaxKw7A1bhmbLNu6kXOl3Y/n0+7E52E/YCzzOMcjjn18Zh7neMJvIXuWXsuhtTvfDc/ncSOKmhBCCCGEEEIIIYSZkD/UhBBCCCGEEEIIIcyEj6Ujs12TiUkfK7K+3jqYDNvkfib7JFZPSu8osbRrUtrJMiWmJuEety0lcZSBcWd/2p2487a9A8pHaRHhs1G2a+3SKw3ttU5U3pndqzfT2BIsUbZ7OmPBns+kpMwmxEwTn//851v5j/7oj1bed6ewMWTXrl2tzP67d+/eVrbxgW1o9iiTko5hnLJ933zzzVam9emFF15oZcpHacHo7as2vliWO6OSnc36nI3vbB+ObxzTlibhJhXpuo1zm8qQaNhve7OXsG+yzPGB8w9lzrR+MKY4/1j2OusX437KNuW8S4sT5dzk4sWLrfz666+38rPPPtvKzNRm2aPmTK9lY8nWp954sWelXJ0yfPb53bt3t7JlG2P/Yj+iNZZ91urGeGHdGDtml+C6lDHB/mtxbVsH2Pp8bEXiv3ke575HH320ldnWHC9olWK5Mnf0Wk83NW6SKXG0tBg0+Bxcd7FfsH8uYZ0+hvFIOw77tWXZ5XFuR0ErD9vQrIjcEsQyIw/D1jmb61Wu06wezBTL4xzLOE6xTpallfXhcWZH5pYdlUxwFVu1jSG8PuE75ljE971nz57b1o1EURNCCCGEEEIIIYQwE/KHmhBCCCGEEEIIIYSZsNb61CvbtixIttMzJUK2o3VFrshzKtL4XluM7fBP6SWf13bON8koZVbr7BX8Pa9LWZrJ2swSQ3gOpa68Jp+zYlebYpUivdmg7LdLtjsZJtMj7Le0Apn1gFknKKuem7TfdtGnrPLQoUMrz6EskX2fv7XxbTzOmKWI7UXppmXEoT2K40ilr06xJvVi9anEl8nFOb7x2fmelmB9srnSypuSzFesxJW+Y3Mxxwebf5mBge+Q51BizXMOHz7cyrS+8beVrIPjccn6GOORcxwtw88///zKMi0rlgVjzmwqu9PSbBeVzDkWd5w7aEM4fvx4K3Ou5HVoBWCZcwXHfq6/bJ619TZtv6wPz2eZMcgyY8Us/FxLsJ42Zo+fxdbBHCMYaxwXLEsQz2EsT7H4bYfd3sZoO96byXRpsWmZy9i3l7hON8sk45TjCeG63bayMKuj9X2ec/78+VZmXA/DVvshr8XvSsuqxlimjY1rCMYs+zzHDpuvad3kWMlnoOXKxiaWzXZeyWzNPmrbo3Cs4zd7pU9HURNCCCGEEEIIIYQwE/KHmhBCCCGEEEIIIYSZsG1ZnywrjUm+KYmqyOcrVoBe243Jv83iREmXSUkpGeOO5ZRBmfR9DKVclHi99dZbrcxsPZSo8dlYb8rG+AyUnvL92U7XU6wZvefY+b1Sz6VJQ4llwbK+RImiZWxh3/na177WypQes69tyvrUm32DULp43333tfJDDz3UyrajfsU6YRLusTzZdoxnzHMsoEWEknfb/X5Tkt/tjkE7bmMxx9ZKeQ52u9sxJbOMHa9Yk6Zk1TPLTuWaZv35/ve/38rM3GLZxpgNipYKy4plkupxe5rlkPfjccrBX3zxxZXHGadzsztNsXj0Xn9pc2hvvDDWKGPnPMJsmVw3MS44b1qWtIqF3yT5tPvQUmE2AtaNfZ/1IZZtrWK75jnj2Ld1I+OLcyWfjfM916W0zdCGYFkqp4yhletMyS7WS8V2O1fYfvyGYp+pZtucE2x7zmvM/GMZgYjNcZwHuc63rIaMd2YZpR1nfB6va1t12FYm/G6tZGcjNg4yljlmcS1NSxjbziygPIf35XXYL/nObF1i390cr/mejChqQgghhBBCCCGEEGZC/lATQgghhBBCCCGEMBPKWZ9MOkQsIxCla72ZLCpZnywbhcnn7ZpmbeBvKX+ldIuyL8pfaXeg/MzqaVaOYdgqiaOdg5Js2p0oCbPsBXxm20mcdTW52qYyKE2RaG5KqrqEneUr7cR3y2diP+T7fP3111uZsr59+/a1MrNE0TrQa0nZlDyf/fTUqVOtTGn63r17W9msTIwbnkNM8j2un1mWKOe+detWK1NiaraQKWzKykR6s05YhhJKQEllvpkrvZlzKhmxescnG5srY3alzmb1ozSYfZxzEeORVgb2C3texhAlwxyvKC8fhq2SY7NCMIsEM94xIxufoTemtmN+2ZStrrfcW4c5YbL3in2Y/YjrQEL7AMucK832blTannVj/7dshOzLlsmR7cP6M1Z6txcYP4udx7ry3hwjLMsjn5/xvh021N6se5VsMr0xa+P40uZNwviidebBBx9s5Zs3b7bynNfsfA9cP5vdic/Ifs04rfQFriu5vmU2J85146xP/B6sWEPtG5MxyLJR2VrF4toyrvJ7me+Az0jblNlKx9/kH2EZS3l9jrm0c7JuxnIjOYQQQgghhBBCCOEuI3+oCSGEEEIIIYQQQpgJa3VIZv8hlPzQbrB79+5WpqSKUmKzZphVqkJFWliRBPJ5bbdmyru4qz8lr9evX29lSrX57LwOZX6UvQ3DMNx///2tTAk425dyL8quCGVjPMcsWJZdY12mjVXcyaxPJgHtlerOFZMEmnXGZM987meffbaVb9y40cqHDx9uZetTU6jIhC1+Dx482MpHjx5t5RMnTrQy+y9jjbHC9uEO9/ztuj7O37ONGKeU6lLObZk/trtPTrn+lKxCtmM/3yvHH8v6M1cqlqLeLE4VG1TlfML7VuzAdk3LAsEx5PLly63MtYHJiu39E0qMOW+OsfGfcE5kn+Q9erOw3Um70HZYnHrLS5tDezOHEvZzWt25vuUYz35UGR8Ma3vafdhPORexzuzjrCfP5/VtDU8Yg5xDLYbG97CxhlYrtjXncta7YrWo2JemrEUr73U71sNLjkfWne/N1mZLgd9JnONoeWH80ppj227QykQYp7b2vHTp0srzx21r/ce+ARmPti2IWUYr4wDP4RrStnWw7Vc4TnF9b5ao/fv3r/wt3+XZs2dX3pfvgNe0rJZGFDUhhBBCCCGEEEIIMyF/qAkhhBBCCCGEEEKYCWutT5Q1mYSQEieW/92/+3etTJkSsyB9/etfb2VKuSiZplSSck1KmSw7VSWLhEm4TYZnkiXanWiDsh31iWVBYXaMYdj6bLRRUb7GtrbnoRSVUlLuem1WNKu3yct7JeKV324qW1Ov3HlOVOwMFVsE3y1teuwjlPWxP1cyVlidp9jRGI+MkUceeaSVKVfkLvq2M71JvqvSdMYmr2U2H7Yvy71tuhTs3VN62pvhb670ZvDozeJUuU6lDkbFomVzgsmWWaYc2KyFlEhTks1zaNngmDC2DFvMcy7nusQse1OYg93J+pAdt1ir2PbmSm9WK0rdmaGs0j97Mzr1Wp9sfc4y1+ScZxi/ZiMgjFmeb/2L9103ZlfWeFxzsK05z/Le1hZm9ZyS6exOWg7t+mRTc8BOYOP0umybc8VsiY8++mgr21YhjB3acfitxn5NWxPnMX5TM8sQr7Mu9q3/8N6Vb2y+M447lTVNBZuPbJsG1ofvhnVjRi7OAdxqgeMpbWzMdsn2IbbliBFFTQghhBBCCCGEEMJMyB9qQgghhBBCCCGEEGbCWuuTyego26Gc/+rVq63853/+563867/+66388MMPtzLlQm+88UYrP/PMM61MOdKVK1dW1s3kcJRBmUS3Ir+y31IOSruT7aJPKImiVJuWDUpth2GrTNzkoBX7ANuLdeXz0C5CKR4lvyxTDleR9VfsLpvawb43C8sSMOmuvf+KZNQk/5RKmuVhChXbHOOF2c+efvrpVmbWpz179rSySQsr9o2qDNOyalF+ascr0vOlU+mvJn3uzdi309h4sx2ZRnqZIre3rEc25rC/0xrM+eTkyZOtTJm3ZT+zMYHz7HisswyOnHdZ5jlm+Ta2O9NT5Tq9kvLefjDF5rzTWB3NjnnkyJFWfuihh1aeT8u42XF610QVy63Z+Cw2WTeuHxmntk4wqz3l/4xrzmkfJ4srz+O1aPPgGtXen80jdq8p9GZ6qsTyprKCLS02K3PQnJ+P8wa/6Y4dO9bKnO8Yv9z+wmxfjGXGI8cibmVw8eLFVqY9at16vrfvVWzPliHSysSsizbG2X0tyzLtZzyfawO2Hd8TM9Px3XPtwXtxLuHayJj/qjeEEEIIIYQQQgjhE0L+UBNCCCGEEEIIIYQwE8rWJ8qOaD2gJJISxW9961utzB2ULUsU5UWUNPKaZikya0NvlgNimXEoM+NxSp/MymASfj4724rXGYatsk/u4l2xTpgMl9JVPhttV7SomfR8SjaWXhvUlGxDZG5yyR4qfd6y5Vh70MrGvl3J/tFLb2YDjhUnTpxoZcpKOS5RZsj6mxyS7cZ+bc847oOW3YkSc5ODLyWTwaawDALWX/k+lpAV607aXCq/rWRWmXJNuw77NW21fLeMa8vQwvPvu+++Vubag+WxnNusT5xrK1bqXqZk/+q1UFXuZeP4lIwzS8v6ZHVk23Ae2bdvXysfPny4lZmZlOM6x3uurcgUe5ytG1k2ux7ryXjkWtrah+fwubjuZSzbt8O6tbfd2zJUsR60jjDGaU9gu0zJ+kSm2Am3I+vNkuFzsz8zOxLfLWPQtpi4k3AMOXDgQCt//vOfb+XHHnts5W9p1WeftW8sxhrnPn4jX7t2rZUt09M6erO0Vq5TiYXKeGHZnSzLHduR3zm0ovHvDmY/43Fud8I+yra2b3uz+RtR1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEmrLU+mQSY0inKCSk1ojXnd37nd1r5v//3/97KlB9S/mPSLF7fJPCWncrkoCZ55nUoLTMrg+1mbXUjZksZtwOlbMwaY7vqVyw/bFNKtiiNpdyL1/w4u/n3sCn5/hyyrWwak+6apYbHKeXjcfYpswhth92pIoekNPQzn/lMKx86dKiV2U8phTb4XDyf8smPI+1nPHO84Dhi8Xu3wrbj83Kc4RhN6xqPL7mtemXCvWMbqWT/s75t5YrtzOZTxgFjlrZaSoN5L8YT+wKlyrdu3Vp5zjC4fJp1tWw9m8oytqmMS71ZmSrHN3WdJcyhZndlG3AuoNWOayXL2mcZOCuxU1k3ss4cI1lnyw5DSy7LFeu8ZQrlcc5v9uzr4qmyXuW9+T7MKtub9aliiTJ6Lfa93wlT5oYlWIYJ624xtSmL8RTYv2h/+cIXvtDKp0+fbmXGLG0xXHPyGTlv8vuM22AwaxDLtIZVvp3XYX3JYtvG1soWDLaG4G/N6sbnNJskYfvSBsUtFTgHcNzkWtQyI3N9y7GLax1mkjKiqAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMWGt9IpQjcedtls1qQemaSfZ6sx+YhLKSfaiSscKyDJklxH5rx012brtZD4PbKNjWlZ20TdLJa1KORUtJRRa/KXvMlHPs/N4d+OcK+3klq1HlWTeVHYZsKnPNvffe28qUkjJDBzOVcVyqSCYtVioWs2HwDDeMWcpVKYPcbgvhnKE8lW3NsYiy1SXEaSVbwk5RGbOnZCOx8ZX3YnZB2pTYFxizXD/wOOPGMiqsg3LlSma73ufvzV5h15mSialyL2NTWWnmhPV/y9xkax/K281qU7HDE8tKxPvyHM5xnHMYL4TnmITfYPvQ9kXLIZ+dfceyuVUxKwifhxZK2kuYtev69eut3JuZtde2bWyH/ZXcLesHsyKaJfZOwv7MNecTTzzRyl/+8pdb+eTJk618/PjxVmaccn3L2LRvT55DSxT7uF2nyqbW7pU1UO86yezwthWLnc8xi+PaQw891Mr8xmB8cfzhWM/7Xr16deV1aEurjInzX/WGEEIIIYQQQgghfELIH2pCCCGEEEIIIYQQZsJa6xPlUrQM0BZDaeE777zTypQC8fwpWSTseK8Fya5TuZdJUitySLOrUJZl5wzDVrsE30fFvkUs2wUl6czaRckW5Xpmv9oOeiWmld/eLRmgKOGnpNeeqdLnSW97TJE38hzKEpn1ae/eva3MnfZpf+iVWLMNiT37+PomS2XMWla1pWVkmIqNpxU76N3YVr3ZQnrnrN4sIpsaK8zuxFizeYwyZLMD0/phWe2GwS0o/M2HH37YyozNTdkSK+/AjldsTbbOYJ3teCXuyMfJhDd32K9oUT1z5kwrc345d+7cyuuwv0yxZlhsmsWW8z6fhbE2pV8zbngdy2RosTnu7+xLZtVm/RinXKNyHWAWaJZpobLvB2OKRbyy5pxi7+0dZ+YE3wO/M/g++Ry0lWxq/W7vh2vRw4cPt/LnPve5VqbF6dSpU63MLIe0cXF8oMWSML7Y3/mtzXagpaa3X6/rI7Z2N3uvnW/rCbMvcdwxm3TvdQjXJXxPrD+zc3FusAzQhNZQvj9mrOSYZkRRE0IIIYQQQgghhDAT8oeaEEIIIYQQQgghhJlQzvpEaQ93vCfHjh1rZcquKPHidShvs4xRJsfiNXvlw3ZO5XglI0zFLmF1Y9vSNjEMWy0V3Fm6YgcwiSnbmpJW2jRYtsxTvTI7oyLR7JVeV7JvTLFW7QTs/+wzJh+lDPBOWr4qkkmrD7M3UFb68MMPt7JlbrH3zP5uskpeh+25TpLM31BO+dZbb7UyZZMV6+LdSiW+2HeXZrWwuak325o9d2W835Q91Ogdd03mTVttJaMHf2s25HHd+DwcLyhnZzxaJjKjYlPqHQdJb/YZ6zdmfapYMCp9dMm2RNadFp7nn3++ldkGZjHmfDHFGm8ZBtneXANyzqGsnv2a60meX8nYyXM4NnPNSGsY16psz/E6sdIPeW8+M+0ftD6xzBhn7FvfnpKxr7KWupPrzKXZ+VlHrv1+8zd/s5UPHjzYyq+//norsx9OsaDZPMVv2yeffLKVn3766VamRYYxyGexbGi25QW3DaHF6cKFC63MTE/8Jpu6ZUGvralCxUptdnhi2R/tfGtrHiccNzjmmNXTMu/ye5ltxd8y45cRRU0IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmwlrrk2UHovSREkeeT5khz6nIREklI0avXHc7JIe9dhI+O8uUp453g6YMrmJ9qrQdf8syd6t+9dVXW5mSX8q3NpUdo/ed9UpSl2BrqlDZPZ3PWpETTsEkw2ZHorSQv6V8lLuwf+lLX2rl++67r5VN2t9rRWRGCJN2cgwcY2MZd3qnbHLJNoGpVMYfwvdhu+vf7fRmd6pkfbLrmBXC3k9Fwsy+b+MALZyWPcfKjL9xH7GsUZQl05bIec2yS/SyKev1lPnL3mtlzWS2tIptZk7YPMjj6/rSR/TGXSUeK1mPWE/Lpsp1I+0bnIv4297sq4ybK1eurLwv16dvvvlmK/NbYHzdyhjHcYHPQBvM+B4fYZkWK32id51pbCobX+9vl4CN57Q70V7327/92638n//zf25l9nP2Q75bzjX8VqUV98iRI618+vTpVmamY9aHGZ3MOsN1Js+xfsdtJzhH8fiUdeW6b6OK3WmKVdBi0J6BNiXLhGdbrth6gmMC3439nYKWUY6DtqUC24S/pT3TtpIhUdSEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJpSzPpnsziwvVq5kapiSrakiv5qSEcPuZeebZNhkZZRZUYI9DFstZ2z3CpV3Y/JWuxdl5JuS3E3J4FU53ySGU3Yy3wlYR8qzTQZIKpLeXuuE2Z1st3WTfXIHdNqdmPWJ9ijKnClhJRZTJjmsyIcZi8OwVd5KiSrjiHVdmmXgTmDzxDrL2RypZPghlfHY5pTeOlRsgFY30jvecxyoZOHj+WYrNKuIZYwan8exgPHMcu9z2jhotsxK/5iSJarXMmf37c1oswSqWcNuR6WNe69TuSbnfbNCcE7kHMVyb904HjPzEqX9XDOus+lPaSOrB+OX64zKmtbYlF28km2qEne94/USYrNitWF/Zjaof/7P/3kr/97v/V4r/9Ef/VErs22YxYn2pf3797fyPffc08q0O9FO+NBDD7Uy5yxe07L62vMyXmgtZHxxa4reDKLVb69K1qfKNgd23LKwWXZCti/HEcY449q+B3ic75jWNWbqoiWKbc1x1uxt/FY5cOBAK9NyxXsZUdSEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJpStT7YLMpmSLWJTdiSTCU/ZMb13936TXptckXIqSt1ooRifV5E49rap7a5vEvOKfaMis+uVf/ce75WOLyEjT0WKXtlJ3a5px60tKUtk2aSelASy/IUvfKGVf+M3fqOV9+zZ08qML8oGK/HFfs379rbnWDpNG4W1i7VFbxwt3SrVmx1jyc9bGfN6rUyGSeN7rYsVa2RvVgdaM1555ZVW/uIXv9jKtD1arNDuwRik/HldXU26zPpRlmxrnSl2XRtD7R1v6l1uKqNi7/XnxBwy50yxp1SyiNJia1lZp4yvfOe0GZkVft29prwD3oPjAi0inH8tM8uUdf+U75beZ59iz19abPL90J5imXNojd+1a1crf+Yzn2nl8+fPtzKtT7yOZQTi8aNHj7Yys0TZus/sO/Z9ajZcK1foXcOP/202JcveyuP8rV3Tvh/GdVp1fTtOCxK/EzhW0tLG87n+4NjC75CLFy+2Mq1u7CsnTpxo5QcffLCV9+7d28qlOf22Z4QQQgghhBBCCCGEO0L+UBNCCCGEEEIIIYQwE9ZanyqWlErmnEoWgikWGTtOCRLlTiZLs/PtuEmWKrI3XpOSzPfee6+VKb1bd+/KLtwVy1JFxtybNaS3br1ZmSpluxfb3eT1c6Uig50ib+7d8Z2SQ7Y3JYSsA8+nDJBS1UceeaSVTQ5pcW3vnzv2c5f3SpYcSjXHmYjuu+++Vuaz7d69e+XvWafttg/MQfbca6+oZPeZK5blwPptJYPHpiT2lYwivXOFjdmE1kBany5cuNDKzKBhEmaz5NrYMgxbY5XZGa5fv97KzKLB7DC96xWb403Cbccr8529M/utvUvLsmHH70Z6s1pNscZX6jBlvOzNHlWp56bsquuuU81Gc7t7rLMof0RlTWM2lV56s7NV+pPFZiUL71yxOeXw4cOtbFm/uLaiDeXJJ59sZVqouOY0my1tVpyDuNbjNXvXovYOWX/arF5++eWV9SSVvmbfYeN5k89g63s7btmdeI7ZqdjWXK+zzN/yfJaZwYvnWz/je6Utmm3Kb0PLKkV4fdqvuMao2NiiqAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMKFufTIpesc707rBudSC2GzqpyBUrdpyKjM2k15Y1ghJFWpwogxrLNqfI2ir1tndmcvZeGbaVe99lpd/YdSoWmrGtZY6YdcZ2UjdJrGHyeZP7UZbI+phtgce5k/qhQ4dWntMr47U+y0xPtmO9sa4d2H94D7M/mJ2ycu9qRo1VzEECbX2L75vwPdG6sgQqGfMq9L7zKVYIG4/NrmXPaJksaH1iJo4DBw7ctg6MIcqQq5lYeL/vfve7rfzaa6+1MjPlVOY+k3xvKnuQSbXtfdg8bjYQe0abM2zusevPlU2Nnb2/7bUR3UlrVeV8G8cqfX/cVhULx6bmrMoWCVMyhFbapWLXqqyNLfYr48Bc4fhhmXNsvOEagVYm2llohaG9iNCeUrHXmB3exshK3HGOO3jwYCvzWUhlixKzK/F8ttv4N7Y2s6yrvJY9s2WGMosan58ZIu098buCx+098ZqWKZJ96MaNGyvrwLUOMz1Zv3zhhReG2xFFTQghhBBCCCGEEMJMyB9qQgghhBBCCCGEEGbCWuuTWQMqUj5KikivPHBTO6ZXbEBmdyK9dqKKHJQS7nXPXpHA9lrF7Dkprey1PlUyVpBKX6k8r/UJy8JFKRrfgbXJnDCLE6WIlA1yF3OWabszK4HtVG/SRTvOLEuU/jHbC+0PfBbbmb8ivSZ2HVKxA45/y/8b757/EbbLfWWctZ3nzZJKKvabXqn5piysfHbLyPX++++38hJik89E2ewUO0Mls5KdX7Fs2LxWsdxV3jl/ywxQzz77bCszu4dJ0Gl9Y7/g9SlhHoZhuHTpUit//etfb+XnnnuulTkmVqTqZp0wG0IlrisSdru+nWNjQsXKxOtYhkQer2TB2GkqcWFMGSN7j/dmgJpiy7JrViw4U7IzrbuH1aly3d4tAozKnF6xI5HKdwLpzVBrdnezrswJju22FuA74TrIti7gmEQrjK2naFtnm5nt3bIY8V1VLPy2XQDXw48//ngr/8mf/MnKOhDWmete9pF162G2hWVxIpUMWHzH9vy2HmZdrcw6V/7WwHtZRknW+cMPP1x5Pp/d1gO8zjvvvNPKN2/eHG5HFDUhhBBCCCGEEEIIMyF/qAkhhBBCCCGEEEKYCWXrE+VhFaZIQyvn9O6cb8dZtl3HTTZVsW6ZHI7XNyvDujavvA+ra8XOMcX+QCrHN2VvMxuIZbAye89YOj9HmB2JNoFTp0618smTJ1v52LFjrXzr1q1WPnfuXCt/61vfauV33323lWmPMtscrUyUbnJ3/QceeGBlPZ9++ulWPnLkSCtT0lixB5GK7aA3K9y6TGjc6d1sabZrvcW/xY7VySxOlr3Fzu/NQlUpsx3YPmyT48ePrzx+5cqVVmZfnCt8PrY935VJ4HuZYseoWKjsfZrc2vqvZVE4c+ZMK3Mc4xjFsYLyYY5RvCavMwzD8Pzzz7fyD37wg1Zmdicb1yrZDCu2MTIlW48dr2QF6+0rleuYdXGuTMmEaFTatbdfbEc/6rUZfRwr0+2uuV30fg9MycJFKjawKZm6rA6co1k2mzrtQ3OFYzjXjWZ35jqTbcDjHBc5L1S+Ayp2tEqMVKxJhGMq68zsV0ePHm1lZh+iNYfPaNluK89SZYrN256ZZbPD8RnM+sRvCdbTbOqcG2hNokWamJ2M74DvifZvvjMjipoQQgghhBBCCCGEmZA/1IQQQgghhBBCCCHMhB+bIvkMIYQQQgghhBBCCJsjipoQQgghhBBCCCGEmZA/1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEm5A81IYQQQgghhBBCCDMhf6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmQv5QE0IIIYQQQgghhDAT8oeaEEIIIYQQQgghhJmQP9SEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJuQPNSGEEEIIIYQQQggzIX+oCSGEEEIIIYQQQpgJ+UNNCCGEEEIIIYQQwkzIH2pCCCGEEEIIIYQQZkL+UBNCCCGEEEIIIYQwE/KHmhBCCCGEEEIIIYSZkD/UhBBCCCGEEEIIIcyE/KEmhBBCCCGEEEIIYSbkDzUhhBBCCCGEEEIIMyF/qAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMyB9qQgghhBBCCCGEEGZC/lATQgghhBBCCCGEMBPyh5oQQgghhBBCCCGEmZA/1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEm5A81IYQQQgghhBBCCDMhf6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmQv5QE0IIIYQQQgghhDAT8oeaEEIIIYQQQgghhJmQP9SEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJuQPNSGEEEIIIYQQQggzIX+oCSGEEEIIIYQQQpgJ+UNNCCGEEEIIIYQQwkzIH2pCCCGEEEIIIYQQZkL+UBNCCCGEEEIIIYQwE/KHmhBCCCGEEEIIIYSZkD/UhBBCCCGEEEIIIcyE/KEmhBBCCCGEEEIIYSb85Lr/fOCBB/5p1fF//Md/bOV/+qd/um2Z2PEf//Hb/83IfmvnsMw6s0x4nPX5sR/7sVb+6Z/+6VbevXt3K//bf/tvW/nhhx9u5aeeeqqVjxw50soPPPDAbe81FT7PX/zFX7Tyu+++28ovvPBCK/+v//W/WvlrX/taK9+6dauV/+7v/m7lvazePF55NnvHlevwtzzH+tZP/MRP3PZeN27c2NwL2SBf+MIX2sP+1V/91cpzePwnf/L/hbq1B8/5+7//+5XnsI15/j/8wz+sPE4YO+ybPJ/v5Od//udb+VOf+lQr79+/v5Utvu67775W3rVrVyv/wi/8Qiv/7M/+7Mr6sI9/8MEHrfz++++38tmzZwfyve99r5WfeeaZVr5582YrMwb5DmycImxf/pbns9/yuPVz6wc/9VM/tfKavA5/W+lbVgfe62//9m9XXoe/ZVs9//zzs4zNe++9t1WScWTvtjLm2fHKbyvz5qbqY8crcxzvy/MZ+4xrxjJ/+84772y5LuOWfczuvam2s+tYnFbmLMPmRyvb+NP7Wx7nOPDWW2/NMjaPHz++8oXamMqxpzIG8xyW7ZzKb4mtYyv91N7bz/zMz7Tyvn37Wvlf/st/2crHjx9v5d/4jd9oZcYj59O/+Zu/aWWudTmnj+tR+Wbg+Zyn2RaM/zfffLOV//f//t+t/Nxzz7XymTNnWplztN3X6kYsvuycyvrWjlt/tbn74sWLs4zNT33qUx973tzkd9Mq7PqVsZBtb2soHuc62c6pXNOw9ZrNjcOw9X3Yu7F5jUz51uVvOT5WvvOn/G3Cxih7Rpsr2e58x1wDnz17dmWjRFETQgghhBBCCCGEMBPyh5oQQgghhBBCCCGEmbDW+vTXf/3XrUypDqU9JtHslf2apKgiy61ImUyKaFKxinSRkuz33ntvZf0vXrzYyqdOnVp5TkWGPBW+J9o5fvjDH7byjRs3Wpn2KMpBrd4muaxIBnvfH7F+YDI5+61ZX+YKY5Ple++9t5X53iivM5sSJY08zuvzONup9zp8PzzOfsTj999/fyt/+OGHrfzggw+uPId2J0qyKb1mf+H4Rng+Y2XcZ1lXnme2C5NEmrWsV9pO2KZmObPj9i55nPflcbY7j1Nqz+OMR5Pasp3nSqWOvfai3uvYOb3zZuV4ZW6tyITNBsJ+R0sFrce0eY5tm4y7ytg+xXZkUvDKGohU1gG9VuJey3ClvOR5k2M+x6S//Mu/bGWzXVpf5Tm27qhsF9D7/s3+UlljMz5+9KMftTJtQ0ePHm1lrisOHz7cymxbPjvnw7H1idjz2PjCNQ3vfc8997QyrcdcH/A6HC84jlRsKhXrR+W4jXd2vPfbycaZObGp8aPXrjrlmpW51d4h+69dk32T/Y5tZf2rspXBOouZWQutTsTWrpU5yyymvK+1kbV7ZesTUvnbQWUNZ7+192FEURNCCCGEEEIIIYQwE/KHmhBCCCGEEEIIIYSZsNb6ZBIek3SSXvn0pnZoJr07dVdkWZbRhm1y5cqVVqZklBJTk72ZxHId1l6Url29erWVX3rppVY+d+5cK9NSUnnHm6JX5rupLCZ8xt5+sNPQVsL3bDJLywDQa1UglXaqWAvtmnZ9ywa1Z8+eVuYzMjsMrRM8xyw7lMFTHj/uU/w/1slkqZWMHZXze6XOlfHUpN0mk63IaiuWALMQmB1srlTmr8pvezMhVsbI3n5B7Pq9v52S6YVZZg4cONDKnE8Zf8MwDC+//HIr0/a7qSxcm7Ir98qqp7yzyvm9mWh6LWM7AfsJx3myqWw8U/pCrzW8105n4zEtRG+//XYrX7t2rZW5juX8SMsR15LrrKt8B71jllkaadu3+ZFZrM6fP9/KZvPvfce9a1rrc5V1UuW+S4jNKd96U+bcTVG5r9l6CPuyWX/MJm5rWouDdfZ6s3eSTY1BlcxK9gxmcepdf26K3q0/KrE5/+gNIYQQQgghhBBC+ISQP9SEEEIIIYQQQgghzIS1OvIpUvopVhW7fkVaZXWoYDvNE0pnmWGH9fzFX/zFledUsql8HKx9bdduSlq5yz3lqr2ZCXozFvRK4Oy3U+T4ZAnSUGKZASo7plfklNaWFneV7ASUZVqfZyYOlpmxgZmeWKblgXFqGcmY4YKybUKbFTM4McaHYRh+7ud+bmU9LLNDZRf6SvaO3hisxJRJRnutW6QiASV8drYbLWZLYIpFqCK935QNdFOZoSrZTgzrU+wLtD4x9mlvHGdwe+utt1rZrA0mjZ5ia+k9x2Kt9zq91oleu13lOnPF7OQVuXpv1h1SGaft/EqGqd44td9y7KdNmDYjZnGi9YkxyPlwXT15XbNkV7LXcC7n3M/MVbYe5nhRsU5U+hDptUb2vjM7v2KfmxNTrE87Re9WHqQydlYyAtt2GTaW025ome+GYRhu3brVyrQsclywe9j6vtfOXbFrVspT3kdvVuaKdda+SYxlfZ2GEEIIIYQQQggh3MXkDzUhhBBCCCGEEEIIM2Gt56Z3x3GjV0pdkZVWpMG99e+VOFHeefDgwVb+/Oc/38rMTFGxMqyThlXsKL1tTbsTJa2UiW4qq4XVYYrUs1eCT0ziPmep5UdYX+2V1Jk1h5g9im1s8mTKkNmnbNd6xhSfxTI98be8PiWdbCuTbbLM3zImKK8ey5/N+mX0Wi2mWFxs93+T6dsYZLJzs9v1yoKtTe7kjv2bYIolYTvqMMWm05uFr3d+6G0HjgMcW2hFHPdfzs3vvPNOK5u1weq3qSySrDfHoykWQmPKc9lxs4gvIVsiMfuAlW3snJJJzerTy6bsMjzOeZBzK+1OBu0VnA/XZTKlDYo2DLYLY4ftTusyM7vRjmXWA2LWiUqGpop9tNde3ruNgLGENe0ngcp3W2UdbuNSJasU44xxM86Cx38zpsxSZHWyZ+vN9ETYFpUtBaZY9e1Zeq2OFTurEUVNCCGEEEIIIYQQwkzIH2pCCCGEEEIIIYQQZsJajf4USWdFTlvJBNEr1zTpvcmy7Lhd3+T/lDCbrJLnMIPMvn37Vt5rbKEwiRd35KZclRku3nvvvVa+ceNGK5u1oyIL347MXr12iSk2vMr1lwD7BfuYvUPL+mTPbX3epHyWsYdU5I20OVDCzMwvJqs064xZw2i54nHG0zqJIu1YlJb2ZmsivZm3KljssEyZu/WVSnYBG2etDibbrVjD5oS1a+98t91sKsNe73UqY7wdZ2xRmr3OPkx5N+OU82OvxcDeMeds2jdo2eDxmzdvtnJvRp8Km7JKVSTfS6BirzRZusWyWUvtuK3jSEXOvyn7O39r6wdaC7netMyJlsFp/Lz2DpiNlHO/rY8Zy5yz2RaMfc73lknQ5vveDGukd+6z3y5tjfpJY4rdza5jW2dYH6ysNxhDXG8Pw9ZvQxvXLBYqc2XF7lSxPk2xoW7Ht2TFGmnv1YiiJoQQQgghhBBCCGEm5A81IYQQQgghhBBCCDNhrfWpNxtALxVZUK/EryK3J70ybMvucurUqVZ+8MEHW5lyS9qPbt261cq0clDmOa4D60p7AuXgFUkrj1My2mt32lSmkLmxBGl3JWOFSSWNilXQ+pdZVRgjlZiixJoZ0x566KFWPnbsWCszXtjHaYswa5g9C+vM31JSPZYrmiS7N4MIMVl4L1OsqqwzxxxaOXh9O27yTrNWWeasuyXrk52/3WPPpuS9lfOt75utw9qK/c4yX4xl2+Tee+9tZY4LFYsBsbagdYLj0Z49e1qZ6wCuD775zW+2MsemXqZYk6bYo3qtHzsN+56NSZUsc722hYoFtvLbyjw+xWJplnrGINuE1if+lv19nRXa/s+yO1kfY9y9++67rczYZ50eeOCBlXWoZDGrjHF2vtFrtzR2KsvgJljK90GFTX07W5uYtdCwMYfzJte3wzAM999/fyu//fbbrcysb73bkVTqZzYrUrEJ9/ahTfW57bAozn9mDSGEEEIIIYQQQviEkD/UhBBCCCGEEEIIIcyEtdan7cjgUMmCUZHx9kpG7Ryrj13fZJ+WQYLSLZ5P69Ojjz562/uO/49yMu6Qz2dgZine74MPPmjlDz/8sJVpoaow5d1sh8ysVxq6BIuTQWsI+xjLlgWpYomq2J2sn5tdphKbtCYcPXp0ZfnQoUMrr8l7sV/zXibbpP3QMnTwuXid8f0oGSe9/fNOypgr47iNlWYPW2cV+wj244rcfyzPXSq9cuUKlawLvef32uZYZiyTSmY6wv7Fedbk3+PnNVvilPHfnpN2J45TzDLDMi0bXB9ULH7W7hU70hSb0nZc805hc2JvVsnKdWxeNmuVZQGakpGyd5zhfblO5NqQ60qewzmRdkD+dtyvOZ7TmlQZC4jZZlk/jjtcKzAeKxlbKtmgbK1emWenbNnQe07YHJV5tvLNZOugynxnYz/Ppx2QmdrG8zXj2azolWxzlT5v42kla+xO9fPeNfOU79/5z6whhBBCCCGEEEIInxDyh5oQQgghhBBCCCGEmbDW+lTZxXxKhh+7jkmHjIqMqGKDsrLVgXJLyjspIaO0k3LQvXv3tjJ3uGd5DKVvlG5SvkZ5J+9NCRmtGZSxWhvZzva9u3lXjpPe3fKnZK9YGuwnJnes9HnLutMr1zU7FY/b9a1MWwAzpbC/0/bHvs/d7HmOZTkz21/FVjb+P0qpORaY5aPCHPqqyb/NpsRzOPZV7AS9svM5UZG4TskEUrnvpjL/9NaT4xKtDGY5YhxUsp/xfM6B6/qXxeMUqw7Htd27d7cyM9Xt27dvZV0tS+Om4PNXsq31ruFsfF+C9Wm7LYeVjECVtqxYArcbxrJlJGNc83yz5jMOxr+xccTa1+xOltWGsc8yxweumS1TKpmS+bRynEzJIDiH9cPt2JQVdw7YOGDjca9tyqxI9luez3nZLP/DsNUiZTZ2e088x74NKnMQ2Y6tM7abyt8XKs8y/5k1hBBCCCGEEEII4RNC/lATQgghhBBCCCGEMBO2LetT73WmSJ96r99rx6FEi7Kx+++//7b3ouyLcsuKjG1d9grLEEBpKSWnzPrE3bxZrsg7K7viW50rxytMsQ1Udl23dpgTlAZXrAHW3pVsFBXriWVHos3OfstnsQw/fBbGlGWzosXJMrX94i/+4srfWpaod955p5Vv3ry55RlM2s5nq8hBlyLvtHpOkez3ZuCbKyZXnpKxZVM2qCnZoMxWyb7MuYyyal6TsTzOnrbqvpWsbbQTjW2MNqZsKvMRr0m7Jo/z+d96661W3lSGuF56s3X22lnnSm9GFZPqE8v0ZDZQu/6mxr8p2cx4X86h7Kc2Jlgd1tnlbY1SWTeavcrGGs73XA8fPHiwlWmD4lhjayzWp2IztPOnjNfG3TKHzs0G1WtTqtj8K9mNevuLzcuMg3VbR/TGeYVKG/VmE54bvX83qXxvzn9mDSGEEEIIIYQQQviEkD/UhBBCCCGEEEIIIcyEtdan3ow6vZKwigyq11pVydzUa8fhb/fs2dPKR48ebeVHHnmklbnTvNk3Pvjgg5XHTT45xmS1lt2JMlazPpnUjbI5k6j1ZtUyKv2DVOTWFSld7w7kO03lmaZkxKq0t9mdLCMQsyhY9gbaFihn/uEPf9h1HdbhzTffXPkslZ3zP/zww1ambWr8W9o8WH7vvfda2aSoJotfIjYOWFYtwvapZK5ZGr2y7U3F7JRzbFw06y6tP8yGxHmQccqYsj7CPsVzeB3OueO2NQvSFIsaLY3MSEfrBNuCVknOuRzjzKqwKVt47/qscq8lzJVkyjs324KNTxWbC8u7du1q5evXr7cy+3xv9qEp8L5cS5qdl23CNS2Pj7Oamq2a51l/s8yJzGRqdmPGLOfoQ4cOtTLnfrO0VWxsFSoxVfk+qVj15soUi679druz6pGKPYh9kJkK7XvOrm/3snazrE2swzieuFUH53jLsNZr9+K9uaZn2dbGS18n99Z/WZEcQgghhBBCCCGEcBeTP9SEEEIIIYQQQgghzITba////2yHbNasJ1OyTU3JBkV4nDJMyrlpcTAJqGVEuXHjRiufOnWqlU2iNr6WyVIpq2Z2CUqvKTenzGxTkuaKDLtX+r8du+LfSbnkprHMRxXZZK982uTGZkkg7F/2W0osWX/aCExuzP7OelK2TNsU24Hxa5JhWiosg9swbI1bZoazLDMmnV9CxrEqJgVnPzBLwKayDOwEFUn2prIl9NKbTcWsT3yHJu3ev39/K1PmzIwrlFFXrCg2PnCOHvcdXov16IX1Y+YMWlb27t172+twPJoi7Z6y3iKMU8syUrF1LGHssmetrD9tzLa52NrJ1opPPvlkKx85cqSVn3/++VamrWeKVa6CWYssU1klg9M4NtlenCtt3qzY/DkWWDYo1unAgQOtfOzYsVamZZrXsQxQvZlrercOqPTRJWfMqdh5Kr/djkyzFSqWKM53nDeIfc8xviw2zW7J9SrXvbatxfgetk1AZX5hPe69995WZtZkwm9Vy2J8N1EZr6OoCSGEEEIIIYQQQpgJ+UNNCCGEEEIIIYQQwkxYa32qSPmmyP16M9SYvM12Xrc6VI4TyqWZyYHSLUq6KBOzTC+W3YbXH2PPz2emrYm72V+9erWVTdLZu4M3qdiITKpr1+ktk95sYUvL+mR9wWTClSw6lDpWpMsm2+d1rMzzKW+k7JP2pX379rWyZX7hcdoiaL/icWZC4315DtuKx8dWL7YLbREcO8ziVdnxf+nYM/LdmxWhkuljTkwZnzaVXbEX9nPaDth/zXZgcy5tg1auyN1tbGEdrP7jf1vGmgo8n+MRsz9yHcC5mHYnjjV3MuNb73qrsmYy6+JcmWI5tOxFXNcxXji2WdYUXv8//sf/2MqMkVdffbWV/8N/+A+t/O6777Zyb6avSl9gPc2uSmxeZvmee+7Z8hs+A8cR2oftfmxfex/cqsAyrPG9njx5spVfeeWVVuZa2izcZg+0Od3Ww73fNsTWakuwJdp7rlhiK2N575YM2zGesW/SgkQbFNelb7/9diszVmzdZHXmvRhbNl8Nw9b16pTMzZx/uTamNdrOp036brI+9VrZo6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTChnfTJ6Mw/Y8YqcqpKZgudMkRVTonbw4MFWfvDBB1vZbErWJrROUCJr2RXWZX1i/fgb2jx4DqVylqHH7AabylximLyzIqsjn6SsTyZ35HGziZiVxLIZ2Dl2vtmaKllHbHd6SjQtI8TY8rCqnpa5hXJQnsM6UF49lnCz3izzPEpaCZ+f7XU3YeOyxSzPWZeZYO5sSn7eO7b12lYYO+zztGCY1YJ9llkqOM/QJmyxUpED27jHOoxjiH2J97NMFsSyP1rGCs7rlK1/8MEHrUwb1JQ+McViTCz7TGWetaw3c6XSZjaH8v0TtgffP/sX12V2PvsmLTvM9MQ5i33KxtfeDI+Ev+X4ULHn2nzK48Ow9ZkrdlDWie+DdkKOWbRL0Gpx8eLFVmZb8z098cQTK69/7dq1VuacXtl2oWJFm5IJsbcfzInK92BlDVmZRzaVMc/Or9yX8ywzj5k1llsBsF9zvrPvJNu+Y52l0dZgpLJFAr97LWsy70ULlq3p7yZifQohhBBCCCGEEEJYEPlDTQghhBBCCCGEEMJMWKv9rci3zHa0qd31K9Iq2/GbMsZeOTClXnv37m1lStR4DiWphHWj7PPQoUO3rcNYrmgSUMrDKIOjnIzyWUrSKzaEivSQbMo6ZH1iirRxStaxOUHJrbW3ZUXplX+bhNbsTmY5rGT1oZzZMjpR8s3noryTv71x40YrU/Zpz8g6UGLK42P7IC1OJg1nXSvZbnrjbonYO+jNMDQnNmUVrYxhU8Zs9kH23+PHj7cyrb4vvvhiKzMGGWucc2n9MasvZdGMr8p7Zh3WybTNcsx509qRdaVU+4EHHmhljilmfeF4beMm2ZTVza5ZscZNyZS5NKZk3WH/+vSnP93KXO9dvny5ldnvOI+wT1lmIcaXrYF5zpR3aOsBs9SzzuxrtDeNsTV6ZS1itg1e0+Z7ruOZ0Yn2KK77H3744ZV1YDZVWlYq3xtTMtfavGK/XcK8Sexbb0rGOVtzWl+r1I1U5mLLQEi7HscNxhczINEGZf3C1rSMD24pMN4qge1r34mVeZP34HqC4x2/TyuZZZdOZSsPEkVNCCGEEEIIIYQQwkzIH2pCCCGEEEIIIYQQZsJa61Ov1GiKlK+yy7fJCU0CaTK5yq71PN9kcryOWVFYpqSNclDK4Uxiuq5+JnW9efPmynvwtyybJLtiXyEVWVelf5DKfY270UJiO8NPkdVbPzc7nVlSKjFrclNajSgLtz5r9i7KmRmbvCb7kWW5YpxSProuIxul8JS0UobN91fJBHE30Wu9Y/uYzXWubIeFpff8Xlk4+ynlyezLlbHC7FGWgYLHbY62sd+y6ozrN8X6xExPe/bsWflb1puWS87FrCuZYpmryNF77T2VzFtLsAkTG2PMMsCy9T3a3o8cOdLKhw8fXnn+448/vvK+nF94nHOWZVMiU2zc9oxci3KOZl+2dmP9x2s9y3LI6zJOeW+zSPA4r2+xT0sjxyluT8BMNGxTZrmj1dOeecp80Ds39G73MCcsqy/LjBebLypjXu9ve6lkYiJcP3L+pYXo+vXrrVyxJZnd2NbPw7A1FnozJHKcYqYnljlu2pYKlW/1pWD9oNK2UdSEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJpSzPlVkub2ZeUjFpkGJUG/mpl47lVmr+IyUTFrGCstowx3l7fxxu9n/sX62MzjLlffam/2h0icMO8dsDlOyUG2HXHgnMPk8qdjL2MaWccmsRlOkodZHKFVmmXJNypbN9sXf0gbF82nNYJnXJ7Q+UPI8DFtlrJSossx3wF3u70ZrXpWKBcNsaXNlU3bP7cDam7HPPkvpNWXLFy9ebGXGmtkJeX1mmOI8yBg0aTqtUpzfLXvUMGydp2lHojzbbBS8Fp//4MGDrUwbFOdfPs8Pf/jDldc3eucjO78309OULGJLGLtsjVrBbD68zqVLl1rZ3j9jhxaZP/7jP27lK1eutPKzzz7bypx3Kmtmy5hD7P2b1dfswFYHjg/juZXPzzKtRpxbK3ZowuNme+b1OcczQw0tbXwGWhr5jvnMUzIxVd5Z7zueK71jjNmgOEdwDrLMe8S+xSrfOobV2eYvswBzXratOWze5FzH+7KtaCscn1f5vmOZY4TN2Xxn/K1ZK5fQh9dh/dUscFt+uy01CiGEEEIIIYQQQgjd5A81IYQQQgghhBBCCDPh9tsN34ZKRiAer2Rfsh3c7ThlRMxMYXYGyirNykGpGOWQPJ8yLkrpTLZvcksepzzTZKXje9NGYVmjTpw40crMOENpmVlHrI0qtqZeyWDFHtArWa6cv7Qd8vneLJNFJSsT5b2UKLJPvfXWW63MflHJFjIlK42NJ4xNyo15Pvs444h1s4wzlsGJsnOOCcOw1V5Fu4hlr7h27dqwiiX0ve3Cnr03y9vS6LWZbiqTlGVbY5lzAvsv51nGBa/JuYxwzGHcMYY4zjCWGfv87bqsgCYrZ9myRfIcy7jDGOeag5k5+AzbYXvrHWcrmTh7swbulJ2vh95MT2aRYP/k+6dN6emnn25lZgTiuuzdd99t5VdffbWVX3vttVa2+DJ7Pqn0i0qmGFoZeJyxVrFvjPsOY6qSIZJtzTHInsesUoTjGs/n8/CdMVsNrZs2JpJKBqhe+9KmMv/tNJV5iliWoePHj7cy+96FCxdameN0b2ahKd8fFgu2RiWMKcu6SGx8YL8m43awzLIWp7ZG51qZMWjfLeuyxC2NSqanWJ9CCCGEEEIIIYQQFkT+UBNCCCGEEEIIIYQwEz6W9clk2LYTtUl+KlYFk1bxfF6T2Y1YH0q/rA68/q5du1aWmUGCEnE+L49TDmm735vsayxFo+SS/8esE2fOnGnlw4cPt/I777yz8jjbkXJNtlevfHZKBqjejAWV6xi9Nq45YdY0sz6ZNY+yu6eeeqqVz507t/Kcq1evtjJtR7Y7e+Ud2jtn/WnFMgkzr8/2oezcMtRwTLBMEZSMUrI+DFvjnOMXf8P2mpIx65OA2Uf5/uZKb5Ye0ms36cUsBZyzmLlo3759rcy5j5mbGAu8Pi3GnFtoDWTcMZMS5yVaong+zzGbxjBsjUHaHS0TBuGcy7YwGxQl9Rw7NjV/bcc8ayxtTqxgNh97VrMtEI5P7OfMCMT4oq2J2Z04tvE67NtcN9oakvWZklHQ5ke2A2OQa2/GDeOA5w/D1ixsXJdyzcHfmA2Scy7bjusStgXHCMusw3UDn4fX5NqbawCOidZvtnveX5ptpDK2EfbJQ4cOtfJnPvOZVjZbyeXLl1uZa0vL1lWpW2VOt+vYVh72TW3HzU7EazJurF+P72Hfg1Yn+2bmuoFwjLBtHZZIJYveui1OPuLum4lDCCGEEEIIIYQQFkr+UBNCCCGEEEIIIYQwE9Zan0xGZRKvSkYnSg4pY6QkmfIolimPojXDJFqsg9klKJ+jBIlyLdvNnbIxtgnldrbrvNWN54/luGw71ptSNmYaYLaeL3/5yyuvw7LJdk32NsW+UdnBvlf21msPWLK026xM1mZmj2IfZp8/efLkyt+avcgyvFTeoVkwTM5MeTLl38Ssjqwz49r6gkm+OV4Nw1apM/+Pv+GzcSd8ZofZlMVlKVRkxHwHS2ufKdaDitx6U5Yai3HOv4yX3bt3tzJl5HYd3pfX4fm8po0tFdvjOJY5P/J5OI5Y9hlmEOGYyHmT1izGMq2O1i6kYney4xUJfiVTiDEl69ic6F2/VDKq8Bzaf7iG4nH2f84JlSyKFguVelbgWMt5jPMVz7HsRqwnn51Wp2Go9VtaKK2ujHleh+MI1zpmobXMr7a+ZxsdO3aslfnubW1k9Gb+u1ti07ahsPbgmGoWN64PmaGLfYprRcsIPOVbpNJP2Uc4L/Ebmf23kiXK7FHss+uyJbJNLQOUZUikvfnAgQOtzLjj2Mf1M63XvRm55gz7AfulZeEiy/1SDSGEEEIIIYQQQrjLyB9qQgghhBBCCCGEEGZC2fpkEiTKqyh9orTHMjqZ7NNsBJSo8V6WsYF1qFhF+Cy0gfD6lM8dOXJk5XGTorEOFbvWWPLH3/D/KJ2iJJs70rNNKefm+ZYdxzJZVOSAJvWbskP6dmDZhuYK34+VzUbH/nbhwoVWZlYTxintAjxOaT8l0BVZscGxghJIs2hRnmzyTEqvKxnWLPsGGT+jZdqwMYVtapmhPglYjJsNYAlZAGycs/Hb4sKkyxX7Uq8VwiyNnEM5D3Ju4XHGAaXTLJstkfYKxqxlaKHl6C/+4i9a2TJLDMNW2wnjjr/hPZiJyrJOUi5P61Mle0WvZakic+c7q1h9WDZLNuu/ZKtFr12MbVDJOMe+zfnLshhZG/M4+13vGEIq4wxjjZYFWhmsnpaJ8uLFiyuPD8PW+XX//v2tzLbjdwJ58MEHV16X8zrfh2WTNWst52uOd5YJjN8AXK9w/bypdexOrZO3k8q3gmUy5RhMex3He84vp0+fXnkO18Psz71tbNl+eC/GDo/bXGRzl7WVWZgJ23xsfarYjG3soA2Q3/B8T4xrxsg4M9zSsGyC7AeVTE8kipoQQgghhBBCCCGEmZA/1IQQQgghhBBCCCHMhI+V9cmsIZT5UCr4yiuvtDLlhJQGUx71/vvvtzJ3T6e8mfeiRI31pMyKUiPW33ZzJyYpt928KQ1jnXk+5ZmUsbFNaOsYhq0yUdaVv+G1+PyU/b3zzjut/PDDD7cy5aas69mzZ1ee05sNyjLr9GbB6D2n8tspGax2ApOiVySx/C1jjXH6xBNPtDLljbt27WrlN998s5UZp2ajsHdltgAe530pw+ZxxhTl/zyHkmSOOZZ5jXFAqeZYFsrfUALK45Ud/E3+u4Q+ORWTjPJdLsH6RCrZOazM52Z/4xjP/sV5wOT/Vh/OcZxn+Fuz2BJeh/2dcnRmT2Ic8BkZ4yyzbuwjtPaOZd5mF+F5tFGwj9HOwPtxbmXWK9qHWdfe8dqoWNd6+xnpzSZjltq5Ymtaez8VG7TNd+yT1vaWEWhTmX8q742xfOjQoVZ+6KGHWplrUZa5rmS2GsswNt6mwOKOcFwzK6bNm3x/PN/ai+/DMsFxzOKagN88tHEx++p2zF93iw2q8q1gWxRwHfvaa6+1MvsLx3ubv2i5tXnQ6lzBtrawbTEsTtkHeQ77F5+dfZnf4LTaM87G/7Z3Y1ZBbqPAMYL34/qAbW33nRuVWOO7ZDvYezWiqAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMWGt9ojyHskHKqyj/+dKXvtTKTz31VCv/7u/+bitT/kMpGq9p0qrdu3e3MqVSrBulx/xtRcZFOxFlXNxtm+cz64RlvzLrBGXklMtSojbe7Z73oKWKxymtY/vyfGZ94j0++9nPtrJJ61566aVWXieb+4iKfHpT9qXe45a9YAmZLMzKZLvimzzS5IeUTT722GOtTIsT3z8lo5R88/q98mzKkHlN9lk+L5+R/Z3nMO5Mtm/yZFqlxv2d45rZGnmc57PM9uU9lpCJbBjcAkrsuM03ZAnWp4rdpNdSwX5kmYhoaaUUnPFiNmHWh7Ye1pkWwkceeaSVv/71r7cy453X533Zr/meOebweWl94vXN6jWGbcS5nM/DNuU9WCfej2Ml27cyjkzJ7mRya85fXEPQVsk5nWsXe/dcP7BNrK2XMG8a1vY2b9oa1ca/7Zbw99rEGXeML9qdaIvns9v8y77D/sI5jXPd+Dxah4jZh4mtgRmzrLdZa3gdxs7hw4dbmese2hZ4nBlhaSm37QI2xZIzspnlx9bsLHM8vnr1aitzDPv0pz/dyhzv+a1n9+I1ubbs3bbBMrhxbck5h9+SnBMtK7FZq3hNy0g1zkRkNkP+nv3frE9mDeV4we8HWxvdSVufjemV9Zxtp8Jxlt8z69YurQ6VSocQQgghhBBCCCGE7Sd/qAkhhBBCCCGEEEKYCWutT5QXUU5LaQ+lZb/8y7/cyr/2a7+28nzKKSmJpPTr4sWLrUyJLqXdlKIx+4zt2E+ZmWXQ4E7tlCyNM7x8BKWUlGSarJJQPkfJ2brMCfyNSbNYV8syY1Jw213fJL8vvvhiK/NdUt5m72NTGZ02JYeb8+7it8PaoCLZY3+jXYJ9jfJGykfZv2g55FhBObBZAUwiTjkr72V2KrMdMK5t53/2TcowGR8mux0Gt/6xrS0eOfZRGm474c/B/mOZwPju2YfYD2wc4PtgmzAzCOeAuVKxPNgcYX3M7LHsR5yzOKcw6wjrQ8mtZdB4/fXXW5nvgdeh5JlzIutTsY2wzAwyvK+tPVifsT2CfZX1MCk5YZ9kDPIelDFbppDtiFmzsrBP0IJBWwvHOHLt2rVWZv15nP3DMunMFVsTTsmiWMmu2MumMnTZcY4hHL85V1bWgGZrYN8xm/743pWsT/w972frXt6b493Y5rHqXox9ywDF63MMYTvS0sW6sf7bwdJsUDZ+2FYbZt3lGMxvw9OnT7cy3y3XXOwXXPudOXOmlZlViu/T1jVmn7RvI9aB/Y7xyDrzHF6T84BhWbTGz2BzDevKWLYtCdjnuSakDapiGbb+3Jstz2xKbDu2tW2jwL9HcJxhm/BvH1xXVWzwUdSEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJpSzPpnckRLaP/iDP2hlypJfffXVVqacjDIoSmuvX7/eyh988EErW6YFk58R2wGbEmvuVM0dmk0WzXuxDnxGSkBZf0rG2La8zlgmSskZ5VV8HrYp24jns8xrssz3d+LEiZXPY3YUSqNtF3LDLAEm552SWaEiF54rm8pqxTL7xZUrV1r55MmTrcx+wZ3zn3zyyVbmO7906VIrs/9bPDKz2zhDxEdQ6sl7mWSSMkazN1LybNYwMo5NSmkpiWRM8fnZjrw3n5/1u3z5citTJrrdfdVsorS2MivY448/3spf+cpXWvlb3/pWK9MqUrkvsWxQc6KS8aFitbCx9tatW61MaS3nHc5ZvO+NGzdamfHO+1LOb/My5fwHDhxoZcuARGhfY2zavMlnsYxMfEbG2TBs7Uv8ja0D+AwWv5xnK5JsUhm7K/OgZe+gVYxrGstcY5lFCK3NZrVeAr0WkEoGt4rVnVRk+JVzpmR6orX00KFDrcx1L/uFZXMz6yXnZfY1xtkwbP1+2Lt3bytzjGM88t4cIxiPLDNmK98GvJdlUrPsrZY57oknnmhlzn3c1mG7WfKa1uZNsy6yzO9H2qD4TcO1G+c1zkfWtzk/WjYoXp9l24KC8xKf0a5j2ZNtXGfdzOo1DFv7PO9nNlvGNtuI78Di17K5TRlbDbOA0ibMzMjsK4xfe0azBnNM45p/3XYnHxFFTQghhBBCCCGEEMJMyB9qQgghhBBCCCGEEGZCOesTJVKWpYjnUwZFCRbPYTaKCxcutPLLL7+88vqU/FMSZVYbk+hSKnb06NFWpmSYElD+ltekfInSMtuBnjJMy6Jl2RiGYaskjthO2jxOqatJrdh2rB+l55RScxdrk6qabJVUJL9mvavIfytyOLMizBWT8Vo8VjJQ8LeU8nFHc8YLpZLMKEIpNfsjZaI8Tnkgs0rx+ux3jDXLzkYZsmVjMBsN44bSTp5PKegYxhrrx+dhv+U9KJM2uSmtpLSv9GYZsR3v2V7Hjh1rZcpBn3766VbmuGRZefiMlomDMc6+aOPvXLEsFb02TbPWMsMa25jSXc5flHOzXTnX2HjCOOX8xWdk7PNd0S5TsSmxv1t8WNYeu/6qf6+6n2WD4705LnDNYZlcpswplWxhFr9m72J9uIYzKyKtbjavVKync8IsEjZXVjIV9lKxeFSsT5Vrmn2HNjiWab21+/IcznWMG44bjK2xVY5zis0jHKc497MPmw2GmI2XMct1D+cptl3FRsIx2r4x2EZLWHNuN5Xxo7Ltgb1P2sfZ79iHCddBXNOyX5g93bKAErMBWV/gOayzWZ8Yp4wt9lOO3+PvQsaz2aq5LufamvMm3wEZW5RX0Wv1tHGT62e+M66ZuKal3YnPwjZl5ia+D64N2A9o+eZ3cbI+hRBCCCGEEEIIISyI/KEmhBBCCCGEEEIIYSastT7Zjv6URFFmRukT7RKUBlMeRtk7z6e0jNfn+ZRpmXSIUlLKnWjLoiyccnGew3uZpJMyLkojKSumJIptRVklJVrcpXz8PJRg8T2xfmYx4P3sHMrj2C58TmYD4rNxN3te0zJA9cp5ezM3GL0Wqjlhcn4er2Q5IOznlOm99NJLK69P+Sj7CGWSn/nMZ1r5V37lV1qZ/YW2OUopbZd7lin15H3NJsn44vNathqTNrNfD8PWuDCZJeWRrDelpIxNG4MYs5RY8zix5+d9P/e5z7Uy7U7/7J/9s5XXZ0auN954Y+W9zp8/38omBTZbE9vaLB5zxexOUzIYMJZpBaCdkPMO5fZ8V5yLOeeaDYTzL+OU8yb7tWVoIrwmYVzb++ez8zo8f2wRZkwRy7xYsVLzHpRGm32jMpf1ZhiybHnMwsU2tXbgWM/+xLWLjY8Vm9CS2VQs99q7p2AZFTkOMFscY5ljiMUvx2CWOT+wT3GcoYVkGLb2K853lkGH8W+ZLC1rHS1eFgtcN7CfWwZKy2LLZ2Fbs3zu3LmV19wOlrC+nZIxr2KD4vzFfkRrjq1j2RfYh22c5tjJcZHrL7M6cq3E+GAsc1xntjRek32Q36q2hhpn/OO/OUbwOTnX0NbHeZNliy/GMsuVbzTLBMa2tuzOp0+fbmVuO8BnYTvQDsx3YxZxfidwXOod66OoCSGEEEIIIYQQQpgJ+UNNCCGEEEIIIYQQwkxYa32iZIkSMitT4khZE6VclCZRHma7rZv1qZJtgFIxSrcogeRxSt14fUrmKFmi9Il1o2WJbULZF6WUfEZKvSgfHdePcmtKwm7cuNHKJl3lPVgnvidekzI7yuYopzt16lQrM5uXvVeTTFcyIlQwe4/Jl5cgDSWWucva0qwNZkejfY39k32KNgfKL3k+JYSWOY51o8yQdaOMkcfNrse6mS3CrGGURTPmLLPKuH58BsYOZbUV6xPvzbGS9lGzgHKcpS2C7+mpp55q5c9//vMr60PJKGWfHONYH+6Ez7GFz8u2o0yU8cg+ZHLWuVIZe0jFIsP2Y9twjjDJN9ubNiWLQR63sYJSX/ZT9hfGptmU7D2b9YnzHvsOzx9nZLMsF5aFzTLlMNY491mWN17HxuveTGC8po0tHHMZy4TPy/fEcebKlSutbBnCzNIzVypZY6ac32t3szVIr8XDrs8+zj5imW4qGcxYZ47xXDNcunTptucPw1abLS2HjG3ONTzfLCVclxNe06wZPIfPz7i2bLIWm2xrjl8Vm/onicr40RuzbFf2z7Nnz7ayZS6ztR/XUJaZkedzrmSfZSyw7/Pb0NarvD7jmvMVj9v307o5ivfmvM71La18rBPnFMaU2WZZb5uvK+OprXX4fcosldy+gZY2zu/8hmV9OFfaWMnjZluuWIajqAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMWKsjNyk6LTKU7TA7DOWKjz/+eCtTlsaMJZSBmR2DZbNyUAZFORUtTpRrUWZFKEWjdI1SsUcffbSVKfWiBI42ILM7VbJfjWG9eT+2BSVnttu2ZRNh+1IOyOtTGkg5INuF75hyWJN79UqNjSkZo5Yg4abUl8/E4+xXlewV1t7sRxcvXmzlM2fOrLwv44tjhWVaYB1YZ/YR9lnGTkUuTpkh68O4piyW/Z3WAZPRjq9rGdYop2R7caxhTPF87khPC5JZR3gdyj4PHjzYyg8//HArM0sQf8vn4pj+3HPPtfJrr73WyjYuUfJt2Xb4niivXWdrmSMV+6ZZFK1scx/fD22vHO8pgWZ/Zh80+y3vZRJmSp75ntl/bQ5lHfhueZz9wuY6nrMuMxj/z8ZQs44wrnk/SqNPnDjRypVMSYbZY1h/WhopTec7oPyb12S/oYSbfYjrAbNuLc0yTHptRHbcrlNpmynWp8oa2NZoXIvavMz5juMx+w7Ltp5nfJgVbxi2jgtcN3MdzPuZxcXi2tY0Zv3jOsa+fxgXnKf4LBwHOc9yvGN9NrX+XFps9s6bxNa0toakZZhbW9A2amsWvk/2TY7HZhXkvfjOWeYcx7jj2M+2Yn2I2bhsThtnfeLvOV6wHfnMPN+sxGYr5jzFudXmTesrfE+MX1omue5lBiiuk9ifuD6ntf/ChQutbN/Otv2ErbeMKGpCCCGEEEIIIYQQZkL+UBNCCCGEEEIIIYQwE8pZnyhZMvklZV2Ub1G+RAsSs4Xw/Ir9wXaDpsyMMktKnCwjDK9vGZ0oH6U0jnKya9euDatg3SizMovKGNbVMlRZtgxKzymVo4yT16Fcle/GMvfweSgz4315Hcpk+fy9VjeTDlekzNanl2B9Mim6ZQ+o2J3YNmY/5Ls6f/58KzOTGvsF447vnxJTyj7NusV+av3RssZQYmm731sGHJMujiW4rDfvx3bkuMN68N58Tkpd2b6/9mu/1sqUiVpWPFqfeF/ucs+xjHCM/r//9/+2Mm2ulP9aZjo+I+9LO6S9J5aXlvWpMiZV7BKWIcRik+MD38/NmzdbmfJbYlmf2PaMQcukxPdJWfTYNrjqmryOZc3gM7KvjfsI44iWCtaPbcc1CuvN+nF9wLjmbymv53xq85rJ+vnuWWfKzjmeUsLOdmQd2A/OnTvXypbtj1RsP3PF2ruy1ujN5kZ6bSiVMcHmdPZ/rvW4RjMbLvu4vWfOs+xHjC1aiHjf8bPQ8sBrmW2QfdvWMTzO8zlGWDYdnm82Dfs2sEy0LLMtaM3glgef1AxQFkcWj6QSX+xH/Fbl+GdZN2kt5fxoWXBZH65vzcbLOY7nsw5mp7O5iHXm+bY+HbetZfvlvENLFM+3PszrmM2f1+HaxcZowvZlW1hWRN6X7ct1OLd7oM2f37C9c2WlT5MoakIIIYQQQgghhBBmQv5QE0IIIYQQQgghhDAT1urITfZvu62zbDJh2iVMPm2ywYr9xTK2sEx5FGWftgs324G/pWyT0idKOCntp+TKbFzcYXqc9amS0YfyLZNjcYdqns9nZpuyrjyfUlKWKf+2LBgvvPBCK1NubRnFtkN2bH1oCVh9zSJhsWzyYb5nk+/xXXE3dMob2RcOHDiw8jrj3eZX1cHeM+WTlk3ILFGUPTKeGDeWcYWy0mFw2SfHCP6eklHGNc9nXXk+3wfHNWZs4b0Y74QSWD7z2bNnW/krX/lKKz/zzDOtzFjmu+FYYVY3/pbvj+1g/dssf3OiEpsm3a1kfiEV+wbfrUmSbby37ISV2GQfNPm3ZbXgNa0OZlEc2/jMDkx7Bp+H9WOMmD2SMbt///5WZj/nvTjHcwwllsGN4+mRI0damXJ0Pj/fJefZV155pZU5btj8a/bypWWWmWJl6s3otN3YO2FMcV6yzGjsa+yz7Au0DlhWFvYvxgrH9XFsco1rWRVZJ9oNbCyzDDqWbY7X4TNzfWB9gufzvrb24jxOCzBtkrzOpphDf70dFUu+UcmWyOPsF8yiya0tOKaalZ7rQMs8Rosb5y/LdsqY4Nxi6zXei7Fi37lmbR6vw9kPLZMgn41jDa1crCvvbd+MnI/YFnw2wrjm+2CGU7MJW8YsxiNtibTJsQ8Rs+2TXpvwsr5OQwghhBBCCCGEEO5i8oeaEEIIIYQQQgghhJlQzvpkcjKTwVLixOtYZoopEiFKvCh9ogzZLCEmrWI9CeValhHDpGsmd6dVyjLdDMNWKRqlobaDPY8z4wPrYb9lPVi2ncopgaNEj9Kyhx56qJUp56Y9jM9IuTiPs33NCmGybZMLLyFjhVGRhvZmd7LYZLuaXYjvzaT0tls+78vr075jlkn2O/YR6+8/+tGPWpnxZO3A42NborUFf0PZs1mEzLbAsYljCscdtinLfGbWm++VMfjf/tt/a+XvfOc7rcwYtHgx25hl+mH/YL+kDJfvaQkZMSrWwgqVDBeV61eyJRg2PrAvsO/bfEJ5svVNy17I+DD7r40n43uYxJztwntTzs05y8ZTSqz5PMwywuw4tHLY+EgJ98mTJ1uZMn0+M/sEr/+DH/yglWlvZHzZvGn0nr/TbCrrU2+GyYo1o0LFZsi+wDnH6sb4YkzwmoQxyLne1vBch4/rz/mCc7w9p2Wo4vm0FrJOvBd/y9hkzLI+nHN5TY6DlUw0HFsee+yxVmZ2RbMVV+i1zi6BUlYc6XvsL3w/9p7ffPPNVqYdh23Jbx3OCTY/0GrDeZDjLq/Pfmq2Ic5Ldo6db2ur8VYZfAb2ST4/4XhhWU0ZR1zf8vmZKZYWJMsOzHbnWMNMqXyX/E4gHMteffXVVv7e977XyvxWr1iDK1TOj6ImhBBCCCGEEEIIYSbkDzUhhBBCCCGEEEIIM2Gt9cl2pTYsU4zZAirSIctEY7vcU/pESZRJrCmBpAyf9aRszDJiUBrGZ6G0jHW2Xd4pv6Jsb3xvSvQo5WKZ9eZz8h4mMbdnYBtRJstrUm7LOtCWRpkcd79nG/EZ2V7MMGT2qErGKNulfQlYjFR2zjeJrsm8zQJpdgZmImJ92Hf4W/YR1s3sSOx3NiawPhwHiGWWsXGDfWQsKeezsa9ybLId+W1nfz6n7fLP5+R7sqxXllnjq1/9aiszu1NFjl7JqlbJ2EfMeleZh3YaswNXMrJV2pJU5s2K1YLH2cbss2Z1tXGAfbmScYVzEeOGFoFr1661MuOM9Rzb4/hsjDVey94N68FnNosfZe4c1/jMtCNdvHixlRnvHINOnz7dyrRBWcYK1u3FF19sZdqdaA/pzUA2t+xHH5deu9OmskFVrtlrrTLrk2XS41qJ6zuzI5hl2NbnjLN11kvbeoBrUcuQyHNYtrU768F5jVZEjnFsLz6zWa54jtkr2C7M2nb06NFW5rp3CVkON8UUq2AlE52N8eyTHJtpRzPrEK3qPMfuyzhlX+BajLHJmDArYiWuK1mCx9e3fs5tNBibltGJ9+a8xnpw3uR92f+ZccmyanF7DVqfeA7HMrbXlStXWvnP/uzPWplZn6xNeufBXotiFDUhhBBCCCGEEEIIMyF/qAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMWLsxB/1htn8LoWeLXi5Lq2WeekuhaF5q2+eAdaYXjf5E89vanjY8hx5Gev3o4aMnj3Uwbxzbavy8lsKNe4Kw3R944IGVx3ld1tX8wjxu6dLoq2WKUqZaMz8jn8vSn/M69DPS4//GG2+0Mveusfdn+7AsAfOSV551SqzxXvTVmkecMcjzWU/GCJ/LUs7a9dl3bK8mPhf7OM/ndTgOrIPX5f3oeefzWEpjXoftwv7MeOd1eJzXpKeabffd7363lb/2ta+1Mv37lTHXyrYvkvl8bb8DvuMlxKml5+5NjV3ZE8OOV/YUsbZnH+HYz70cOJZznrH90lhmO5innp5y+tE5D7z88ssr68n+Owxb49HSl3Is4PPbXlqMNT4b37f56Hkdm+9szxGOCawbY4rz4HPPPdfKTC06Ze+LJe9LY/siTtmjhlT22ZiSntuuwz7FvsNz2McJ+5HtM8G+bPvFsQ6MCUvnOww+l3PO4t6GTElv78/mb0tpbHvecTzifVk3rmlsrW97o3AMsT00bD3Xy9Ji1uZNi19i35g2/3INxffJbxq+H47H7DtMAc13aHsk2v6FrI/te8R+yrHc9n9jmb+19OLDsDVe+J1o846NEbwu247j1PXr11uZawvuOcs2ZRux3bkvDeOL12Q/YPtyPcz9cPiObS21qbIRRU0IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmwlrrU29KRksVWjleqYOdT+kXJVGWgpJSJkqfmC6NEtATJ06srAPvy7RulJmZpI0SO0rgLJX5+Lr8P5ZZb5Nts96UQ/MZ2Hasqz0PZWmUyFOGThmbWUVMqsh3Qxki5XO8l6UVrqQJ7rUo7ARm2zI7IanIvO1ehFLlW7dutTL7He/Fvsn3Q/kk+xHPp2SS/d3sMmYDYrwzlilVZjxWZfD8N9uF/bMSj+znfK+0l9j5lJ6arYM2y9/7vd9bebw3XW9Fgmzpnw2ewz69hHSlFVtYxVJmcUq247jZoDhXUKrMWGO/rqQrNRsUrX7Hjh1rZcYmLbCUZrNu4/sxLszOTbuiWRgIZdWcKwnrzTgllLZzzOJxezecu3/wgx+0Mq3KjJ2KhNuelyzNUlGhMuZXxrzeVN2kMtZyPrF7sY/bcc4hLPP67Gucrzm38Jq0I9iadBi2xhfX5YxnptxlH2adzArOOvH6tn7m2pUWKq6HOS8zvsy6xTUA53G2HVN18x1Msf0uLTbZN8zaY9i3qtmQbSxk37bvCc6DXJeald5seXxGziGV9Nk859ChQ63M/stn5JxmabtZt2HY2l6cj+w5LVU9MZs044jPfPz48ZVlrg8Ya/w25L34LKz/tWvXWplWats6ozJXVrYC6P07SBQ1IYQQQgghhBBCCDMhf6gJIYQQQgghhBBCmAlrrU9TdhmvXKeSgaciPaVcjZJJSi7tHEq0KGOjrJrSNcrPbty40cqUU1EmxzqY3Yl14w73Fy5cGAglYZRiUrLGuto9TPZJSR+laGwjs51QysV7mcXDZHWUw/EZKWPjDvyU2NKiRukan4v1N4napvr9dmJyuUrmpil2J4tTywxGWwRjh5JeywrHGLRd69k3K8/OmGW/sIxv9ryM6/EzsA+zz1v2KUqdLUMNpau8PvsB6802orzzO9/5TiufP3++lS2up8j3TYJsMnXCtuZvl5D1qYKNN5sqV+zJvdmgaFO4dOlSK1uGNct2wX5ttiGOJ7T1fPrTn25lji2cK/jbcb0ZIyyzT5pVg2MW24XPzzHO5Nz8rVk0LbsJn41zHO1OXDdYXJPe7ESbymC0E1SyH24q1uwd9lrKzLpnNnzakAl/y9jkOpH91OwCXN/yOC19/C3jg7E4/j3ncs79NlZy/q5Y2jlGWKZMth1tJGw7jnG0WZpVjFlQ+Z5s3OSYaJarXpZgg2Ibsy+xbTj+2Thk34+2hrR1I78T2Rf43syCY5nUbJ3JPsK1JJ+LccdvIN6LNmHa2W1+tGyn43+zn/Mb1dZybBfLbGgWaL57lvl9blnu2C62jQDfJbM78dvA7E5mN2U9ba6fYjGOoiaEEEIIIYQQQghhJuQPNSGEEEIIIYQQQggzYa31yawhpCKnteOV31akQ4RSLFpwLFuCXZ9SLEqezRJEWRqlWLQsUM5JKZrZrNbtkM96U4pGCR2fkxJTSt/YRrw+z7f2MnsJ24vXpOSMUjFKBtnPKEW7fPlyK9MGxV2++T5MJtqbyWyumNSzV4pesUFVMEmjSQUpB2X92RcIr0PJM3e8t+xRHBMYpyZbZX0s+9DY+sT+bLYdk5XzOOvNOGLbWbYL3ovP+e1vf7uVv/GNb7SyjY/GlAwoNm5U5MtsqyVYn6zP23GT7W/3mFQZK+w4x1pKrDn/0NbDODp8+HArM444b9KCwDGebcjYZyyPsyWalYnSaLYFbSFm5+A6gOdbdkmW+ZxWB86bHAcox6fd6YUXXlh5jsUaqVifKr9dGtth7Z9iFSW8DvuLZVLjPGAZV8yGzH5ttgP2Qa5pbZxmzLHvj9eM7KtmWWFb8N7WFjYX87esH8uWBZVrUa4/Gb+sM+tgWwHwvrSH8D2NvwHuZtgeXAdZ27CNef7Vq1dbmX2vsqUGz2EcXbx4ceW99u3b18pcc3FOsOyljBf+lsdpMeZ3Huv58MMPtzLnWfY7xi/nSmYbY9sOw9bvUj4zLconT55cWW+ebxZNztM839qIbWpbJLDMNf2bb77Zyq+//norP/fcc63Md1BZo1qWskp2z97vtChqQgghhBBCCCGEEGZC/lATQgghhBBCCCGEMBM2mvWp1+40JWMFMZuSSY/NykM5me1yT9mjSRptZ3Je8+DBgyvrT9kXrz8MnnWCcjeTSlbsCXx+StQqdie7DmVylABWJNmUf/McylApf2Qd2FaVjADsE/aMc8Ji0+Sd9tsp1ie2E/sgy3yHzGZgVkqTGVqWJMpiGYNmkbF3y7rRasFd8Rm/4z7Lfkj5JWOYsck2Mvk05aAmSef5tGMwo9PXvva1VrZMV71MGcdNLk9s5/wlZJbppTeLTq9NbVNUxnhKjCkLNzkwY4XX4Tm85uOPP97KnKMYE4yn8b05XtCmxfinxJoWEd6Pv2WMW4Ybk3Dzvmaz5HqCEvznn3++lTeVHabC3WJ36s36ZEyxG5sdkv3IbBR855X1DvsybRSWLdBsCpZpkfMmf8tr0iY5vhbLBw4caGVaNRgvtCbR5sA4sq0ALAMlx6CzZ8+2Mp+T74NZdmgD4bvhusTmdMLxy7J83Y3zoK3N+M1Fqw7bm/3t93//91uZWybwnVRin/2ItjlekzZe9guuFTnnsJ+yL/CdWxZUrt14HWZkOnXqVCu/+uqrwyps6wu28zBsjWfbGoCxQ2xrA/ZhPqdZnxg7rAOz/bLtWGden+/+zJkzrcx3aVsBmN2pkq2JTInfKGpCCCGEEEIIIYQQZkL+UBNCCCGEEEIIIYQwEz5W1qcpWZl67RiUpVkdKLOi/MzkkJTJmSyRMihKL00WTXkXy/ytZTp66KGHWtl2KR8GlzezTpSSWxvxOSkHrbw/k7BbnzBbGo+bNM7ks5bZi1T6Jct8riXIStl+lfdAtiPbhclWTfJPTErNWDBLI/uO2ddMrkh5KiXPlNdaHLAO4/qZbL0iSWdsWhYJwud/+eWXW/kP/uAPWvncuXMr67kd1qdN9T+zRy3BlmjvymwONv5NyZxIerPS9L5Ds0WwzDhgfFBuzTLji+ez/1LyTCn0+BmZzYLxdfz48VamfJxWZ5Ob2/jCZ2a7cP7lmoPncAxiHRjXX/3qV1fWmXNihd5MT3dj1idjU5mberE+QrsP+4VldSGWOZBjqmUiYp9iFjaWaeuwrKSWTWUYtq6PLasa78F4ZF0vXLjQyrROMDZ5HbOIs70Ym1x7M075XcF2fOSRR1Ze07JBcSyz7FwVeuN3TticyD5Dq9Gv//qvtzLnCI7xf/iHf9jK3//+91uZ743YuoZ9gTYo2u/sHfL9Wx9krHGuZL+jXZF9kNkP+Vtmg7KtP8h4TOO4Qysi7UK2zQFjk++Gz8x4MXuRWZ94Du/FMYTxxYzDLLPOlQxNRuVvIrbtRrI+hRBCCCGEEEIIISyI/KEmhBBCCCGEEEIIYSbckaxPlPlUMhKYRJNlszvR+sNzKJmkXMssS5SiUbrF3/L6LFMa98EHH7QyZVwms6K8a7yrNOtHOSmlqJSSUgJISTapSLAs+05FEkbZn1kY7JqUt7FstqneDA3Wt5Zgr7AdxzeV0alCRRpqWYwYF7QgVd6n2RX5bk0KTqkqY8KyKlk7UzI5vp9ZHDmmsI/xefhbk6haVoAf/OAHrcyMFWxfsik59KbsrMRicwm2RLPo9sassR3ZoHqlu4Qxy7mI0mNKuCtZmMziwPpw3qcsfFxP9jezQfFatF3w3iZhp6yc51esX4xljomvvPJKKzNrG7Pm2PhgbMrKtAQbhbGpWOs9h7D9ON7bmpbXN7sT5xZ7P7wX7UGMA8KYZTxy7cl70brI3zJWaNkYhq3Pw3mKGeOY9Y31vnr1aiszjjgG0YJkduNr1661Mp/NbIy8DtcTtCjy+szEwxhnu5uFqjezzJLhOM3+TIvniy++2Mqf+9znWnn//v2tzHfOLHkcU3n9im3UYpB147jO+YixTHsU18l857yXZR3l9xDjgxZg9h3amPiNSMvgOGNwZZzn8/PZ+DyEdeJ4xPfHtTWf3yyB9p3IWGYWVFqfGHeVb0Ozr1e2epliRfzkjAIhhBBCCCGEEEIIMyd/qAkhhBBCCCGEEEKYCR8r6xPlPGZlqmTXqciFbKdkygZtt21KxShvs6wxrA+vbztmU7plO5ZTJsfrUN7F83nOWD5GmRbPo8yUcq9du3a1Mi0YfDbLUFKRyBOzt5nlwfoE5b9mIeHz2vVNcmbSNevrc2VT2XWmWElMWsksZrQzsD9TAk0Jt71/SiB5HUogLX7NBkWLA6/zcdqzkkXC+hX7JH/LMYvXoSSb0l7K0yn/trjYbqZkW1ty9gr2YWKZ60hvhqZeejNGVTBZOOcosyaxb5oViTYI1p82Z16H0u5h8PiiJYPvw2KQ1+FzmiWZczzHMp5P2fq3v/3tVv7Wt77Vyq+//norW7YSo2Jx6o01W5MtgV77V8WuOAVen2sc9hFb31UyLXIs4hxNmxLjgOtbxi/nE9aH87LZsiwT3DBsjVW2+40bN1Y+A/s/n59zH8cF2kv4bcDY5LhjNrBKNiDWgRYn+0ayjKtsU1uvbvc8sRPYtwj74ZkzZ1r5P/2n/9TKX/jCF1qZfY/tx+9E9lXbhsHg+zSbLDMKsq/xWbgGti0vePzEiROtTLse164cHxjv7FOs8zoLGOOFliqbH9m+9j3MtuCawDIo27uxb0mOTbRGPvvss63MODVLI+n9m0UvyfoUQgghhBBCCCGEsCDyh5oQQgghhBBCCCGEmVDO+tSbTcakSWY1qtTB5IGUblKmRNkjy7REVTKQ2K7SZoOivNMy2vBZbMf3sWWD/7bd4+1+ZiPib01aZlJ1UrGLVGwOhG1tu3NXbBQV+bJl5JkrfIdT7Ay9Uj62JfvqY4891sqHDx9uZfY7yh4p+2SZbc8YP3ToUCuzz5rNhP2F8cjjvM54x/uPsD4yzrhi9jpKOi2mzL7FtjbJ7BtvvNHKly5damW2dSU2t0M+bXNApb+yDZeW9anXblI5p7f9yHa3Ga/PfscsGzyHdj3GNeXotC9wHCBmmxpL6Bn/HLM4hjKbjFkOLSskY5NZYHicz8b6/Mmf/EkrP/PMM63MzBSVrCS9VDJ7VayI251Z8E7Rm7XDfluxjLPM+Yv9mes79iOz/tg1aS+wMsdX9k3a8mgpYEzYmpx14/m0XQzD1rnMrMs8h5ZIWhjsfox3ro35zIxNjgnE3rHZOth2n/3sZ1fei9e0rQwss9uUOWauVL6P2H7f+c53WvnVV19tZVpwWGZccM1l46vFF98/+5RlK6JtyDJb0bJkGQIPHDiw8jpc97E+nEP5vLw+23bdvMm44HUJ12y0VvLZOM/yGbhFAu2Qtv0By7w+x4qXXnqplZmdin2osjauZDruXdv1zpVR1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEmrLU+9VKxR1UkQmY9oQyKdifK28zyYHInqw+ll5RZUTJKqZdJLymHo0TLdptetws1n4FlXpfSUmZ9otyN7WWZqyryLWL2oko2JT4n61ORh/VmbrA6VDI9zAnLTmBMsRmavJk72z/11FOtfPDgwVamBJh1phSR8cLsEvv3729lWheZBcYyJ1BKTIk045ESY8pKWR/KU9fFB+PfMldRlmqZCXg+Y5zPzx3/KfVkXS3TRK/daco5FneVLICV43PFsgyx7jZ3EGuDXhtKrxy+d6wgfBbG8pUrV1qZGV14nGOLzVc2R1vmmmHY2o6MQWa14Dmsh40FlGfzeVjmvMx1yfPPP9/KP/jBD1q5kilmu5nSV5ZgtaiMJZVYq8jhK/ZrHmcfYb+zNaGNr+y/ZlmwLCu03DE2Gcscuzif2lzMeYznD8PWeY315nmc73mc9+A8WLFdsK5sF65dOO5Y5kjCPmHZ3+zbwKxYlk3SWFo8EpvLLAMvx3J+63ENxXfOPs++xjY2qyvhu6pkImK8MB4Z7xz7ObfY+WZlsr7DOvO3tGWNLWA2NvE3XEPzmfk+LNsl60H4jW3rataHdmOWuU5mv6lsbdG71UslI9sUm/D8V70hhBBCCCGEEEIInxDyh5oQQgghhBBCCCGEmVDO+lSRC1lWEzuHmKyUUEJFSRslUZSNUU5W2S3fds6nRJoSa8rkWDaLg2V+oESNu9SPZaK8Lq9FTGZKGSelcrwfJYa9kq1Klq/KddheJjGs3HenMt3cKSjXtXaqWFIq74Tns/9zp3br25QAs3+xzN+y/pbtotJ3KIWmHZDHLdMTMUvjWBbLNqK8k+MIf0/JKOtBSS5l4RcuXGhlWrl4TbZpRdY/5bidU7EcVixObJMlx+mmqNipiI27vRLdXhsUy4xZzsuUJ9MqRNuBjVG0LHDuYsytkxVzHjSsfTlOcW3BOOVz0t7J7Gyvv/56K3N83I6sSb1S7Yp9bsmZnqZYArvl6jL+WX9m2fqz1ZN2D/ZxxhTXsTyH9mRanBiblcxIXFdahjSuYYfBMzLSvjT+zar68R6cH2mj4HqCz885nusb1oExXrEVsx0Z+2Z55bxv65LKGL1k6xPfP+nNbGiWIs4XjBeznle+IdgXLPuf2Y7YB/lbjgPs48ymapndCJ+La0Ou280mNgxb18psO96b2xPwe5NjBNeojCm2ndmjeC+zMPMd0655+fLlVra+RaZYyo2KVbXSv6OoCSGEEEIIIYQQQpgJ+UNNCCGEEEIIIYQQwkxYa32akinGzqlg17RduykfpuSQ8qiK5cruxTIlWiyb1JMyNspHTQZFmRhlX8Pgklnem7LPkydPrnwGStQofTOZWcVSZPWsHK9kVqhch/Rmh1maTJRSRGIWCcusZbvWWxub5PDixYsrr1/Z/Z3nUGLM+vC+lHHympQ3mmWBliPey+w44wwyHzFuH7NWst68N20R/C3lsC+99FIrf//73195fRsv+A4qtpCK7LM3u5PJi81iavVZGjb2WGya3JrjulkazVpH+FurA9mUnYXXYR+s2Bgpw2Y70F5BeTWfa9wOvJbZfnkPiyObyxnjHFM4Jp47d66VOd7tlHWoEte9MbiEmN2ODHKV57Z7VTK+Ve7LPstsn8yYtHfv3pX3tYyCnN/ZXxh3Fis2vo1tQxwX7LqMX8bd/fff38rMVmUWY9o0WA+zMll2VMvCxTLrQDvGo48+uvJeZlOxulXsw0uIR2JbbVTsfpV1rM079n1n/ZZls2vbFhRHjx5tZWYapeWO8wbrzHmGFiJug0ALlW1lwfbhfDjOwsT/sy0DeF3GC8cO1oNxzfvZWMN3wH7ONrVMT9zyoJJFcafmwVifQgghhBBCCCGEEBZE/lATQgghhBBCCCGEMBPKWZ96ZdKVbDwVKT2lUpR4EVqfmHWhIrFmHSjRooyLsjTbwZ5yZsoe2Q5mLWJ5neyR/zaZOyVqbAvem7Ixy2QzJROEYfIz2wG79/pGRQ76Sc1ewf5pmYtMPmp9h1Jly25EGbZZ8SiNZPYKSjJ5Pq9D6SnLrD93y6fsmvfl9dm2Y+sZz2MM8360ZTLTBssca77xjW+08quvvtrKjGU+G2WvbOvKDvO9fcjGL7OGmly2kvXJ+uhcqWTtsLJJ7O25GQu8DuPX2rs3e88UmzOfhXMlJc/2jIwnto/Z+2iJGIatsWrZXmxMZEyxzGfgPHv+/PlWZqY2Pmclg+Z2Y+++khFzU/PyTrMpy7VZfqx/2XUqNheLZc5f7P9cM/O37Mu05tA6z/Utn5HxxC0IeA7X5LzOOJMp50fbGoDWLI4FtDwwHjnWcI63zFU8zjZi23FNsy7746rjbFNCixrPMftrhaXZnYhZynrjsbJtg93L7FTEshWxH7Fvct1Hix6vY/Yr21KD5zMm7BuZz8g1Ju/FtcQwbI1VZoxj+/I425pjEMcaxhHfAedljhf2/hiDXD8zwxrbvRJHU+ay3u04ujMIdtcohBBCCCGEEEIIIWwL+UNNCCGEEEIIIYQQwkyYnPWp97eV45QIUY5FmRUtFZQNUhI1JbPBup3qP4LSOLNd8LeUdFHGxvNZ/7G9ib9hmfWg3ItyUO4SbtI9s3lsaif5Tf22YqWrZHfgb5dgqSDsb2adsJ3wTYJnGXvY12zndUKpMvsj60DpMXdnZ7xToslnpNyaMWKZWDhW8L6Up7IdeB3ajFh/tskwuEyU96Ys85lnnmllk91fvny5lSmZ5bshfAbW2zIW8Hyz6/TGl1lTKudX7ruEOK1YuypxZ3YJvkNaCG0etGyGlB6b1bFXdl6x1Ni4wXikLYBQOk3bBOH4MAxbxxEb+9j/TYZu2dxu3LjRyrSRMPbnZneaYl+yvrsE20VlXVOxRNm6yTJ48jqM3145vI0t7LO0P3A+5fkcKzj/WqZUyzBFGxT7O+dQs2GO4bXYppYBjnHN+dHWw/wt7RhsO9aBY+uePXta2Z7Txj62KbcmIFyXcN1eaTubE5dmUey1fPXa/yu2xCkZMhkX/C2tsVwb873x+4x2PfZTy/RrcyLHKMuuuXv37pX1GQbPJsUxxSxVrB+tWbYtiGVUtOPMjMV1Mo9XYrN3qwijt//1zpXzX/WGEEIIIYQQQgghfELIH2pCCCGEEEIIIYQQZkI561NFRjcliwShZItSLkqMKZOmtNCk/RXJvGUmMWkc70t5G6XdrA+fhRI4SrQo2+b1x79nPXgPyjIpCaM8znYV3yl6s0tUbGwVKdqmLF07AaWMluGHmNTTbBHWv3gv24WeckVKJlkHy9jA3eJtd3rLPMXMKrymxS/tFWYrHMfgR4ztFXxm1s8smrRIVCyRbEezpZmNyI5XMrxUMiuY/cHOsXJlvlmC9cmojE+W8bDSNpTtMx75nu04Ybz3ysgr/YixQ1k045F9n2OC2Ul4Pq2Hw+BZFc3SSSqSbM79tDbwnLlRWZ/Ze52SvWKnmTKesT04prI/V9bAU7KwcUygBeHkyZOtfOrUqVampYJrzqtXr7Yys6Zw7WoZS1lmO3CONisxy8Pg7c65n3CM43zKLFOMQdaPx20c4Pm0I+3fv7+Vr1271spmRyEcs15++eVWfvTRR1v5yJEjK69jY3Rl/ljamtYs2qR324PKGr9i7+39/rU+xUyAhw8fbmWuGdn3uY5lH+f1+VuORdY3bf3ImBiGre0yzgj1EYwRwnVGJUuWWb7t+5/tyLU05+Lx9gQfMWVbj8q7791mpcJyV70hhBBCCCGEEEIIdxn5Q00IIYQQQgghhBDCTPhYWZ+m2FMquy+blI82AsoJeyVOVh9C6ZbJM812QbkWZV8mnbYsGGMqklxei1I5Hh9L3D6CslLKWy27hjEls8IUm9IUSdvS5Nzsn3yfZpdgXzWJMi0DvOb169dbmVJH9mdKqXlN9kHbOd6kp5RxUhr5C7/wC63M2GdMVSTAlELz2Xk+49p2ux/fj7auc+fOtTLlmsy0wXa0evOd2fuzzF58l5bFxuLFrKQVi5OdYxZTY2nZKywLTGWu5BjM98N3SMk/s5HQwsDjtNYxkwmlxIxNvvNKNqjKWMtxiWMX487GActeZzaocYYL/tusZbwuxx2Od2ZdZtmyTs6NKVk5l5aFjdg4xHdl8WtZ7BizNs/a2Nxrg+I1aZFghhbGFK0T7Ke0xXNtaPdirHAsskw9ZsceZxfkdWnTolWfMcjxyGwUfAe0QrBsVmqzfJvVjeuDyjcG11K0dDLTDzNYmQ218g3Gdp9D1rnbYfZ8sh1j6pTvXOvb7NeMQZ7DuDt48GArW9bgStY5q79td8F6jtvBbFQ8buMg44jxy2fg+MXvBMssy3Z8/fXXW5lWRLNuGnfSHpisTyGEEEIIIYQQQgh3AflDTQghhBBCCCGEEMJMKGd96t3teMruyDzHpEyUYlV2Rjd4DiWdlHdRNkb51a1bt1aWKaU0iTjlbfaMlHCO62EydN6bEkrKSnfv3r3yHmahoRStkiVqU3YnUrHJVejNYrIETJbM57Dd3RlH7F/sF7w+j7Ovced13ov2IkLZI/uXWZkMyrlZH8otKSumLYmZHBgTJm1m3x/bB2nnoMSaNpXKDv5mWerNiGTyfbNm9FohejM6TclGMUUyutPYWGW2CD4rpfFjO89HHDt2rJU/+9nPtvJ3v/vdVqbF6ejRo61MK7FlTpySwaAiHee9aGm07DY2F1kmqXVUrHyEccp3ZlL1OVufjEqdtyOrxZ2i8p7NGsAxlfHCa1ofqWSWsXraGtXihf2Ra0DL9GSx3wufhdfkHEqL5RiOiWaX4LNxbWGZpbguf+ONN1bei2NHxdZEi4dlq7H1JOd91of1vHTp0srf9m45UbESzQmrb2Xt05tRkfRmvLTsTuzbXAPa1hSMWcYdbX8sc31becaxzfAj2Mcts9swbF0rmiXbMsWafYnxYusMjh2MccYIrZtsa34z9K4bp8xfle9Hex8VoqgJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTChnfarI7XslapXrmJSpIlu2+vfuBk0pFqGVgXJLk/DxWXg+7RjcvZ9ys/G/K+1F28X58+dbmRI6StcoN6Ws1qSxFdluxfJQkRtOkdpXrjPFTrUTUEZHawDfp+0Mzz5G2aBlTuE1eQ77GvsUMxrZrvWW0Yn9hbJP1pm2KcaOZWZgO/A6rA+tgayDWZ/27ds3ED4/JbAsm92J9bDMIhVLEccHPjOPsw58f9bnrZ4VW5M9C49XMv0sIR5JpT1MJsy4O3HiRCvzHV68eLGV//W//tcrf3vq1KlWfu6551r5i1/8YivTRvG9732vlTk3sb8QywZl87JlHuOcw/ZhjPM4y5zfOF+NYdxaVh6TJduzmdViinVku6nMfVMsjUvA5kTrt7TEcj6ipYjXsTWh0ZvRju3NPm+WAq7dWDezwJp1guMP28Gyo1bl/xxH+Ay2fQDnY7Mb2PYBtHtx3Dl9+vTKuvLdcD1h1icbEwn7BC2pXMfwnfVuFWFz9BKsT2RK1qdNrRes/ew4257rPvZlxg77pmVuYozbPGZrV/Yji007fxjcbm1ZnzjH85l5nPfgMzMueA5tUzzO9rW/EZA7aZ/f1HYcZFmzbAghhBBCCCGEEMJdTP5QE0IIIYQQQgghhDATPlbWp0q5ch1iWZwoJzSmSPxMmk4oM6P8itJrHjfZJ5+F9hDKaynJHGOZmIjtMM4d/9nWlNZR0klJK49T0tYr897Urtp2TZP0kYo0dAky0YqEm+/HLDI8h/3FpNGEvzXJt0m7+R5oR7IMVoT9l/c9ePBgK7N9GF/8re2oz98yxllnWjOGwTNNUKrNczgW9MrfzX5o446Na6xDxfphlgf7bW82At6L5/B57VnmhD2rZfSy52P/tIxRZ8+ebeUnnniilS2bGy0b7PPMjGaWjSmZa/jsnFsq79bGN44V62xMfE72ec61ltmOz8w53mzIS6TXDmz9ewnzJvsb+4JlG7x27Vor0ybMPkUrAPuOZTXp3QqA59DmzKxwPE67Ii0CnJcso6LZnzkWcc3IcYxtyFix+gyDZyy1rKicj3kttrVZRLjmZtuxfhybWB+znNm4QWxNZv2j1/Y75btrTmxHHXszZRmVb0ybK9i/eM6hQ4damfHIufjAgQOtzDjg/MMyr2PfzmZdGs+/vJZ9l9qcbRlk7R3Y8/B8jr+2XUIvvVa63uzDlayfJcvrbc8IIYQQQgghhBBCCHeE/KEmhBBCCCGEEEIIYSaUsz7Z8V7ZXeW3FUtNRZZr9algO1JTxvb++++3ssnMeF+ThlLStu7ZTd5tbc37USZ6/fr1VqakjXJQQjloJWOLMUXGOSWjk12f9Wd7LiHLjGXoomyQthtadWiR4Dk//OEPW9kyibFtKhnArF15PqWYlH3yHMtYYRkYeA7j67777ltZH9aT8c77UubNaw6Dy+grWc8qMlyzG5h1xDLo8Pp834bJv61uJt8nlfHaMmGZbWpO2HuwOYXtYZZTjs3nzp1rZUrvX3/99ZX34vm0SPD98/xdu3a1sll6rV+YtZTj1d69e1fei+ewHWi7sCxyfK5xtgq2tdm9LBMVxyazHlt2s51iipWpYtuz473rgZ2G4zT7hdkHGAucCzjmmc2ud+w0+N5oGea6lHMfMwtxDWhxanHA8YfxaFlcLAvT+Bmtz3B+5RrFLMqVeZZjB9vrvffea2WOuZbJle++8r1R+eaxdqhYd+y+S8v6NGXsrGT7rcRg5bitgS3zGvuXZWoz+5JlVTKrpo1jZjdeZ51nfFWs+r0ZnTmfMtY4vnD+5XhUifftwPpWb+bp7mx//VUNIYQQQgghhBBCCNtB/lATQgghhBBCCCGEMBPKWZ/suEn2KsftOr0yQKtbBbsOJZ2Uk1FKSvmkycns+pR6sUzZ6lh6R6kcZWMVGRWla5bdh1I5Ss5M5m471ZMpFrjK8V65XcVqsQQJN98VZZN79uxZeZz95cSJE638ve99b+X1LU4rskmTg7IOrBuzMtEKQWuh2Q8tAxT7OOvA89kXKvJRMrYoMl4oGbXsO9a+lonJ+iefweyXdrySza03O0IvFWno0rI+EXu3Zhnhc9Oa8/DDD688n1khmEWC75Ntxn564cKFVmY2qErWJ9bfspfwHMY+60PLUmVO6LXvVK9r5zN+uSaglJxy9iny5kp9KvFYsU/a8YrdaW5Wrx5snjJL3Trbzqrjdp3erDGW0Yx2J8YyYSxzDqWFiJhFkRaE/fv3tzJjlnFgc6utdYdh6zObBYnjpllGK98D/C1tn2+++WYrs335Li3D1BQbVGWdWRkHjSWsY8mUsWSK9cTOr1ifrMw+y8xxfCe0AO/bt6+VGe8PPPBAK3NMGNt7V2E2K44bZrMaBrcpERvXKlskWHvZeMrnYRv1fgtvit6+ZeVYn0IIIYQQQgghhBAWRP5QE0IIIYQQQgghhDAT1urIKzsr99pfTEo6xbI0JZuQ1Y3SSFoqKpmeemWJZuVYJ/PvleURe2baoOyadl+7fu97miJT7812YedUnnGnoZzy3XffbWW2Gd8nbREmKzaLmJ1TkuzhOpQuHjlypJW/+MUvtjKl17QvUbZMOWQlswaf17LDUMJNaSjl35Rb8prD4Lvz834V64FlCTL7D5+/kpHNsnqYTJ/H2UZm0bJ6WhYnqz+Psz0rkt+dxjJTmZXt4MGDrXzq1KlW/s3f/M1W5ru6detWK3O+ePnll1deh1m/GHe0TXGssHfLtq9Y+nicMcUy+5SVCePMrJTjMZ7XoiXM5hqzcnH8Ynvx+puS79vxylxm44xZlni8YoPqzZIyJ+yd95bZzysZPyt2fnsPjH3CcZGZPC2TI/ss68b+S+v08ePHV9bNxns+I+drjhVjyzDjkZYts4HxmVkny4jD52S9eV9bP/E6HHNt64Bem1zl+CeJih2Y9NqXes+pjHO2biL8fqS9j+V33nmnlWl5Zmxa3ycWp7bu5TVp7xvf26yvxLYS4P3Yz3kdm5dZb2ae41y8qXlnUxmdKvXptSXOf2YNIYQQQgghhBBC+ISQP9SEEEIIIYQQQgghzIRy1qcpUr5KpidjSqanXksUJY2UYlHeWMmOUqmD7WTP64+hRYq/r0iwKtJKytVMwj6Wrq6iIi+u0GuV6j1nCVJtg3JK9hlKdCmZvnnzZitfvny5lSmT5nue8g5NPmq7tlN+yeszywpjhM/OOGCcXr16tZXZDnwuWj/YDqwPjzMjBOs2DFvj4u233155Hutt8dVrG6zYHNhGtsu/2ZRMOm70xlSl/qzP2HI2RypjsGVXoTWJGdB4TdqaaBdgf2asPf30061M6y6zTlB6TbsEZcuWScrGBHtGHmeZcUd7FGPL7DjrpPJ8BtrArO+ZnYOwHzIzh9lKzU5FKjFeyWA4xeJk7Vvp00vIAGXrl14pus2JZg/l3MHjtCSzDrQ/8L0xZm2tSEuFWYZZT8bgZz/72Va2+ZHXoTWB62eeT0vFeN40WxTblG3B+DW7MduFbc0y68G1AsdBricqa3TrW9tha6p8byzNTlUZe4xei9OULD08v9ceyn7EDMIcH8xuX8kCatmWPk6WMPu9tdeUTLHjceEjOI5YRuR1tudVVCxOm8reWOlblblnuV+qIYQQQgghhBBCCHcZ+UNNCCGEEEIIIYQQwkxYa32qyH92KstBr3y4YpuqWJy2w65lO9xTJjcMW6WllIxWZJC92ZpYp4qks1c21vuejClSN2KywrlCqa/JL2lzoMyS8l5mPKAEumJzqUj1K9kraMuyneAZC5RCcyd4Xp9yZsYKpeP79+9vZduNfvfu3a1Mi8P42Tl2mPXAmJK9wCyQFQmvxaPZpgw7f1M2KLPJzZV12fo+wuxotMfRgmR9mzHyzDPPtPJv/dZvrTyf8wttU+wLPMeykFX6Hc+nPJkyb1oZeF8bN3ol8eueoZKtyjK9sd05Rtx3332tzDHLrDKVOdqskdbPzErK4ybfN/trbxaWuVLJUtprmbcMUHw/tDhxzvrc5z7XyowLxr7Z5Lkus3GDlgLWmXF38uTJVv7Sl7608vrnzp1rZc6/jFnel/VkedzmlqGJa13aqywzKanYMXh9wu0F7L1WtnvYKdvR0qyIxLJcVtYRFZsS6f2uNGwctetwruf8yzGB60z2d/7WLLY2n9gYz3YeZ9Sk/bjXWkbs+4T3Y4zTlmnfKr22rinfifbs9r57+1BpO4muK4YQQgghhBBCCCGEbSN/qAkhhBBCCCGEEEKYCeWsT5uyg9xJOV5lt2aTRlbkSJVzeiVRrA93yx+GrVYWSuIq9TDpsv22kt2JbEpKSHplnFNkn7aL+lzhbuiWBcmsQyYhZJ+y3eMrfc1sHZR3WmYGZq0yWbXt8s5MN7Q1Ua5I2TYtFSappl2A/WJsO+D/sa5vvvlmKzN+rY9ZP6zIsC1mTT5b6fN2L7a72aN6xyVrX74/ynGXgLUN5b3sF+z/Fy5caGVmYOG8wNinnP+1115rZcYa++bzzz+/8rc2t5jM2+ZNxinLfHZKnmnTsDGH9+V11tmTezMh2pjId8n2YpYOjnEco2mpsPualNoybJnFcixhv931TbI+xXo5V3qzPlXGMOt7bJsrV660Mscwxu/hw4dbmXZg2umuXbvWyuxT58+fb2XL+sR+wXfFuZL9mvWnTYMxy7WEZZbkOWM7P9uOZbMgcRyxrDEWs5V3XMl2WTk/9MO1Vu+4UrE7Wca8ipWtYoshtnUA+ybjlFsTHD9+vJXZr2mJ4thv430ly1U1q6fZCStbRtjfEbgW5ZrGrsMxgedbJtNKuTdDGOm9jr2nWJ9CCCGEEEIIIYQQFkT+UBNCCCGEEEIIIYQwEz5W1ic7x45XMo1MqUPv+b0SRZPMTdkh3CRzlH9S9jYMW2VzlYwFvVlXKnaMyjUrMjs7n0y5V+WcXqnbnDB7ETFJtsl4e2XhxOSNJpNkhgtaP2jZYP+nJPvTn/70ymvyvTGrhY0/bDfL2kR5KstjCw7tJdypnmXKNa1OJjGt2BMMk3/32v2mjHeVGDfp7dJik8/BPmZZLWjhoQT60qVLrcy+Q3sU5cAmJeb57Gu0CprlweKXmPyZz0XZNq0cvf3OLLyW6WiM2etMAs570OLEsYnWDrapZasxWT/byyTTZn2y7E42tpCKfN/mht41xhKYYmGx+fTtt99uZYsRzlk2PrBPvfHGG63MccNsQ2YReOWVV1Y+C+cuWiY5D7Ivc7y6fv16K1umqmHwtYhlwuM4VZnLbN1j9FqZ5mx3WloGqEp2ykoGPHtum8sq16/MfbZOsd+yPowRxi/jhefwXlx72r0q3whj+7+tV2xbBNbJxhrLXPzcc8+18sMPP9zKtHRyvKMFdPydvOq+dtwsxhXbb8VyVrHVVbj7ZtkQQgghhBBCCCGEhZI/1IQQQgghhBBCCCHMhHLWJ2OKJWpTWZMqsvpKFqPKzu52/d4drykZpUydu+VT8jkMWyVevdYns1FYdo1KlqwptjQ73muV2o4d4ZeQ9cl2STcpH/ubvX+TOpKKlJi/pbzx6tWrrUyLwMWLF1uZkmnLWrVr165WPnjwYCtTirhnz55WpiycliVm4ti7d28rM87YJpR2M3vUMGx9NkrGeW/LAESrgmHSU2Ky+ykZ73rtEla3iq2J96XEn9jxOVEZk2hn4HNzzGefomSYfZiZVtgnKRmmpNmsA2Y7MEm5Wdb47IxTltnfLdMc28cyjFlmsHFfs/GR2HGOC3x+Wrlo3XzsscdameMRrS8sEz4zGWeY+4je2OyNcZOCk0rbzok7aQexNQWzgTErIG2/u3fvbmXG+Llz51qZMU67RMXqyj774osvtvKrr7668lnM4mBzvWUXrGKWLbIpW8Gmfjs3lhCPhNY/+9ax75jKWFixPvWOqRwjK7YsYmsAzhuWXZDrf2ZC49xasQOzj/A643qzbOsGjju2puU75rh27NixVuZzfuELX1h5L46h3/zmN1eew7YjZkurWJ96syuazdWy3RlR1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEmrLU+VTJyVGRpFYlir4WFmF2mkm3KMjBYFgXLhEB5Zq/E2Ha4p7xtGFxmbNJzkwaaJcbkWNYulWxKvXan3gxhlfta+5jkrCJF22loGWB9TXbH47ZTfa981Kw8hOdT8v/WW2+1Mi1Olh2F5/yP//E/WpkZZE6ePNnKtCC89NJLK+tGC8mv/uqvtjItJPwtZeqUXg7DVmsWn9Mk4JRNmsSUbMpaaJkMWM+KXNgsc6QyLlWslHxPS8syY9kPOLZzfmFGFfZ5sw6ZVcoyQFHebNlUKhanSuxT6sv+zuvwGStZjyrZh8Z9pGJRJjY+0o7CeD98+HAr04LyS7/0S63MzFBnzpxZeb6NFRZHtt6yOOU7s2tanFasAkuwjfSOo1OeydYgfG+0yfIc9i9aBF5++eVWZp+qWF3NimUWAfvtptpnzBysOtv1bOH23H///a1MizMzjtl3SSWDX8X6VFl/sQ6cTytbTXAtw9/Sqs9xmudzruRxyxDHcsXCPLbycJ1R+UaztRmvy3P4vtlebAs+G8/nXMwsUf/lv/yXVuY2Irb1A5/R6mnzoPUV+762ebn0t4/bnhFCCCGEEEIIIYQQ7gj5Q00IIYQQQgghhBDCTFhrfSImraxkgek9bvJDk1lVJP9m/ahI8i0DhcnnrH2snpS0UeY6lpf3ylvtt8Qk7JUMUL0ZmipS0sp9TdrYm8nCpPxLyPrE+trO66SS4cfOqVgLK7vxs59XMjmYzJ/2KMYLYUYnysj5zikfPXr0aCvTukQ7CTNu0LIwDFufhxkLeG+TnzIDFo9z3GHb8TqWocfksCbFpD3Grm/2lUqsGfztz/3cz7Uys+qYFHau8J3zvdk7vHXr1spzmDHM3g/L/C3tDHyHlJSznrRBWSxXxhBSmYtMnm0ZGCyGqjaFynxkcz/vzT5p7ch7PfjggyvPoTzbJP6W3crqaWO6jYOW0ac3w2PFDrfT3Ek7i7UT25vzSMWWfe3atVbm+6zM1xWJfeX8ylqvynZskWB12o4sUXOjNyPqnOAYaWMh50H7jjMqW2dU2q8yHhusMzMg8dl5nHM3rVK2Drc5tJIBedw+le9w0rvtCMvcbsC+1TnHHTlyZOX1n3zyyVbm2Mp+w7qxTc0aRyrWJ16fda5Yko0oakIIIYQQQgghhBBmQv5QE0IIIYQQQgghhDAT1mrTKXU3Oa3J7c22QCq7cFdk9RXJkmHn876Un9ku4r2yOsueU2m38Xl2vCLtrtTP7tWbocneccWK1nt9O87n4o7fvD4tGHPFbFuVd1WRG/e+c/utZVgzyahleOG7suvQBkWLh9l3aFF6/vnnVz4LM2ussyUSWrMqmdp4LRvXKNE0KtJbk8+yXcwGWBnvLMYrcnxad3j8/fffX1nPuWJ922w7fCdsex6nzYHjEy1OZnPhcbNi2fxOGI88x+LLrDb33HNPK/MZ+Vy0JVq7TcWe2eyBrAfHF2bkYjY4s6bwt7RQse0s4waP8/0RHrf5zt69zRM2RllGk7li4+t22J17bSicNyjbt3pWsqza2qoSR73WmY+Tka+y3q1YKirWjMo77rWH7RSVNfCSbVCcC/hMHDstY62tzSqWH1v708JCqzptSjbuclznXLF3795WpvWeNiDOlZYplMdtjUnMVjxeW1n/6d3+oJLNk+sA+5sC253txTmUz8zjZ8+ebWXOyyxznWlrncrfIyzrE5+RfaXyvRlFTQghhBBCCCGEEMJMyB9qQgghhBBCCCGEEGbCWusTpbKUZVZkdBXZXa8cj5KrSgYku9emzrcdqSuZdHqlqmMonbIMQCYr/TjZMlZRsTNMefdWT7tvRSJs8lde87777rtt3XYa9rfeWNjUO68ct7r1ynJpr+A1zV7AzCqWoYhljm+V3dmrY5dZ+XptBZRNmiXVJL+UVnJMN2sZ284sNDZ+2fs2OSufyyyKPGcJ9gqzsBCzoZh1iOdY3+b7Z7yY9cksbmZhtv5vcmZKuDmmUsLMccz6qcXQx5HzVzJ88N58H5aBg7/lMzBzCX/LZ2Z2M3tms36xf9ACV7Fz99obzWbFc/gsc4Xv06yWm6IyV9p7Zl+w92Y2B8av2T0qNiM7vslsUFPW4r3rmE294znYiHot7kuYNzlfWCY69n+OebSxW//nGMz243hMaxXHcs5Zhw4damW2q63LOPfx/N27d7cyLVS8l40PhPe1eZxtWP3GrKzXezNmVc63dSOfje+Jz8asT2zrp59+upWZvZVZF1lmfzK7OGE92Z/Y52x9U9nWIIqaEEIIIYQQQgghhJmQP9SEEEIIIYQQQgghzIQfm8MO5iGEEEIIIYQQQgghipoQQgghhBBCCCGE2ZA/1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEm5A81IYQQQgghhBBCCDMhf6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTPj/AAC5zj7HjzajAAAAAElFTkSuQmCC\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGoAAAG8CAYAAACG6EOTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAADp1klEQVR4nO39SbMmx3mej5dmUQPGnuduoBsNgABImJRESpQiKNsrRdgbhxeOcIQ2/hL+Jt56YYUdlsO0LFlWiKQkUgQJkiDQGBpDzwPQQDdAANQ8/Rb/P9LXqXivt59EvadPVeO+VtnV9VZlZeWTmXXivvP5sX/6p38aQgghhBBCCCGEEMLO8+M7XYEQQgghhBBCCCGE8P8jf6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmQv5QE0IIIYQQQgghhDAT8oeaEEIIIYQQQgghhJnwk+v+8/Dhwy13N9N4W9n4sR/7sZXlf/zHf2zlH//x//c3I7smz/+Jn/iJlcd5/b/7u7/rus4999zTyl/60pda+fTp0638K7/yK6188ODBVj506FAr81l+8if/XxPb8xLWf9wO9mx/+Zd/2cp//Md/3Mp/8id/0sr/83/+z1Z+//33W/mv//qvW/kf/uEfVt6LbWTvyd4xsfdqz2zXnHIdHrd3wOPvvffe6ofZYb7whS+0B/npn/7pdvxv//ZvV55f6Xu9ffWnfuqnWvlv/uZvbnv8Z37mZ1Yet/vyudjfef2///u/X3mcfZn3ZfvYddjfeR3Wzdp53TPwHnxmPpsdr9SVx/nO7L48bvW36/C4jafExn0e5/Utfvk+zpw5M8vYvO+++1rl+awWI+xL9n7Y3mwDG495HbafzU08XhnLbUww7JqVfsEy62zXH88PFsOVNQ1/y+N2HZ5PetdJ9ltrl971RO96zo7zvoz9H/7wh7OMzUOHDt32RVg/JHxWez+VNS37y6c+9alW5tryt3/7t1v5l3/5l1v5/vvvb2XOFbt3715ZT6uzjS1WT+v7vP4HH3zQylyffvWrX91y3W984xut/K1vfauVb9682cp8Npt3rK15DqmMcZX1JKnEYG//IFYHm3/tvlevXp1lbH7lK19pD8i58pVXXmllPse3v/3tVr506VIrf/jhhyuvb32b/YttaWO/xZHNTVx/2nhp8zXhOTZ325rBvnN/9md/tpXvu+++LffjGoVtynZhbPNafH/WXlwbs434TcoxkedwjOP5vOZf/MVftPJf/dVftTLXW3z3P/zhD1de09b9tla3PvFzP/dzrfyLv/iLrfwLv/ALrfxf/+t/Xfnyo6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTFhrfaKsiTIoszaYHakikzYZfsXmYlYAypHMIsDyj370o1am9JJypzfeeKOVT5w40cqUg1F+RcwWYJgEbhi2vgNKzp5++ulWpvz0T//0T1v53XffbWU+v1mfKnahirS98i6NiiS711ZndTPL3JygNI+w77E/V+SR9tzsF+zDjAtek2MCf8vrm32D8Bl5Dq9feS6Tdpu01cYi1md8TsWmUrF58Hyzcpk1q2JHsnqalavy7u0dmO3L2oFY37J+PydsPqL0lW127733tjL7IaW+lPHy+HvvvbfyXnxvlN+yXStWiIoNmVQsNbZOMMuCxbLZtcbzLK9lcVexMln9ei23U+zf9p4q9alYnHqfi+1j4+ac4PjB8dXGqoolsGKLqViNuN6+detWKzP2H3zwwVY2ayznR0rsK3afylxB6zzHLrMo2ng4DFv7G9crfGaeY5YPUrEy9b7LXktg7/qzMo9Xxqslx+bhw4dbmVab5557rpVpheE3Gm0rZqu3djXsvdlxxqC9f7uvzTOMcT4XMduNWXAYgxz32LbDsNWSU9nOg+ubyve8/U2B4yDbhde/du3aynPM1sTxxGCd+Vy2Drc5o/KO131LrCKKmhBCCCGEEEIIIYSZkD/UhBBCCCGEEEIIIcyEtdYnyp0o/yGVHc3N8lORE1ayDZjs2SSQll2EUIZ58eLFVv75n//5Vn7zzTdbmTtmV7KgGOt2f69YdSgBZJ1YplWKMjOrR2XnfPttr+2oIjc1KjJ6YraUJWCSRbPOVKyCvdlFrEwqtkezJlQyPFhGI5NqVu7LNmHb8l4cB4bBZcYVmxKpZOQi9p4q8v2KJNfa3ca1StYJYu/SsHaYE4xNyrnZl2hRPXLkSCv/+q//eiuzv+zZs6eVb9y40crPPPNMK3//+99vZc4DnKeuXLnSyr3ztVGxspkVq2IBrNx3nfXJfjPFptSbpaVSrsjx7fq9528qA1RvBtCdpjcjZyWzVmXNWbEZ0tpAezrjnes1zkHMakI7Uu9a1CT8HE/eeuutVuaz0Jpw/vz5VqZN4dy5c3pvyyxVWX9OiQU7PqU/99r5K3YtO16xZPZm6dsJmI2ImD2Q32i9tvopY7O1vc1ZFdu3lSvWJ9sKwGzrlUxtw7DVfsZvRo47lXVsydoj4yDryvrR4mQ2eZbNqm91IDb+WJ171zG2VcqWe932jBBCCCGEEEIIIYRwR8gfakIIIYQQQgghhBBmQllH3isD7JXy2b2sTEkRZUcsc6fnym72lDi98847rczdrx944IFWptyUuzhTJtab1WGdLcukjJQDMgsIM1RRDmtU5KC90sopUtIpFiq7jrEEaahh2ZoqdpPK8UqmhV57o8VdRWZYsenwvpQ9VqxVfBbaxxhDu3btWlmHYdiasYPjEceLynMavRlkzOJnktRKRp/tyNRWoSIT3Wk4R/zSL/1SK//qr/5qKx88eLCVP/vZz7Yy7QPM7sR3dfz48ZXlf/Wv/lUr//mf/3krnzlzppV/93d/t5VtPu3NPlSZHziGUDrN44w1Pq9JniuZUsb1680IY89WycYyZW7qnSsr8y+xsbLXDrY0KpnFptiyK5kz2ecr59OuSAsS4ZrTMu8Z9iycu7gGZplzItchzDZl1xkGf57eLGyVDFC9fXiKFbESv5V5dgpLsz5xvuNcwPUYv+n4fJb5qGI76rV7GhbL9h6sL1fG4147e2X9PH7GKTYijjs8n2OfWZxsXWptZ5mLezMnVtYANn/Yu2e/pPW98s1D5h+9IYQQQgghhBBCCJ8Q8oeaEEIIIYQQQgghhJlQtj6ZpNfolXKRyvVN7lWRpJp8iRI7kyxRukkJt1k/ep+R0jCztAzD1megZJDSecrPKI3tzZzSm+Gi97fbcf4UCfcSpN2VDCQmIbRMSbYbvMVIJWNJ5Rwet4xJvTJkwjiy6/BelGref//9rUyZ9+OPP77l9+wzly9fbmVaKG/evNnKtEHxHdi7ISYfNXtnJRtU5d2Qihy0dxd96wdLgxlb/s//+T+t/OKLL7Yy+xUtS1/+8pdbee/eva1M+w+tddevX29lzkeUiL/00kutzFgwW0RvBiTLFMP+yDIzEDKbFbN+sF9fuHChlc1WWM0AY2sFy9xTkWSbZLqSFbH3eEWSXbmmndN7/pTMOztN5f30WtQtcxH7F23yPN8sulevXm1lZlN69NFHV16/d31n7cA1I+u5b9++lfe18YFjDuN3GLaOX++///7K+5GKtXBTGUWnfOf0UlmX9o4Dle+iOcH5iP2KWzvQBmjrKWKZT6dQsZPavSqZaStrZsteNyUz3XjcsP5TWZtVvk8qdjzLLMv3yrGCYxbHHbOb2jeGla0dKpnpzKLF7FpGFDUhhBBCCCGEEEIIMyF/qAkhhBBCCCGEEEKYCWs1kiafJya1q0iBDJOP2s7KJpPs3eWd16E8lZJMyu24Yz2l5pRf2W7/JotdJxmj1JvSL2Z6Yl0ppeX5Ztnq3Ql9UxJTuybZlLVqSraaOcF3WzmnYjexPlnJFGRUdje3fsf+XtnN3saE3h3vGSusw+HDh1v5xIkTW35PeySz/jDzGscIji+8h9WJ2HvlNUnvDvO9UmobfyuZwCpjDq/fK+vfCTgGc46ghYFtSXsUbaxmZzDbHPstj1NayxjhvcwaW7Gvsd+ZdY9ZYBgfhw4damXLFEH7INuzYmce/x9he5l9+MaNG6V7fFy2O5vSpixRFUvX0izDlbnArKKWEcXk7VPqQyvtK6+80sqMqdOnT7ey2RsrfYF1sOwujHden89LuwrXzD/60Y/03r1bGFSuM6VPVta9ZMo3TyWDlZ3fu93DXOF8xzbg+ojjv30bkikZ/3qzpvZm/LPYt+9fji2McfsutmtWv9Uq9kPbOsG+E2xtYVZSqyufn2WzlZpNyb4NzBZtxyuZdzlW9tr8o6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTFirI++VwJuUq1d+WLkmocTJJF69sk9m2aC1iJJOyqKZoYOZoSqZWKpSNMqzWVdKtSkrP3nyZCszW8CuXbtambvur8sytapOvVkqevvBFAvVFEn5EiTcJo+sSOoqWZwMkzqa5JJjRUWi2SvJt9+aXcvkoCZjZOxTtj2OFWaEoiSdGTIYa7Sj2DszKwhtKrwOrRxmjzHZeuWd2fhr9oApmThsvqnIwneayhhpbWn2NYP9sJJJzOYje4e9Y2FFqs26ce7icVoJmSHLrEgmnR4GfwbOpwcPHmxlZqXifE/rYsXWst12oV6b8HZcf2mZZXqzZhHrzxXrk7WTWTxZT1o/aCMy+6xZgG2ut7pZdsFK5jTORZwbGVvDsDW2e7Nw9WZK6mUJ68Ax222lvFNUtrZgDPauCUnv+qI369OU7HKkModU1l/V69t1OTf3WvbMDm9rTlJZi5LK+9jU94b93cG+K3rrMP9VbwghhBBCCCGEEMInhPyhJoQQQgghhBBCCGEmrLU+9WYI6aWyW7nt3EzZfmXn5orUiMcpI7927VorM/OLZYCitciycpDKrtLj/+Pz8x4sU2rFTE+Um9KmRXlrRdrdK0O1325Kttorazb7zRKoZGSrZkVZdXyKBNSuWZGC91q3TDJpscbfMj5ocSCMcWbtoTVyGLZKumnnoEyUscb6UcJuu9bzHXNsInwee36ziFRisJLtotKHKn3LxvElZH0i1mZ8P5ZdpZIZsDJ39Ga3Yd0sGxqfi7FjcmCWOXcxVizrB2PLLF2WBWN8Lct+SIsi5+9Lly61ss0vFZt3xfpSsQeSXnm90WvLsvsuwZZo86a9Q7MNmu2CsD1M8m/ZGy2rGu13tOWynrymZWWyPliZf21esrGC7UBb8DBsnR9pRaTNuLJ2qWTumdLPt+M4WYJtcLupWPZsLDcqY7P1L4tZw8b43nFxyvhaWXNVshsNw9b2PXDgQCtzPuZ7evfdd1uZY5BZQ4l9b7LenPtZ18p3a2VM6LVTVWy/1r69drv5z6whhBBCCCGEEEIInxDyh5oQQgghhBBCCCGEmbBWR17J/tCbBYhUpIL2W7M+UQZF+VVvFipKW1mmDerixYutTGnY/v37W9lk5MzcQtZJsfjMPI+76rPMTBas01tvvbWyfnPYJX6KhWrKvZaWvaJSR5M6E5MiEpNNVqSCZlUx+aFZG4hZqMwaSXm1ZcowCxWvSak5ZZ7DsDW+TH5pMc970EZCWwjrR8sG60RZOeOaknJev2IT7bVAkooNqmLRmZI5bqcxaxLfLeG74rzD8/lOaNNhf2YcmUWiMv/Srrdnz56V9Tl37lwrv/POOyvvZWMtY5Mxy2dnm7BcsRON/812oYSbz8by7t27W/ny5cutbJYVs7tU1ka9WUAq9NqpNnX9uVKZy8yuW5HwWxuz3/Ic9iOzYNDu9Pbbb7fy+++/38q04j744IMr69CbWYVYPS2uqxZVy5Jl9GaA6rX+bSpGtjvDaeX8pcUm68u1Etc7vVY+UrEo9m6RQSrrYYvHiv2lYqvlnGPrZLM3jq/PuZlzJbMJcwxiu9y6dWvl8Ur7sk4cR/juOZ6ynrRMkopd09ailSx9lbX0lEzYUdSEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJpSzPlUytvRSyT5TsVpQJkcZFLOjmBypkmWDdglKq65fv97KtBPduHGjlSnhNkkq5V1sZ/52XNdKBilCqTrtUcx2QTtHxRKzqawxletXjts5n9SsT73y7HU7wH8E+2pvVriKTJqSRsad7SJvcnHGx6FDh1qZcUq5OK/PZ+dxnv/hhx8OhL8x2TfHKco4iVkq+FtK4U32yux0ZqfiM/C+JimuWGH5Dqyv8N1U5O42Dy0Ba0uTDFvftiwzPG5tbLJcYhlb7rnnnlZmn+Jx2jFos7JMTBYrZu2141UJus33tHXZGMRzeNzWFqR37tvUfNRrp9pum8acYJ+07E69mQcrWP+vZGakpZHzFzONsj+yzDitWA0q9pDxuvQj2J5m1RzPb5U1bSXOrR0t9nvXkKRileq1Odj5U7K/Vcb9OcG44HNYVkyzC/U+a2879WbY67W9VixOvXWr9ItxPXk/zsGWVY4WNY5B/K6sZJwyy7zZ4Tg+mvXJ/o5gsWa2JvvuqmQTNKtbxSYaRU0IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmQm1r9jX0ymB75V52DmWStBQx0xHl5ZREmQTJJISUQVF6+sADD7Qy5d/c8dp2qqaMy2S0Y5moZY3hM1DqyuvSpsU2YoYLZrGinKySjcW4k7LqKedXZIVzZcpz98ajSQhNVlyx0bBfM3sauXnzZitXbDrMhvPUU0+18v3339/KlI5bvzOL0lj+TamnxbzJHSmb5HUpB63shH/q1KlW5s78V65caWU+M9+fWWjM8tq7Q37lWTaZTWSpVGTSlQxa9q7Y9jzOMmXFDz30UCvv3bu3lRmzNpfZs3BuqVhCzJL8ceYKszWZLZFzPMcOyy5pY6jVu1d232uz2o45ejuyR+00ZjuqyOQNO7/3PbMO7Gu0gTDbGuc+ZmthH7dxnVg82vxrfYHxNLY3mUVzO9gO+88Um0qvrak3e87SYtOeg/2tsvarXJNsx/i3qb7Wm3nZ5hxi88/YVm6WbPt+ZtZRbhPANVtlOxJbf3MuNpsVrde9aymz1ffGXe+7t/dElvt1GkIIIYQQQgghhHCXkT/UhBBCCCGEEEIIIcyEjVqfjGp2ho8w2bP9lhLmJ554opXPnDnTysx8QqmR7WZNuZbtcs/sTrRE0WbE3e9ZZn2YqWpdtiW2C+tnu+3T7mX1oEXi8uXLrcyMMJZxZDvY1A7pvdkulrArPqlkQyMmpTaLn1mZbAd0O7+SCYFl2ivY79iXmfWIdWC/3r9/fys/8sgjrcwY57hBqSbHB1ocaJsY2xL5G8q5TfZtUnLLlGN2oePHj7cybSpHjhxZ+Qznz59fWTfel+fzXfK+ZrOxrFVmkzPrC+m1DSyBKbJZs6zx/Zhkmm1MqTJjhxa6xx57rJWZLZAWOusLpDImsD9adqbezDBj2EZ8Zs7BLNNGwjGFMcKsFmaDqlCxLG0q42Hlt3bcxvolxKaNN9vxHJa5jH24kkGJcB7gGpLrNZZ5jmUp6c1CZfW0TFW85theYJllKvTWz8bEKdl67F6bitMpY8gS4pGwvmaRMbvupu5bOW7n9Gbbq5xTyaJp1zQrj8X4+HzOZWZRNFu1jVNcu/Peti0ILU60HlsWOvue6W0vG1usTStZ3uzvDlxvGFHUhBBCCCGEEEIIIcyE/KEmhBBCCCGEEEIIYSastT717jjem2GgsmM65UKURx09erSVH3300Vam9YmSIpNY8vo837IxUNJFGRetGbRE7d69u5Up3apIFMdyLauTyTsp7TZZKSVtrB/PXydd7WFTsswpmaQ2dc2dpjdLVa+80/paJcOP2VzM1keZNM+nfYcwmxvvxb68b9++VqaUspLphZJPy9Yy7i9mwWJmDo5f9luTX/Ic1pVZ25j9js/JcY32Fdq9Ku+PbcFn5Pszeb3Znax/WB2WxpRMMZXjJgu3bFpsV/Z/9iP2EZZ5vr0Tmx9Yf/YX1pMZahg3lD+zDh9nzK5YMTmO8PnZRrR+ce6vZMfozd7Rm3WCVCypRm+GqSVg76Ri57K2t99y3D18+HArs8+fPXu2lW1+5DUZF5T8M+so+ymzKLI+Ns+YdYAxa/YT/pbPSIvlOHOpZT/cFL0Z0KZcv3K8cp0pmcYq/XKumIWF6xrOEcadzO41pU/dyXfSm2FsGLaOF4xhftOyr9qWBJbV1Po5xwjel2t69m2uD5i5uLLmJFNizaisXSuZTJe7Ag4hhBBCCCGEEEK4y8gfakIIIYQQQgghhBBmwsfK+lTZ9dyoSBEpPaa08vTp0638q7/6q6385JNPtrLJpnhN2gJoI6B0izYFs1pwN+ubN2+2MjNAUSbGMuXSlPOtk2hxJ3SzUZiE0s63DBeUk9EKUskwNCVjReX83uuYxK6SoWSuVLIc9ErXK5l5eD5ljIxTa2+z+DAWbt261coHDx5sZWY3unLlSivTgsBY5jjAPs5zKDmsZF6qxNP4NyZVp5TcJN+2uz6fjRZQy5JlfYL3tfpw3GQ7cnxgO3KMMstkxU5mFrsp1sudoCIzrsynjMdKtsRKRhTLksbMa3znnDc5V9o7rFhIzIplVDJbVcdvswbYccZCb3YJxlSvrWm7582KtZUs2YpYGVd6297Ot37BdWPlmvztO++808rvvfdeK3Me4PUtY4nV2bK7WCZD6ws8n3PCOCsg51GOR7b+qNCbfWdTGaAqNsNNZZiy629q7b0T2NqEmL3Ozpny3NuR9am3v9jauzKfsg0r9Rn3HbbvPffc08q27mdsV9aWVg+OA9yOw7by4PjC+rCelex69n1iY2jFrmjfDBwf+VzGcmfcEEIIIYQQQgghhLuM/KEmhBBCCCGEEEIIYSZ8LOuTMSUDlP2Wcut/82/+TSv/yq/8Siu/+eabrfzhhx+2MrMvmQyfZbMzWEYYSqUoSaWFiDLU69evrzzHJKa0TQyDS+Io9+JxXotQ5k4JOy1YtGlRusb27ZUI9+5C37ujekXaWsk0VrF37TSWsYL07lRfkd6bJND6prUrz6d08dKlS61M28UjjzzSyg899FArM6ZMOsvrs48zOwZ3i7csVOvk2Lw3f2/nWMyy3pSeMpaZDYsZEdimtD4xZs1yxnHNxmKOj2xH2j6tr5jE1GLTbD+VHfJ3Gqu7vf/KO6ctiHMK72XZWCoZ3DjPUorL+/L9MxsS61kZg/m8lFTzmpZtzOa0j2N34nPa81g7ckyxbGVm8TM2ZU+YYn/ttbVvymZwp6jMlb3PxPdsMT5lfWFZn7jmpD2f/XFsNfqIyjqxUmezcnAc41qSdq1h2Dp/MR7NwtDLptZAvdfZVGaZCpW6LcGuaH3Jvo8qzGF8mmJrq9hSGWss27rS7suYG4atW4cQvgP7lub8aJme7JqWKZlrBVKxL9latBIX22FL7P52vu0ZIYQQQgghhBBCCOGOkD/UhBBCCCGEEEIIIcyEjWZ96pUKmgSJViNahP7Fv/gXrUyZJOWg586da2VKqCgNNakYJeV2fdsVnzYCZqLhfSklo13r0KFDK+vDzCrD4JYB2xWf5/NalLnTBkVZKq0mfM7Lly+3Mi0ellGA9GaMmpL1qSItuxuzyVTO75Xhm92JksaKRNPeP+XZ7F+MO9aZffPAgQOtTIsPLRtm/aGssrLrPhk/i9kfCK1chllZOJadOHGilWnf+uCDD1qZz8w4ZYzzfJOGsszxi+1rUlhrBx43q0hVnjtHrC+x7pbpj/YiZl/i+cwqSImxtaVl0LB50OxlJrfm3MK+wH5n4wnLlDazzpyL2T5cJ6ybN/hvW1uwb/MeHOPY1hybOH5V4qjXRtFrKa/Ma5UsFXeL3YlYZkOjt+0tS97DDz/cyq+//vrKOlSuz7ig5ZQWdq45Od6zPmZ5Z9+fYhPjdTg+8F7DsDXmT5482cq0dVWyjm4qQyiZYlfcjmxuVrfetd1cYXvwW4zjrvWxSgbX7R63KpalTV2Tz8Ixh/NyJYsRGc/7lkXVsilxrOH7M+uT2ZDN+sT68Ppcx9o6fFPxUulPdk3L7mSWLhJFTQghhBBCCCGEEMJMyB9qQgghhBBCCCGEEGbCWuvTFOnrlN/y+LFjx1qZO8RT1vTMM8+08nPPPdfKlCebNK6SicYkZLwmrQaUnvJZKB/jvSgRX5fhgv+2djT5u+2qTVkpM1/QXmHPT/sWpWhT5J13UkrdK2ueE5WdyysZlyo2tYqVyaSVFQkopZHsa+xflA1yHDh9+vTK37I/WpYcWgBZpizcMkmN25zWCZbZLpRu2nUtmxttMIxTwmejjPXWrVutTNuMWcJ4X16Hxy0LkfWDimXJzl9y1ifCun/5y19u5aNHj7YyY4E2AcqKae/lcfbhd999t5XNpsPjZqtl21Nqzr7D2DQrB98t68z3bFkXaZ2gfaNiFRqfx3vwWmw7w2xQNt5ZO/ZaITYl37d72XWszlMyJO00lhmtd05k27B/MhZYps3uypUrK69jGeKsTMk/Y4rzF/spx2lilkY+L+cuG4PNjnHw4MFWHtswee+33367lfft29fK3ErAshNWuJPrvSnxUlmr9WbVXQLsG4xNxhfXHb0207mNT1MsrfaMbCt+V3LusjYZr9HMEsl50zJ+cm1h6357xxwraX1ifTiWVTKc2tqY2PdSZVy2bzDeyzLwjbM7r6zbbc8IIYQQQgghhBBCCHeE/KEmhBBCCCGEEEIIYSas1ZH3yn965Vv2W8qFKGWiRIi2iN///d9v5fPnz6+8L+tPiZ3JtSjLsl2reR3WkxJOylDNusRzeM3xDvkm2zXZOutNaRklWJSx8X48n9eknPeFF15oZcvWY9mgpshQNyV5nbMs8naYnNDke6RXcmvvkP3I7muZfCr1ZD+iZefGjRut/NRTT628ptkPGRN8Lsam7XDPcWmcwYlxYbvwm53M5O+sB2OT59gO/JS8m0S+IiM3OTvfDSW2lV33zQ7H629HFo+dhm1AO9rnP//5VqYFh5J/ns+5j++BEmDrI2xvvn/2F7Mj8f2wbNYP1oexxj7Cc/jsvCZjiBkSaAFkvI/tFfw9ZdW0V4xtxh/Btuid13ptTZVMTBVLqmV9smtafYwlZF4zerPxVNqJ/Y0xxeufPXu2lbk+tKxclTma47pZnNhnLXsp4butrP+tztbXGH/DsNWiyW0Orl692sq0V7DtLJtdJaZ6t2zonY967YqVuJuSLW4J8ybHafY3y1Rp77aSSc2+ASt9p5I1aEpm5N7r2BhCu6JlaLWsnsOwda7lOsBsR70WRZvXzT7K61gmU1vrVGyuveVeGyPptfNHURNCCCGEEEIIIYQwE/KHmhBCCCGEEEIIIYSZsFZzM0XG2yv9olSKsrRXX321lf/oj/6olb/5zW+2Mi04/C3lWmZZMqm+ZWIxuTHPpyyLv2WZcifKVmmhoiVqGLZma7JMG7bbNq/F8yljo53jgQceaGVaMJhxh+3Lc2g/sww6JgmrsKkd0klF2jsnTJY8BbPgUCZtNjuzAvTKje1ZKGmkFJrSywMHDqy8F2OFFhLaK2iDYExwXKKUdFxPthHPY1zYLvwWC4wvWp94fZO9cky5du1aK1uGJmLvg89o1pop8lFi2ab47HOlkmHg5MmTK48zy4H1Ecr/LWtfJSNBxTpgx3lfez92X7MYmxWRliiTRa+Tu/MenNcYXzaHssy5jLFs8ct6mAV0iiVqU/NphV5LwFyxfmL90OwDPJ9js9lsaQtg3zEq8ybryXg06y77L5+Llgdb93I+YTxatkCbN8f99PDhw61MSycz4dH2zPme5U19n0xZW9p1ejM0bcqytIR4JFZf9ltaXPmtZFYmi/E5tE1vP7LjjCmuN8yCb+s+jhvDsPV70MYsW0PYd7JlkeQYxPuO6/QRtMDZmtYyh1ayO1Uy5hI7zrHPtlNhnzaiqAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMKFufKudsKusT5UuUt/3O7/xOK1+5cmXl+ZR4UVplNiuTqlYyJBiWKYJlPpdJosYyfz4Py5bZgdelLJ7WEcrHWSfuzk+pK2VmlJHTOvL1r3+9lc+dO7fyt5TSTZF6TtkJv5LJbMn0yvcs4xD7EeOL/chsGpUsJRUovaZEmtZISiYtDvhcjAlaTg4dOtTK169fb+XxrvjEsklZhhTLmsOxac+ePa28f//+lfXmM1MKTjklZfcViTDhcY45lQwfZpdg2WwG/K1JeJcG+wLl/I888kgrMwaPHDnSyq+//vrKcziOMoMK28lky2x7kw/zt4wdvivaYZm9gRYtsxVfuHChlRnj7NeMO16fcxTjlHEwrjfnLJYrlg/OjxW7E5ky9m0qq5Qd780aY+VNWXC3k8rcRPh8Nj5xfVSxmFdsc4ZZZDg2mx2B9WF8VWxAlgXU1lCMOdaH681h2BprtINy7PjlX/7llfemxZ6xyTmUbMoeZedXrnMn15ZLXsfyHTJeaHnhOTa+boftrBIvleyyvbY5y9TG2Cdcb1hGTcbvOCMbY57XsiyiXHPaN6mNKdzWg3M8z+f1Kxa4ShZFsqltMex9c0y09jHmP7OGEEIIIYQQQgghfELIH2pCCCGEEEIIIYQQZsJaHfl274xdkZxRIvTKK6+0su1yT4kXy73WDFLJrmC2EdahYlHicWYTGF+LUlrCe1OSazIw2rEs8xahpH7v3r2tTLkaJcLMzkUb1DvvvLPyvrYj+RQqMkQ7/26kN6OE2RDYp2g3YJ+y91mREJpdgpmbaAmhJchikLFGu9NTTz3Vyt/4xjda2STfY0xWbvJcHrfMSrQ+sa6Ma9aJEmHanShPtbg2OTvbi2XGu41fFRuUtanZ7dbZz+aCZQ9g2eLIxir2Z8uIZVmZDN6X8wntGxUbH/smrQ2cB2xM4HHOCZz7KIumXYmWK8YE5/ph2BrDbHdbK1BWzXaxZ9iUjcjOL0mjO21HvXOczRlLsDuRSoZBO9/GNvYvjruMQcZsJYtXpQ5mReW9bCxnnPL8iq2J2PhgtqzxdRjnnNePHTvWyox/zq0854033mhlrjMZs+NxYVWdKraITWXr6aV3nKn0rTnBOlpfZZ+0Mdiuad9fNg5MydxFKtc3qzfLnLtsPcDMp7QD27YebGeOY+Pz+HuuITneWXyZfYvfj8ePH29lrnv5bGwjjhWW6djWrnZNG0Mt021lHrcMrbwmrVvGsmbZEEIIIYQQQgghhLuY/KEmhBBCCCGEEEIIYSZsNOvTlOMmU6JUyiRIhPIrWgEoOzLJXO8u0YTyNkrIKJ2u2B14X8q5h2GrjIp1ovzMZGO8Fo/zmpVn5vPwfF6H2UpMRs+2oDWjYkXrxeSgvTK2OVGR61asfCYNNZke+xH7OSXMzNjArCnsO9bGJp/ks/CalEAy6w0zN1nmGlonGDes2x//8R+3smVdGwa3EHKHfD5DJTYfeuihVmZWNZ5j97p69WorV9q9InmvSElJr92D74aYbWCuWGzy+Pe///1W5tjJ2GF7MLsZY8QsvfYObcwzqxxlubQgWCYlSpgpvTZJMvvsjRs3WpljC98/78X6MN7HUnP+xuyRFevmpqT2dv52Z3fqpdcavIR506w6trbk+ewvnFPYbxlHXNexf1X6kcG+zTmI9hAbfxhHfBZ7n4wDPguPc+wyqxfbajxXcC63LDNHjx5tZT7/iRMnWvn06dOt/L3vfa+VOW4yW6Rl3qpYn8zKUsmGNiVLbi9LW9Na3DGmKmuZCr1W7Mr5vVYpYr9lfHGNzTUjLVEcB3gOY5ZjHeNxnJGN8PfMWMk1N88h9m18+PDhVuY3I5+H16cl2b7zLX4rdiejYvu1LR6s3YkdJ1HUhBBCCCGEEEIIIcyE/KEmhBBCCCGEEEIIYSastT6RXlluZWd7Sod4vu16TfmSyeEppa5Id3vtIYbVrZJlwiRU47rxPMpMTdJJuwSlrpSM0yLB5+R1KDOj9JD14278lNBxF3LWme+A8lTLmmAWAtK70/6Ss1eQTWWpYntQjsf3QJk3M/8w8wstRdeuXWtl2pR4zUpGNhsrWGfKDNl/+SyUWlsGGfZBWjloAxn3QT4Dz6P1z2yNtsM845fjCO/F57HnN1mmybnNlsU6UIZrWRmIjaeU9vId8BnXjYlzxOKRz8E+8t3vfreV2QYcpxl3vZlZbP61+jD7EvsRyyZn5njP+KL1w2L28uXLrUyLEq/JPkjpNC1jYwm2ZYfiHMz5i32M8WvZCafYjjZlT9iOOcCuP0XiPydszCO0F+3fv7+VOe5+7nOfa+U//MM/bGWbv3rbz96J1Zl9mXBuMStiJeMb15K2pmMM8tk5hox/w/odPHhw5TMw5lk/jhEcj5hZ5plnnmllrpl7bWm2btxULEzJ1tRrrZoTtsZjn9wOC9emvicMi/eKJc7GKK4N2Wdp4bdsQmZR5Fps/G9+V9u3q9nheQ7j8YknnmhlrnXsO5fPY1mfKu1YyeRnGS4r8W5zOscZPlelTy/36zSEEEIIIYQQQgjhLiN/qAkhhBBCCCGEEEKYCWutT2YxMHtCRR5bkSYRyrooh6e0yjLU2G7KJm/c1A78lHyzzpRkUj5KmRVlXOMMONYWlKrzHN6P9gSTsfJ5KHszS4xJRvlb3pdyVr4/PsuFCxdamdlHTHa+KZa2Qz7jztqjksmiIsPmdWwHfr6fXbt2tTItMiaZ5nvmNQnfCaWXfBb2R8okaZdgHeydM35Zpm1iLBPl/RhHlIxyjKBElTBemMmGsWwZaizDFrF3zDGB0nk+P+vMd0CbisU1YfvweWktoDSd2DXnRMUOzP7C90lJL8t8tyyTypxLTFZ86dKlVqZUmXHELA1mq6UdwayIfJ+MFdaNscbrs49QCj5+Xo5HtGgypjiOmO3XrCPWvpUMMr1Uflt59xVreuX6S7NXVLLxmLz92LFjrUzLOOcvk+Gz7/S2MTGrwjhD6Kp7WX+0rCn8LecEs0Tx2W29MbZr8X60UvNalqHKtj+gXZm/Zfm5555r5TfeeKOVmVmm1wZVyfo0JTOf3ddYwjqW2Ps0G7fF6XZkyqqsn4ltZ9H7bi0eOZ5wjU0413GssPgdX4drPJ7HtQLXtLwHxwuuG774xS+28qOPPtrKXGdyPOWagLFp1qpKmVQy5rLMdmebcJ1gFlCbGyrfs1HUhBBCCCGEEEIIIcyE/KEmhBBCCCGEEEIIYSZMzvpk5/TS+9uK/aoiP6tkfTIofaJsn3JxyjkpBzMJHGXt47qZJM7sUhV5NtvFMjrx+jyfu7FTEkZJOSVqlLdRhkrpP9/ZuXPnWvndd99d+SzbIe9cspybVPq29RGLEcsGxb5DK55lCqKNhu/cbDQW77QHmfyb9TQJJPsjn/Hhhx9uZT7Xun5nsmfLcGQWRT6P2TsZO7Slme3Nnp9jmWVt41jGuvFZ+Izj7Dur7sXrU6rLeOc4w7rNFWtjk0/b+ZZ1oWJdtBg3OT/nHfYpypCZWeno0aOtTDsS60kLws2bN1den33k+vXrrcx5jBJsSq3ZF8wWPf63ZV5kDFqmSdIrW++1LFUyVlgdzFJhEutKxkMb0xjLS8vIZjYaPivnBY5DfFZaBadkcarA9uZ4zOPsv5V1smVgtOxRlXWlZZYZn894JpxfrO/ZdVlv2u15L7YR3/FLL73UyhUb1JS14qa+qWyttrRMpuzDZlG1rRrIpmxQpHKditWVZT4vj7Ofsi+bFYm/5bcn51bLREzG8c61OGOBscn53mzyn/3sZ1v5ySefbGVaSe1bomLzr3z/2xxayVJK7Hwbi+xvEGZjM5YVySGEEEIIIYQQQgh3MflDTQghhBBCCCGEEMJMWGt9quxoXtkluyLJppSLMijDdlKvyLx7d3C3+1JCduLEiVamDYrybErZTTJsFodxnUx+zN+zHe23ltWCO61Tikf5Gc/hTuC0uPC3bC/K7JiVg1I3yuoodavYuyqZxowl7JbP92ySS8uQ05uxxOSaPIf3Ypnvzd4nZa7sO7TUmD3OrDmWfYj9zixd7NeUm1LyOZaJmt2AMk6OBZSV8pn5DCZtJ7w+y7bDfKX/VzLC8HmtjcxKaRJewrGL78YyHs2JyvximVYsjirZW3ol3zYOsG6MOxtPKHlmv3vsscda+a233lpZtvGBNivCGGJ8EMrjh2Hr/MIy5ybaBtkulmVnp+aR3mya9ls7buNY5TpLwKxg1n6MBfbPGzdutDL7vMnYK3OuwXfCvs05yKwQ7LOWAYnPSPhbxoqtz3mcdbM15jB4pijem/MI68p2ZJzy2cw+zXWD2fkvXrzYyhwfSCWbV+UbaTuOL8GKSOwdWrZb0ts2m6Kyfq5sKWB2W7MfMm645uL17buK8ybPt3uN78GxgPYl1unTn/70yvLp06dbmZY2rgN4HY65Zm82W1MlM25lSxCbMyp/g7B47LUlRlETQgghhBBCCCGEMBPyh5oQQgghhBBCCCGEmfCxsj5VzjFZ0JQMA5Xds/lbswTZTswVKFGjtIwZLsziwPua3JTSS5aHwXfr5v0sYwftJRWZO+Vnlh2DclDuCs4yn9+krTyHGUQsm5XZrzYlbVyytJtUZJkVeWwlpsyKZbYOvkPa5nh99gXaK9h39u3bt7KehO/TslYx1tinGFt8xrFMlHU1CbhlpbJ6s70oBaZMlGXet5IZyMZW1pn3Zf1ZZhtxjOJ7Zbvzt7y+7fzPvrKETBZmQ+Bxs65S0luR1RsVC4vZ11gHvgdmZbp8+XIrM8MD+w4l1nzPlrmL57A+hH2HsmvOxZz3xnWizZD14P16ZdK91gZSsSNVzmEfMnuqWUXYPjaf2niyNCrvhG3GMYn9n+3EOLW4610/V94548XWVpZdxNZ9ZtW1+jATolmP2R95r2Fwqz77JOOZljPbVsAyHvJeHC94PrPS8BnOnj3bypxzp8T+prI+bcpeMSdse4be77U7yZR3aHZbxoFlIGR/ZKxYX7AMU+Prc83NcYFrPMYgz+e2BcxEZVthcFywbS4qttXebVkqGRUr20BYf7Xrk0qcLjeSQwghhBBCCCGEEO4y8oeaEEIIIYQQQgghhJmw1vpkWZkqO4vb8YqtidjxisyssvtyRcbLZ6f0+vDhw61MSZfZvlgHk/NRYja2PpkViJJRSt94P1qfLOsKJaCUtFLexjrx+teuXWtls47wOKWnfH5aq2hrYTveunWrld99992V9e+VwJElZH0ilWftPb9SZj+nbNIsUfwt+yzfId8J+86hQ4dauSJzNsmz9Xd7FvY7Ss1poRiGrf3WZNuV3fwtM5zZFSkTZXtVMvARe36zh/AcPjvlr9yxn++b53NMY1zTVmmZHpaAWSHsndj7Mdkzr2l9h+/Nxkiew+uwzHMYs+yPlpWGUmjWgXYJXt+sJZRLs004n4yz0jDDi2Wv4D1s3WNZdipWqd7sI/Zbk1vb+yOV5+J75Vqksn5awrxpmUBsvWrWnEpGxcqattJmZlUwbI7mWMt5ieOuxQGP06bAcdoyKrLdmPFtGLa2r4077Ie01fO42SZtnW1rYz4n68Dn5DOwDpW1SOV7Y1MZ5ZYQj4R9hv2T79wy2c6NitXVtghgv+N8xy0izGLMeZNzrsH7cl02DFvXuIwvs7HT4sQ6ccyyMcXsTvatyraozMWk8m6sXLEW2lzC81m2+XrLb297RgghhBBCCCGEEEK4I+QPNSGEEEIIIYQQQggzYa31qddSQUzeWZEXVbKUWCaaivXJpEx2jkmsaX2iTMwyelDiZPelrHQs46KVgLIxSgP5G8oHaWWiRI2WkldffXXlvWhr4vXffvvtVr569WorU0rLtqOsmm1HixOlbpTPsb34Dig9Zbl3V/ClUZHdWT8n22GDsvpYe7Mvs49cunSpldkXKPs0+T8lmSZnpq2H16R9h23IGBo/CyWqjHnGkWUDMnsJ68TjNvZVsviY3YvyVI4PzOjDe/F5eQ7HnJs3b7YypeOU57LMtqJMn89bkf7vNGz7XnuvZUupzKcVybRJj63vMJsZ44Uyaf6W53BOZFZEWpEuXrzYyrTVmuXEoHR6bEvk7y0jEvsVxw6LTYupKTaoyrrBrGWWTcMyirGezM5WsQP12irnhMWjZQLdlH2e9GaHsT5iWZ/M9sjn4hqN8xrXYuxTrAPP55rLbFZcJ/K+w7C1T3Ie4f0s+xTjjtmgWG+zPdtWBZz72b6nT58eVkEbFNfule8Kw9ZSUzLvLg2+H45/7C9Leb6K3dzi2jJqco4yGw3PsfGB8chYHteD629+b1pdzW7NcYH14BjBNWFvlq9K/6+smVlnwvrYmrzyXi17n7GMnh5CCCGEEEIIIYTwCSB/qAkhhBBCCCGEEEKYCWutT6SSyaj3eEXiV5EN9u7kX9n1mXWj5Gz//v2tPJZYr6oDr8PdrCnho+SbdaBMbBi2Pg9/QykXZWO8H6/Fe1MWT0uRZWChRI02h+vXr2u9P4LtbtL2o0ePtjJlfJR5s90pw6X83e5ru3YvzQbVa2Wyc2zn+U2db9J4qxv7LPsU5YFmtaBlh33cdp1n3LBM+TPjbJ3thv9nGZEYF2wLnsPrsB6WXYJwnOI12UaMEbM+MdYYgza2mESWv+X5LHNsMZk+6ZXC7gRmYemVvdt8ZHHH89mWfD+sD/u22WhojWV2FPZxxjL7F8d1Wl1Zf86nX//611uZ8mobs82iNLZKcb5gu7C9WG+zjvA6jLXKmsOwvmI2M1pT+D74zngdtgXLfPdmS+Rz9Y7jc6WyLq1Yn7bDQl25DuPO+nLFEkKLscWy9SP2F85FlqGF8x7tsMOwNaY4BnHM4nzB82mNZvzSyse24DMwvngvyzzFcZDX57OZpbe331TWqBXL4dJi02yatubkOZXsXjtF5T2zzuzLXPdZhkReh8c5R7GPWMa68brS1sqcdzg3mZ2HcW3vjM/M9mLmKtaBv61k0rKsmbbeqoyntiYz+zrHHLZ1rE8hhBBCCCGEEEIICyJ/qAkhhBBCCCGEEEKYCWXrk0n2TOpbOW477dvO7iYjr8jCjUoWG0rOjh07tvK42Ywoa+Izcod4PiMtR5SxDYPv3G2yOcpMaWuifJpyLNu1n/YiXpPHTWLNetIqZe1FCfeRI0da2bI+sQ6Uy5s9hMxBFvlxqUjRK1lmjIpEvDd7RS+UD1++fLmVKaWkNJKyaB5nHDHueH3LrMJrsv+ue0bGEevKdqR8mrFgdg7er7IrPi0lrA8zKzGOaDmkzJvnWCYaYuM168/xgW1tz26ZO+aKZRUwCa3NZZVMNCzbmEr4HiiN5lzG+YEZmmiTtYx8Zq/hPHPw4MGVdaPVkfMMY5bzg80VzFI4xmxNzG7FGGH801pJSTqlzhwjKplfLMsh78X3wXfG2OS7f/PNN1v5ypUrrWw2YbNVViziS8j0RCpSd1LJnNhL7/xo/cWsu8TWhixzPuH6lr9lv2B8MQYZ75x/+VvGx/g3jGGzQfG49XnWyTIx8dk473CM43HGJudWjmt8r7SWsX2tDpVvqt5tI5aSFWkV7Oecy+ZscerF3rlZkyyjIteSlbUHrUv83mSsDMPWTGqcd1hXxgjHFLNVM5Y5bzJG+L5Zb853nKPNutmbXdHsUfZ3h4o9iuMJ1xgcB9m2xnIjOYQQQgghhBBCCOEuI3+oCSGEEEIIIYQQQpgJa61PJs3qzbxhEm5imZLMEmXY7v12jsmXKNEyqSNl3pRiWUYUStQoB6Nlh5IxytKGYesO2yZxs6wevJZZoijvpAzMZF3sE2bLMssDn5nvibI8yyBj1hTKX3mvyq77S5NOVmR3fA+V+K1kd+ptsyntyt+yL1POv2fPnla2rEeUVFucmv3OrCLjDGO8ltkrKpYl3pu/5f04dvActgWtE+wrr7/+eiufOHGilSnL5DMz1nicdgmOLcwKx/HOxgeT+dr4ZvLUudKbkaMSdzxOWwHficUp288yazDbmGUhM+sE5dMcj2mt47ulNJhjPOdZs2BYZquxhLsiXa7IpxlfLHPseOutt1qZ8mbLzEhbE5+BWbIsKw3fGed0ZsO5ePFiK7N/TBnTp1hqd5re5zOrlNkuptiBK+tSWg3M2mBrYPZTjs2Ma8vKwjGeMWhZlQivOV7T8t6WKYm2Z8a2ZSBl/WjfsGxVrB/HHcYg453zL9eojK+rV6+2Mtud9eeapmKPMu7GjGzsJ+yHFWvm0p57HXz/bAf7DiWWhcmypo7XtGxr/h/XBGbJZqwxxvkM9p54X8vORns+1/pmdeS9bPyy7yiLQbObst05PvBbm3XjWt2IoiaEEEIIIYQQQghhJuQPNSGEEEIIIYQQQggzYa2OvDebDM8ZZyy63fkm17Qd0ClT4r1MJl2Rp1qmJ9oCKJOkzMpkzrTyEJOOMzMD6zA+j//H5zFpLDNq8Hlo52Db8Tkpk7XMASZPJCbj43FaMyixo0Scz0hZHZ+FctOKXJIsQcJt0mjb3byyGzrZDrvYpmxQjDtKZBmD7ON8/+xTtM3xOOPM7GOUYQ7DVksCY4d9lbYryrYrNjbbtZ9lnsN4ob2Edidm5uBvmbGCUM7KZzl//nwrMyMIz7GYsoxUbGuzuMyVXmtIJR7NamGyXMsqyHuxz1I+zOPsXzzO+YdxxNixMmOCcffwww+38pkzZ1qZY7nZbWlPpg1oGNwux77H56dEmf2N8wvjiFms2O6c48zqa5Zem09pr2CsvfDCC638xhtvrDx/Stai3rXgXOnNwlaxCW8Ks7AwRhiPtOCYvY/9y+wkloXPspFyHjh+/PjKe9kakGPFMGyNO8YpbUGMHa4PaS+iPYr1Y73NXkTYJ3h9xjvHqSeeeKKV+Q4ee+yxVua8RmskbVm8F+ffSrY/6zdLyJBoWHavStaspWDrPj4744M2IMsmals+sO8zBi1D7zBsbV/rhzzOe1gmZltPc43HZ+PYx/nXskHxW7WS+dLmMsuoZ1uxWKzZuorPxfWQEUVNCCGEEEIIIYQQwkzIH2pCCCGEEEIIIYQQZkL+UBNCCCGEEEIIIYQwE9buUWPest59MCr+NmKpuumBo6fN0nDR22heavpi6Y07duxYK3O/B3pv6Z2lN858xIR1HqdFW3XOMGz1uNF/Zyl0uY8APb+21wQ9kNzXgj47889OSVdpbcrUoqyD+RZZZ9vvYopPfwmY77WS5rH3ve2UL5jjAFMAHzhwoJUtPaD5uenbpV+c4wyfl+kBh8HTCHJc4LUsTTKvw37OuONxxgXjndfhcRs3LD0560+//8svv9zK3DeAe2xxfwzbD4KwPktOOVqJNRuHbA6tpOq2a9KHzmuyP9q+RLwX5zXOrZauk32QMUsslSXjkfHBfsrrW38fBt8Hg1g8cu7nvbknDud4lhkvPJ/72FgaesL3x/f0/e9/v5W5pw/n+u2OlyXEI5my35rFoF3fjlf29WG/YJ+y/Z1sbmE88pqMXztObO9Errn4jOynnEO4hh3/3vZX5PqY+9DZXjS8N+egyn5DfDeMO45fbHfu0cN03pW9Inn9s2fPtvI3v/nNlc9i+48YS9tLylLD8/3bt+ESnm+MzeO2pyb7oLUJYXtW1gzj9QP7uY2VrIftBWn7tDB+OQYxdjg+cBy0dYPtuWr7HNnfMlgfawfbS4hjMZ/X9u0dj4mriKImhBBCCCGEEEIIYSbkDzUhhBBCCCGEEEIIM6GcntuOm9WCsiuTqPXaZSp1M+yaloqU6fgop6KsmHJQSsD27Nmz8reUU1HSaBaqsVyc0mvKw0wSyfNZpvySsjG2qUnBKym2LYVZJfUsn5lyVlpcKDHl+6O8nJJXpmvl9U32tgQZpdXR0t9VLIebSsO93fBZGI8mi2U/ZV+mJYr9aO/evSvvxbim1WIYtlo1+A5o52F/tnSEZv9h/fg8/K1JLikxpXSc9kDKVk1Sfu7cuVZ+5ZVXWpnjoKVErKTnZp17rQVzwmTGlRTHlePE2tVi3MYEzkEcazkf0Yo6TrN7u3uZjYv1ZP9l37RzWObYz1S9w7B1jOB1zUpssmfaHSl1Zpp7zjVcT5htm/UxuT/n6+985zutTLsT7VSbihHrf3x/S5s3yaZsSptqb7Yl+x3td5x3zOrIvsy+zz5idkJL2815hnHDOZH9mv2d8cT18PgZLDYZa4TPxmeo2EIq75514zj42muvtTLXz7ReM4W3fRfxub74xS+2Mt8B7Y0cBzbVd+eE9X+u5dknK1bEOWN15jPa+Yxl9heuH22daNtIjGOF/YdzmVl4uLbkfGx2TcY4780YYVuYVZ/PQ6sU4frG2rey1QvrzPocOXJkZf05PpIrV660sq2ZSRQ1IYQQQgghhBBCCDMhf6gJIYQQQgghhBBCmAlrrU9T5Oe2gzLlVDzea52xTFJ2jknsaX/gDu6UdlPGee3atVam1ItQ+kSpF+VqtBfQBsV7UW45DFslW5QDsh0po2K78Lr8LZ+H8jZaHuydVTK5mPzd3istGGyvt99+u5UpnzWJHWXqlADynVk/WxomP7cYtPPvpMx7CqwD5c98tzyHUk3amojJMCkZtYxnY8wqyL5NuabJSvnOCOXWfE7GhVm/CGOT4wZlom+88cbKMu0xJt20fmbxbtmJ7Py5Yn2jYmXqtf32Zl20tjSLE+cHns93zhjZvXt3K7N/cSzne+aYbfJsszeaxXCckY19lb9hPRh3vAdjk23HcYS/5fm0YHAdwHjkXMznpM3h2WefXVlmm+5UNsM5W2RXUbEibuqZeu0pjGWuPymrZz/nnGXZUbmOY1/jOZyvaBukjYBz3zi+PoJxw/XturnSrNqWPc6sB5X1TcUWZO+e9eE648UXX2xly2zHMY5jAsc7zum09jMDJd9lxR6zZBsU5yPWnW1p59v2BnOm8q4ss5tdh+ew3Rg3jC2OD8OwtU9yPmZ83bhxo5VtPGKZ6wazsZnFiddhvWk95hrF+grXt5yLWWY7cmzhO9i1a1crM0s0z2eZ/ZJtNd5GYRVR1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEmlLM+mf2l9xxiMlSrQ+W4QRkYJZ2nT59uZdpoaCOg/JDSUO5Sb9Iyk0/yt5Q0MmsEd5Efhq3SNMrSeJxtSmmZydwpYzUpODH5Xe/7qEhPzbLE9rKMCGxryogtI0LFljBXzIJWsThZNpalSNr5ns1ewXhkn6U8m9Y6xhZhe45lopUxkbJn9lXaIohJMS07gslN2S4sW6anF154oZXPnj3byhyb+CzEJOiV7DD2vDavzJXerE+VtrE+xf7ce1+zQfHdsl9w7KTFifOmZSdjfL311lutzLmY4zTnPo79jDvWme3Aug3D1hgxaTjfAW1NlHZzXOD5HF84pxiW3enSpUutTIsTM79w7t6O7E5TzpnzPLGKijVpyjzYm7WN/ZT2F8rqKZ+3DJyMF5sHOI5aTNGaw3pybmXZ7La85tiix+dhvc3iZVapO2n54TNzXLN1P78NGL9sL66rmUWR3xtmYd7UN9JOY99KNlea5Xpp49AwuI3Xsu/yHM4h/K5kmbHMeGT8jbOrcY3KOZVzItcHdi2OL7YVgNmd2Ict4x23LFmXxeoj2D9YfzvHxlmew/tyDcDYtz5tNjYSRU0IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmwu01NyuoSMtMIlSRK/bKTe2alJNRinXq1KlWpmyKEiRKGl966aVWZkYMyrJMrkbpE2WMlEeZZWNsr6A8knI3y4LD821Xbd6D51MSRokay2a5qchQTc5ofYXPRSsapfMm7yOWCWkpVp+PMFlrxQZllrWlSWWHYWsfodTT+jv7C2XIZj9i/FJ6yewu4/uxrSl35BjEtqbNkljmHl7H7su4pmXp3Llzrcz24th04cKFlb+t7IpfydZk2T1sbFlavzTbkc1Tho2LPG7ZfnrbjG3PDC9XrlxpZWZX4BhC+yxtCpxbOZ9y7mI/5fhNuwdh/6UcmzExjmX+27K7cYxgW9CCwkxMtEGZrZrvgHM8pd20gdHi9N3vfreVGac7NTdV5vElsKk1Z++9DLalZSNlvFumFGYyYd802b7ZRrjuO3jwYCtzbch451jBvs9Y4W/HmZFYV86DPI/PxnpXtlfYDixbIrPLcb1qtg6+D74njokcKzkuWbYwsrTY5DPZWsPWPsT69pypZGzk+MBYMeut2eIZN4y/8XYXzGrEudks7Vwrs35m1eb74295Pu9r1i/2CY6bjB2u12ktJIwvi02Ov/x+4LthmTZqZtBct15ZRRQ1IYQQQgghhBBCCDMhf6gJIYQQQgghhBBCmAlrrU8mcbJzCOU/Jmk3ualJ2nrlt5RHUa5JyTRlR5QyUaZEu5PJnSqyKdbTMrFQ5knJ8/jflV21WQ/K2ng+Jaa0Odh7NbmpnV/Zkb4i62f7so1og6K8jfJHltk+LC/NAmR9vmKFMFtJJQvG3LBxw7JjsC+YVY6ST7aPZUgbhq2yTJMoc7zguMO6mkycMk5ek/diXNOy8txzz7Xy888/38qUuVcy6xCOAxUrXWWstwxGS6bXamHz45TMHmbxNFsW3/+ZM2damZmYaAOk3Jr3ohWC0mbaJfhbjt+0PjEmOEdZFkTWbRi29ivOoWYNZmxSwn3kyJFWNiupZaVhXbme+LM/+7NW/s53vrOynjam30nulswyZFNZnKYcZ3/Zs2dPKzMDGtd6XPvYOs7WiZwH2ae4/rR13OOPP97KjF/GB9fGfEZm6RyvablG5/hilli2I3/LmL2TfZL15BzNdQbryXWDrUXtPfVa6WzcnyusO213HM/ZPzl3jNdjS4PPxZjls1smU/YR/pbff7Y25pp0PM9wXLC1Ge3Q/D3HBdaJccGY5bNxLmdd2T94nP2c1+d4xNhkPc2Gb2tUnsNx8Pz5863MsZv2b66BOHZbNjcSRU0IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmwlrrU0UmbRJuyhUpF7LrV+5bOYcyKMqyuPsyZWOU/9NGc/bs2ZXn8FlsJ22TvJo8lbYDSrcocx1fi1Iu1oO/N4kXJd8mY2VdaRHhb61smQnsWXrtUbw+LWpsL7O78LmWnMmikunM+ifljhV5pN13DlTshMzGQPkhJYpsE/YXSk85boztFZZ9ie3IHek5PlJWWhlfLMvbjRs3Wpk2ih/84AetTEsU62ZZFmzH/krGjd6MfZWsFjaXzJWKpbJiG+3Nnmfvx+w+LLMvcG7ivWhr2rdvXytzruQ5zJ7EujEbFOXu7Gucu21esnYYBn8HlB8ztgll27wuZdu8t8WyZXd69tlnW5nz19zGWbJkG9Sm5vze31ofZL+j5ZZrV7PXcCxnTDEuaCey9R3HXcsayvvSAszrsO9zLmKcMaPguN779+9feV1aGGy9Ypn2prwnUvmt2YRtrWb1t3tVnsuss0uDdefa7OTJk61MG+zdZH3iGtXW8+xrjFP7TrdvMv52vLZi3LJOjHOOWYxNns/7cd1sGYc51rBOXNPzOfls7De8Ps+pZAS2NqpkJaZ1i2Mx+7FZW40oakIIIYQQQgghhBBmQv5QE0IIIYQQQgghhDATPlbWp4r01WRElUwgJgUnJuszeRHLlGhZNgZKvk2GbBIwyzJBSRelWJahiOVh2CoBpY2Cz2AWIT4zj7O9KN8ym4NleCEm0azYACrnU7rGNjL5Y8WWtjTrk7WNZSMhPM72q2Qum3M7Wb+wcYZScFoZbEd9xso6ewXjiG1H2Seva1nJbJd7ZtFgRqcXX3yxlWmvoL1xPKasupeN++w3NkZXJOgVi4T1rcrcsNNUrExT2qZiJ61Yg82mw9+aFffy5cutTGsS7Qtm6zDrB+9LuTHr/NBDD608vq5fWFYIk4lXskFV1jGWFeLb3/52K1fWGdvBFJtS71ptTvTatrbDzmVWRM5HbGPaCd94441Wpu2bfZxrQ5Y5/1BuT0sB11C0lnB84JrW1glcq77zzjsrn2UYtm43QHsk24gWSo4jvBZj075VNvUuK5n5KvYlvrMKZnGfMpfMFfuO43uubK8xZ9iP+Iy0ErPvV7KBmYWX7cnzac1hzI7vwXmTY4fZmjiOmH2Y9k5aJflbjh28fsWSz75iVNZqFu+sJ22oPJ/f5nwHfBaO+1rP254RQgghhBBCCCGEEO4I+UNNCCGEEEIIIYQQwkwoZ30ilR3KbXf23l3VK+dT+kR5kWVyoQWJ0kvKryx7EmVNvD4lZ3x2SrdoWaBsk9JTsyiN783fUO7F39hu4LZjNnerNouIycAqmcCIWTxMGmr9gNdh2xGTxpl0fgkyyortyGR9lN2xT95///2tTMme7TY/NxjX169fb2XGmmVbYptY9hz2cbOVjf/P7By8FuvNdme9aZ145plnWplZY2hHoTy9kiHMpJ6VbH9TsFizcWYJsdlrceq1O1Wk95VMI2ZhqdigOK9xDj137lwr08pgGdYs8xhjyMqWjWHcnpZBhBZF3tts271Zspg58qtf/WorUya9U/25knWxcn7vdXaa3myTdrxiPyS2bmSmM9p6aBdgxjDakWhFZFyYdZfrO/ZZi0f+lv2UdWNGRbYP5x9aKpjlbVxXjimsK8cdW9OaDaY3m5JRsTXZd84UO/CUTIFLw7JZckxlf1t6pieuv/iNxbUorUk8n7Fv9mGWGe+WXXNsFbJvK7MlW2ZS3s+yJfIZ+F5ZB8v4aBmzOG5UbFA2v7P+LHOM47PwXlzb2/uuWCCjqAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMWGt9Mkx6XTnH5H5TMh7wOpRx8pq0EVBKx8wMJvus3ItSLJOlWVYdk1nRBjEMW2V/vB+vRRmVydX4/HweysyYvYPtYvK2XltE7zmVDB8Vub9RsVnNicrz8bhZeHj85MmTrUxLlEklrT47hckSzV5BCTflioxrkzyPLWBmP+TvLdscxybK3Gl3+tM//dNW/t73vtfKFbtmb3+eYoWYYvUxWbvZXeZKJevIlMxXdk5vFsVKZkazEVCazv5LawOP09bBuYsxyHtVZNfGeDysWBY5XlCWzHvTwsEY51jJrDx/+Id/2MovvfRSK1vmtTvJpsaEJcyVpNfmUpnvKtdkrLF/McPLnj17WpmSeWZ34nqVfdDWkGZdNLsE5yXOm1zTWqYyns86cBwYZ31inNO2cOrUqVbmeMEy25HjCOdis2rbO55i8eu1I02xQVWyrc05Q+cqWEfLkEt7nPXzOWNbO3DbAc5RBw4caGXOM4RzMePD5jq2J88Zz5uc+xjbnIMtoxN/a7Yr1oNluw7HCvtOtgyqxLY2IPxtxYbPOnB85Dl8N1y3M/uVEUVNCCGEEEIIIYQQwkzIH2pCCCGEEEIIIYQQZkI561PF2mKyoIoMv1dmWJEBUs5MySjLzJ5UkUlSKmXWCcpKKcWiRI0yarNmjKVulFTx2Sibo6TKdqum3I33owSLz/DAAw+0srV1RYJvVHbRr1jRTMpvTLEl7DQWX/ae7TizsfzWb/1WK7OvXbp0qZWZdYJYxq07SSXDGLNJsL9Y3zEr4RjLOsHjlPOyHRmzr776aiszu9O3v/3tVqb8l3Wq2FAr42YlfnvHZbMvsa1pOTNJakXyvdNMsYJNsawZvXO3jbs25rD/cm5lFrJDhw61stlYzVrIMu9rWZ/Gz2g2Y87NlC6b7YrPxvh9+eWXW/nP//zPW5kWRcsQcSf5pNqdtoOKzcWyCtLOcOTIkVam/J+Z1JgljH3W+hHHUa5R77333pW/5drV5jg+L9cMFls2B9JCNQxb1982HzMzlmVnM9ss6Y273vNt7K7YqSpMyRK1BNge7Cccm2kfWYrdybB1GS19jM3jx4+vPN/WqxxzCMcHwm++cf0Yd1zHMs55XftWtbmV38Z892aH43XGdsqP4LhjWz+Y3bryfcX24bhsVnBmwaxkoSLzX/WGEEIIIYQQQgghfELIH2pCCCGEEEIIIYQQZsLHyvpk8naTfW6HLcLkSLQUUVbJ8ymhsp3DTUJosm2T89PWRLk05XwmO6cUdhi2ZoR57LHHVj4Pr8v7sa5sI9qaKD87duxYK1PaXsn4NYVeC9WULDNLl07eDttJnVJEyhWZgeLf//t/38qvvPJKKzP70IULF1p5DtYnPiNlnJSaUw7KcywzDPsOY3xd1ieWeS1KIq9fv97Kr732Wis/99xzrXzmzJlWpu3C5OZT5NC9lpteS6Ndk+/A2p3taTv5z4mKbWtT0vjeDCQV61OlbpbBkP2U/Z2ZazjnUAJMS4W9cytX283qSjgPcm6lHeXcuXOt/PWvf72Vz54928p8/ilZLaewHXanpdmEyZS629rPsqtwrmFGo6NHj7Yy7UiUyXNurfQjs04wpmgbYewwXrhepZyfdWOZvzUbLtch4/Gbz8a1K9clbEdal2nV53NyTJmSYW1TY3Hv+tP6qM0fRu9WADsNn4nvmfFlsbYUbD3J7St4nP3avr34PccYN0sUsaxKw7A1bhmbLNu6kXOl3Y/n0+7E52E/YCzzOMcjjn18Zh7neMJvIXuWXsuhtTvfDc/ncSOKmhBCCCGEEEIIIYSZkD/UhBBCCCGEEEIIIcyEj6Ujs12TiUkfK7K+3jqYDNvkfib7JFZPSu8osbRrUtrJMiWmJuEety0lcZSBcWd/2p2487a9A8pHaRHhs1G2a+3SKw3ttU5U3pndqzfT2BIsUbZ7OmPBns+kpMwmxEwTn//851v5j/7oj1bed6ewMWTXrl2tzP67d+/eVrbxgW1o9iiTko5hnLJ933zzzVam9emFF15oZcpHacHo7as2vliWO6OSnc36nI3vbB+ObxzTlibhJhXpuo1zm8qQaNhve7OXsG+yzPGB8w9lzrR+MKY4/1j2OusX437KNuW8S4sT5dzk4sWLrfz666+38rPPPtvKzNRm2aPmTK9lY8nWp954sWelXJ0yfPb53bt3t7JlG2P/Yj+iNZZ91urGeGHdGDtml+C6lDHB/mtxbVsH2Pp8bEXiv3ke575HH320ldnWHC9olWK5Mnf0Wk83NW6SKXG0tBg0+Bxcd7FfsH8uYZ0+hvFIOw77tWXZ5XFuR0ErD9vQrIjcEsQyIw/D1jmb61Wu06wezBTL4xzLOE6xTpallfXhcWZH5pYdlUxwFVu1jSG8PuE75ljE971nz57b1o1EURNCCCGEEEIIIYQwE/KHmhBCCCGEEEIIIYSZsNb61CvbtixIttMzJUK2o3VFrshzKtL4XluM7fBP6SWf13bON8koZVbr7BX8Pa9LWZrJ2swSQ3gOpa68Jp+zYlebYpUivdmg7LdLtjsZJtMj7Le0Apn1gFknKKuem7TfdtGnrPLQoUMrz6EskX2fv7XxbTzOmKWI7UXppmXEoT2K40ilr06xJvVi9anEl8nFOb7x2fmelmB9srnSypuSzFesxJW+Y3Mxxwebf5mBge+Q51BizXMOHz7cyrS+8beVrIPjccn6GOORcxwtw88///zKMi0rlgVjzmwqu9PSbBeVzDkWd5w7aEM4fvx4K3Ou5HVoBWCZcwXHfq6/bJ619TZtv6wPz2eZMcgyY8Us/FxLsJ42Zo+fxdbBHCMYaxwXLEsQz2EsT7H4bYfd3sZoO96byXRpsWmZy9i3l7hON8sk45TjCeG63bayMKuj9X2ec/78+VZmXA/DVvshr8XvSsuqxlimjY1rCMYs+zzHDpuvad3kWMlnoOXKxiaWzXZeyWzNPmrbo3Cs4zd7pU9HURNCCCGEEEIIIYQwE/KHmhBCCCGEEEIIIYSZsG1ZnywrjUm+KYmqyOcrVoBe243Jv83iREmXSUkpGeOO5ZRBmfR9DKVclHi99dZbrcxsPZSo8dlYb8rG+AyUnvL92U7XU6wZvefY+b1Sz6VJQ4llwbK+RImiZWxh3/na177WypQes69tyvrUm32DULp43333tfJDDz3UyrajfsU6YRLusTzZdoxnzHMsoEWEknfb/X5Tkt/tjkE7bmMxx9ZKeQ52u9sxJbOMHa9Yk6Zk1TPLTuWaZv35/ve/38rM3GLZxpgNipYKy4plkupxe5rlkPfjccrBX3zxxZXHGadzsztNsXj0Xn9pc2hvvDDWKGPnPMJsmVw3MS44b1qWtIqF3yT5tPvQUmE2AtaNfZ/1IZZtrWK75jnj2Ld1I+OLcyWfjfM916W0zdCGYFkqp4yhletMyS7WS8V2O1fYfvyGYp+pZtucE2x7zmvM/GMZgYjNcZwHuc63rIaMd2YZpR1nfB6va1t12FYm/G6tZGcjNg4yljlmcS1NSxjbziygPIf35XXYL/nObF1i390cr/mejChqQgghhBBCCCGEEGZC/lATQgghhBBCCCGEMBPKWZ9MOkQsIxCla72ZLCpZnywbhcnn7ZpmbeBvKX+ldIuyL8pfaXeg/MzqaVaOYdgqiaOdg5Js2p0oCbPsBXxm20mcdTW52qYyKE2RaG5KqrqEneUr7cR3y2diP+T7fP3111uZsr59+/a1MrNE0TrQa0nZlDyf/fTUqVOtTGn63r17W9msTIwbnkNM8j2un1mWKOe+detWK1NiaraQKWzKykR6s05YhhJKQEllvpkrvZlzKhmxescnG5srY3alzmb1ozSYfZxzEeORVgb2C3texhAlwxyvKC8fhq2SY7NCMIsEM94xIxufoTemtmN+2ZStrrfcW4c5YbL3in2Y/YjrQEL7AMucK832blTannVj/7dshOzLlsmR7cP6M1Z6txcYP4udx7ry3hwjLMsjn5/xvh021N6se5VsMr0xa+P40uZNwviidebBBx9s5Zs3b7bynNfsfA9cP5vdic/Ifs04rfQFriu5vmU2J85146xP/B6sWEPtG5MxyLJR2VrF4toyrvJ7me+Az0jblNlKx9/kH2EZS3l9jrm0c7JuxnIjOYQQQgghhBBCCOEuI3+oCSGEEEIIIYQQQpgJa3VIZv8hlPzQbrB79+5WpqSKUmKzZphVqkJFWliRBPJ5bbdmyru4qz8lr9evX29lSrX57LwOZX6UvQ3DMNx///2tTAk425dyL8quCGVjPMcsWJZdY12mjVXcyaxPJgHtlerOFZMEmnXGZM987meffbaVb9y40cqHDx9uZetTU6jIhC1+Dx482MpHjx5t5RMnTrQy+y9jjbHC9uEO9/ztuj7O37ONGKeU6lLObZk/trtPTrn+lKxCtmM/3yvHH8v6M1cqlqLeLE4VG1TlfML7VuzAdk3LAsEx5PLly63MtYHJiu39E0qMOW+OsfGfcE5kn+Q9erOw3Um70HZYnHrLS5tDezOHEvZzWt25vuUYz35UGR8Ma3vafdhPORexzuzjrCfP5/VtDU8Yg5xDLYbG97CxhlYrtjXncta7YrWo2JemrEUr73U71sNLjkfWne/N1mZLgd9JnONoeWH80ppj227QykQYp7b2vHTp0srzx21r/ce+ARmPti2IWUYr4wDP4RrStnWw7Vc4TnF9b5ao/fv3r/wt3+XZs2dX3pfvgNe0rJZGFDUhhBBCCCGEEEIIMyF/qAkhhBBCCCGEEEKYCWutT5Q1mYSQEieW/92/+3etTJkSsyB9/etfb2VKuSiZplSSck1KmSw7VSWLhEm4TYZnkiXanWiDsh31iWVBYXaMYdj6bLRRUb7GtrbnoRSVUlLuem1WNKu3yct7JeKV324qW1Ov3HlOVOwMFVsE3y1teuwjlPWxP1cyVlidp9jRGI+MkUceeaSVKVfkLvq2M71JvqvSdMYmr2U2H7Yvy71tuhTs3VN62pvhb670ZvDozeJUuU6lDkbFomVzgsmWWaYc2KyFlEhTks1zaNngmDC2DFvMcy7nusQse1OYg93J+pAdt1ir2PbmSm9WK0rdmaGs0j97Mzr1Wp9sfc4y1+ScZxi/ZiMgjFmeb/2L9103ZlfWeFxzsK05z/Le1hZm9ZyS6exOWg7t+mRTc8BOYOP0umybc8VsiY8++mgr21YhjB3acfitxn5NWxPnMX5TM8sQr7Mu9q3/8N6Vb2y+M447lTVNBZuPbJsG1ofvhnVjRi7OAdxqgeMpbWzMdsn2IbbliBFFTQghhBBCCCGEEMJMyB9qQgghhBBCCCGEEGbCWuuTyego26Gc/+rVq63853/+563867/+66388MMPtzLlQm+88UYrP/PMM61MOdKVK1dW1s3kcJRBmUS3Ir+y31IOSruT7aJPKImiVJuWDUpth2GrTNzkoBX7ANuLdeXz0C5CKR4lvyxTDleR9VfsLpvawb43C8sSMOmuvf+KZNQk/5RKmuVhChXbHOOF2c+efvrpVmbWpz179rSySQsr9o2qDNOyalF+ascr0vOlU+mvJn3uzdi309h4sx2ZRnqZIre3rEc25rC/0xrM+eTkyZOtTJm3ZT+zMYHz7HisswyOnHdZ5jlm+Ta2O9NT5Tq9kvLefjDF5rzTWB3NjnnkyJFWfuihh1aeT8u42XF610QVy63Z+Cw2WTeuHxmntk4wqz3l/4xrzmkfJ4srz+O1aPPgGtXen80jdq8p9GZ6qsTyprKCLS02K3PQnJ+P8wa/6Y4dO9bKnO8Yv9z+wmxfjGXGI8cibmVw8eLFVqY9at16vrfvVWzPliHSysSsizbG2X0tyzLtZzyfawO2Hd8TM9Px3XPtwXtxLuHayJj/qjeEEEIIIYQQQgjhE0L+UBNCCCGEEEIIIYQwE8rWJ8qOaD2gJJISxW9961utzB2ULUsU5UWUNPKaZikya0NvlgNimXEoM+NxSp/MymASfj4724rXGYatsk/u4l2xTpgMl9JVPhttV7SomfR8SjaWXhvUlGxDZG5yyR4qfd6y5Vh70MrGvl3J/tFLb2YDjhUnTpxoZcpKOS5RZsj6mxyS7cZ+bc847oOW3YkSc5ODLyWTwaawDALWX/k+lpAV607aXCq/rWRWmXJNuw77NW21fLeMa8vQwvPvu+++Vubag+WxnNusT5xrK1bqXqZk/+q1UFXuZeP4lIwzS8v6ZHVk23Ae2bdvXysfPny4lZmZlOM6x3uurcgUe5ytG1k2ux7ryXjkWtrah+fwubjuZSzbt8O6tbfd2zJUsR60jjDGaU9gu0zJ+kSm2Am3I+vNkuFzsz8zOxLfLWPQtpi4k3AMOXDgQCt//vOfb+XHHnts5W9p1WeftW8sxhrnPn4jX7t2rZUt09M6erO0Vq5TiYXKeGHZnSzLHduR3zm0ovHvDmY/43Fud8I+yra2b3uz+RtR1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEmrLU+mQSY0inKCSk1ojXnd37nd1r5v//3/97KlB9S/mPSLF7fJPCWncrkoCZ55nUoLTMrg+1mbXUjZksZtwOlbMwaY7vqVyw/bFNKtiiNpdyL1/w4u/n3sCn5/hyyrWwak+6apYbHKeXjcfYpswhth92pIoekNPQzn/lMKx86dKiV2U8phTb4XDyf8smPI+1nPHO84Dhi8Xu3wrbj83Kc4RhN6xqPL7mtemXCvWMbqWT/s75t5YrtzOZTxgFjlrZaSoN5L8YT+wKlyrdu3Vp5zjC4fJp1tWw9m8oytqmMS71ZmSrHN3WdJcyhZndlG3AuoNWOayXL2mcZOCuxU1k3ss4cI1lnyw5DSy7LFeu8ZQrlcc5v9uzr4qmyXuW9+T7MKtub9aliiTJ6Lfa93wlT5oYlWIYJ624xtSmL8RTYv2h/+cIXvtDKp0+fbmXGLG0xXHPyGTlv8vuM22AwaxDLtIZVvp3XYX3JYtvG1soWDLaG4G/N6sbnNJskYfvSBsUtFTgHcNzkWtQyI3N9y7GLax1mkjKiqAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMWGt9IpQjcedtls1qQemaSfZ6sx+YhLKSfaiSscKyDJklxH5rx012brtZD4PbKNjWlZ20TdLJa1KORUtJRRa/KXvMlHPs/N4d+OcK+3klq1HlWTeVHYZsKnPNvffe28qUkjJDBzOVcVyqSCYtVioWs2HwDDeMWcpVKYPcbgvhnKE8lW3NsYiy1SXEaSVbwk5RGbOnZCOx8ZX3YnZB2pTYFxizXD/wOOPGMiqsg3LlSma73ufvzV5h15mSialyL2NTWWnmhPV/y9xkax/K281qU7HDE8tKxPvyHM5xnHMYL4TnmITfYPvQ9kXLIZ+dfceyuVUxKwifhxZK2kuYtev69eut3JuZtde2bWyH/ZXcLesHsyKaJfZOwv7MNecTTzzRyl/+8pdb+eTJk618/PjxVmaccn3L2LRvT55DSxT7uF2nyqbW7pU1UO86yezwthWLnc8xi+PaQw891Mr8xmB8cfzhWM/7Xr16deV1aEurjInzX/WGEEIIIYQQQgghfELIH2pCCCGEEEIIIYQQZsJa6xPlUrQM0BZDaeE777zTypQC8fwpWSTseK8Fya5TuZdJUitySLOrUJZl5wzDVrsE30fFvkUs2wUl6czaRckW5Xpmv9oOeiWmld/eLRmgKOGnpNeeqdLnSW97TJE38hzKEpn1ae/eva3MnfZpf+iVWLMNiT37+PomS2XMWla1pWVkmIqNpxU76N3YVr3ZQnrnrN4sIpsaK8zuxFizeYwyZLMD0/phWe2GwS0o/M2HH37YyozNTdkSK+/AjldsTbbOYJ3teCXuyMfJhDd32K9oUT1z5kwrc345d+7cyuuwv0yxZlhsmsWW8z6fhbE2pV8zbngdy2RosTnu7+xLZtVm/RinXKNyHWAWaJZpobLvB2OKRbyy5pxi7+0dZ+YE3wO/M/g++Ry0lWxq/W7vh2vRw4cPt/LnPve5VqbF6dSpU63MLIe0cXF8oMWSML7Y3/mtzXagpaa3X6/rI7Z2N3uvnW/rCbMvcdwxm3TvdQjXJXxPrD+zc3FusAzQhNZQvj9mrOSYZkRRE0IIIYQQQgghhDAT8oeaEEIIIYQQQgghhJlQzvpEaQ93vCfHjh1rZcquKPHidShvs4xRJsfiNXvlw3ZO5XglI0zFLmF1Y9vSNjEMWy0V3Fm6YgcwiSnbmpJW2jRYtsxTvTI7oyLR7JVeV7JvTLFW7QTs/+wzJh+lDPBOWr4qkkmrD7M3UFb68MMPt7JlbrH3zP5uskpeh+25TpLM31BO+dZbb7UyZZMV6+LdSiW+2HeXZrWwuak325o9d2W835Q91Ogdd03mTVttJaMHf2s25HHd+DwcLyhnZzxaJjKjYlPqHQdJb/YZ6zdmfapYMCp9dMm2RNadFp7nn3++ldkGZjHmfDHFGm8ZBtneXANyzqGsnv2a60meX8nYyXM4NnPNSGsY16psz/E6sdIPeW8+M+0ftD6xzBhn7FvfnpKxr7KWupPrzKXZ+VlHrv1+8zd/s5UPHjzYyq+//norsx9OsaDZPMVv2yeffLKVn3766VamRYYxyGexbGi25QW3DaHF6cKFC63MTE/8Jpu6ZUGvralCxUptdnhi2R/tfGtrHiccNzjmmNXTMu/ye5ltxd8y45cRRU0IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmwlrrk2UHovSREkeeT5khz6nIREklI0avXHc7JIe9dhI+O8uUp453g6YMrmJ9qrQdf8syd6t+9dVXW5mSX8q3NpUdo/ed9UpSl2BrqlDZPZ3PWpETTsEkw2ZHorSQv6V8lLuwf+lLX2rl++67r5VN2t9rRWRGCJN2cgwcY2MZd3qnbHLJNoGpVMYfwvdhu+vf7fRmd6pkfbLrmBXC3k9Fwsy+b+MALZyWPcfKjL9xH7GsUZQl05bIec2yS/SyKev1lPnL3mtlzWS2tIptZk7YPMjj6/rSR/TGXSUeK1mPWE/Lpsp1I+0bnIv4297sq4ybK1eurLwv16dvvvlmK/NbYHzdyhjHcYHPQBvM+B4fYZkWK32id51pbCobX+9vl4CN57Q70V7327/92638n//zf25l9nP2Q75bzjX8VqUV98iRI618+vTpVmamY9aHGZ3MOsN1Js+xfsdtJzhH8fiUdeW6b6OK3WmKVdBi0J6BNiXLhGdbrth6gmMC3439nYKWUY6DtqUC24S/pT3TtpIhUdSEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJpSzPpnsziwvVq5kapiSrakiv5qSEcPuZeebZNhkZZRZUYI9DFstZ2z3CpV3Y/JWuxdl5JuS3E3J4FU53ySGU3Yy3wlYR8qzTQZIKpLeXuuE2Z1st3WTfXIHdNqdmPWJ9ijKnClhJRZTJjmsyIcZi8OwVd5KiSrjiHVdmmXgTmDzxDrL2RypZPghlfHY5pTeOlRsgFY30jvecxyoZOHj+WYrNKuIZYwan8exgPHMcu9z2jhotsxK/5iSJarXMmf37c1oswSqWcNuR6WNe69TuSbnfbNCcE7kHMVyb904HjPzEqX9XDOus+lPaSOrB+OX64zKmtbYlF28km2qEne94/USYrNitWF/Zjaof/7P/3kr/97v/V4r/9Ef/VErs22YxYn2pf3797fyPffc08q0O9FO+NBDD7Uy5yxe07L62vMyXmgtZHxxa4reDKLVb69K1qfKNgd23LKwWXZCti/HEcY449q+B3ic75jWNWbqoiWKbc1x1uxt/FY5cOBAK9NyxXsZUdSEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJpStT7YLMpmSLWJTdiSTCU/ZMb13936TXptckXIqSt1ooRifV5E49rap7a5vEvOKfaMis+uVf/ce75WOLyEjT0WKXtlJ3a5px60tKUtk2aSelASy/IUvfKGVf+M3fqOV9+zZ08qML8oGK/HFfs379rbnWDpNG4W1i7VFbxwt3SrVmx1jyc9bGfN6rUyGSeN7rYsVa2RvVgdaM1555ZVW/uIXv9jKtD1arNDuwRik/HldXU26zPpRlmxrnSl2XRtD7R1v6l1uKqNi7/XnxBwy50yxp1SyiNJia1lZp4yvfOe0GZkVft29prwD3oPjAi0inH8tM8uUdf+U75beZ59iz19abPL90J5imXNojd+1a1crf+Yzn2nl8+fPtzKtT7yOZQTi8aNHj7Yys0TZus/sO/Z9ajZcK1foXcOP/202JcveyuP8rV3Tvh/GdVp1fTtOCxK/EzhW0tLG87n+4NjC75CLFy+2Mq1u7CsnTpxo5QcffLCV9+7d28qlOf22Z4QQQgghhBBCCCGEO0L+UBNCCCGEEEIIIYQwE9ZanyqWlErmnEoWgikWGTtOCRLlTiZLs/PtuEmWKrI3XpOSzPfee6+VKb1bd+/KLtwVy1JFxtybNaS3br1ZmSpluxfb3eT1c6Uig50ib+7d8Z2SQ7Y3JYSsA8+nDJBS1UceeaSVTQ5pcW3vnzv2c5f3SpYcSjXHmYjuu+++Vuaz7d69e+XvWafttg/MQfbca6+oZPeZK5blwPptJYPHpiT2lYwivXOFjdmE1kBany5cuNDKzKBhEmaz5NrYMgxbY5XZGa5fv97KzKLB7DC96xWb403Cbccr8529M/utvUvLsmHH70Z6s1pNscZX6jBlvOzNHlWp56bsquuuU81Gc7t7rLMof0RlTWM2lV56s7NV+pPFZiUL71yxOeXw4cOtbFm/uLaiDeXJJ59sZVqouOY0my1tVpyDuNbjNXvXovYOWX/arF5++eWV9SSVvmbfYeN5k89g63s7btmdeI7ZqdjWXK+zzN/yfJaZwYvnWz/je6Utmm3Kb0PLKkV4fdqvuMao2NiiqAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMKFufTIpesc707rBudSC2GzqpyBUrdpyKjM2k15Y1ghJFWpwogxrLNqfI2ir1tndmcvZeGbaVe99lpd/YdSoWmrGtZY6YdcZ2UjdJrGHyeZP7UZbI+phtgce5k/qhQ4dWntMr47U+y0xPtmO9sa4d2H94D7M/mJ2ycu9qRo1VzEECbX2L75vwPdG6sgQqGfMq9L7zKVYIG4/NrmXPaJksaH1iJo4DBw7ctg6MIcqQq5lYeL/vfve7rfzaa6+1MjPlVOY+k3xvKnuQSbXtfdg8bjYQe0abM2zusevPlU2Nnb2/7bUR3UlrVeV8G8cqfX/cVhULx6bmrMoWCVMyhFbapWLXqqyNLfYr48Bc4fhhmXNsvOEagVYm2llohaG9iNCeUrHXmB3exshK3HGOO3jwYCvzWUhlixKzK/F8ttv4N7Y2s6yrvJY9s2WGMosan58ZIu098buCx+098ZqWKZJ96MaNGyvrwLUOMz1Zv3zhhReG2xFFTQghhBBCCCGEEMJMyB9qQgghhBBCCCGEEGbCWuuTWQMqUj5KikivPHBTO6ZXbEBmdyK9dqKKHJQS7nXPXpHA9lrF7Dkprey1PlUyVpBKX6k8r/UJy8JFKRrfgbXJnDCLE6WIlA1yF3OWabszK4HtVG/SRTvOLEuU/jHbC+0PfBbbmb8ivSZ2HVKxA45/y/8b757/EbbLfWWctZ3nzZJKKvabXqn5piysfHbLyPX++++38hJik89E2ewUO0Mls5KdX7Fs2LxWsdxV3jl/ywxQzz77bCszu4dJ0Gl9Y7/g9SlhHoZhuHTpUit//etfb+XnnnuulTkmVqTqZp0wG0IlrisSdru+nWNjQsXKxOtYhkQer2TB2GkqcWFMGSN7j/dmgJpiy7JrViw4U7IzrbuH1aly3d4tAozKnF6xI5HKdwLpzVBrdnezrswJju22FuA74TrIti7gmEQrjK2naFtnm5nt3bIY8V1VLPy2XQDXw48//ngr/8mf/MnKOhDWmete9pF162G2hWVxIpUMWHzH9vy2HmZdrcw6V/7WwHtZRknW+cMPP1x5Pp/d1gO8zjvvvNPKN2/eHG5HFDUhhBBCCCGEEEIIMyF/qAkhhBBCCCGEEEKYCWXrE+VhFaZIQyvn9O6cb8dZtl3HTTZVsW6ZHI7XNyvDujavvA+ra8XOMcX+QCrHN2VvMxuIZbAye89YOj9HmB2JNoFTp0618smTJ1v52LFjrXzr1q1WPnfuXCt/61vfauV33323lWmPMtscrUyUbnJ3/QceeGBlPZ9++ulWPnLkSCtT0lixB5GK7aA3K9y6TGjc6d1sabZrvcW/xY7VySxOlr3Fzu/NQlUpsx3YPmyT48ePrzx+5cqVVmZfnCt8PrY935VJ4HuZYseoWKjsfZrc2vqvZVE4c+ZMK3Mc4xjFsYLyYY5RvCavMwzD8Pzzz7fyD37wg1Zmdicb1yrZDCu2MTIlW48dr2QF6+0rleuYdXGuTMmEaFTatbdfbEc/6rUZfRwr0+2uuV30fg9MycJFKjawKZm6rA6co1k2mzrtQ3OFYzjXjWZ35jqTbcDjHBc5L1S+Ayp2tEqMVKxJhGMq68zsV0ePHm1lZh+iNYfPaNluK89SZYrN256ZZbPD8RnM+sRvCdbTbOqcG2hNokWamJ2M74DvifZvvjMjipoQQgghhBBCCCGEmZA/1IQQQgghhBBCCCHMhB+bIvkMIYQQQgghhBBCCJsjipoQQgghhBBCCCGEmZA/1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEm5A81IYQQQgghhBBCCDMhf6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmQv5QE0IIIYQQQgghhDAT8oeaEEIIIYQQQgghhJmQP9SEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJuQPNSGEEEIIIYQQQggzIX+oCSGEEEIIIYQQQpgJ+UNNCCGEEEIIIYQQwkzIH2pCCCGEEEIIIYQQZkL+UBNCCCGEEEIIIYQwE/KHmhBCCCGEEEIIIYSZkD/UhBBCCCGEEEIIIcyE/KEmhBBCCCGEEEIIYSbkDzUhhBBCCCGEEEIIMyF/qAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMyB9qQgghhBBCCCGEEGZC/lATQgghhBBCCCGEMBPyh5oQQgghhBBCCCGEmZA/1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEm5A81IYQQQgghhBBCCDMhf6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmQv5QE0IIIYQQQgghhDAT8oeaEEIIIYQQQgghhJmQP9SEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJuQPNSGEEEIIIYQQQggzIX+oCSGEEEIIIYQQQpgJ+UNNCCGEEEIIIYQQwkzIH2pCCCGEEEIIIYQQZkL+UBNCCCGEEEIIIYQwE/KHmhBCCCGEEEIIIYSZkD/UhBBCCCGEEEIIIcyE/KEmhBBCCCGEEEIIYSb85Lr/fOCBB/5p1fF//Md/bOV/+qd/um2Z2PEf//Hb/83IfmvnsMw6s0x4nPX5sR/7sVb+6Z/+6VbevXt3K//bf/tvW/nhhx9u5aeeeqqVjxw50soPPPDAbe81FT7PX/zFX7Tyu+++28ovvPBCK/+v//W/WvlrX/taK9+6dauV/+7v/m7lvazePF55NnvHlevwtzzH+tZP/MRP3PZeN27c2NwL2SBf+MIX2sP+1V/91cpzePwnf/L/hbq1B8/5+7//+5XnsI15/j/8wz+sPE4YO+ybPJ/v5Od//udb+VOf+lQr79+/v5Utvu67775W3rVrVyv/wi/8Qiv/7M/+7Mr6sI9/8MEHrfz++++38tmzZwfyve99r5WfeeaZVr5582YrMwb5DmycImxf/pbns9/yuPVz6wc/9VM/tfKavA5/W+lbVgfe62//9m9XXoe/ZVs9//zzs4zNe++9t1WScWTvtjLm2fHKbyvz5qbqY8crcxzvy/MZ+4xrxjJ/+84772y5LuOWfczuvam2s+tYnFbmLMPmRyvb+NP7Wx7nOPDWW2/NMjaPHz++8oXamMqxpzIG8xyW7ZzKb4mtYyv91N7bz/zMz7Tyvn37Wvlf/st/2crHjx9v5d/4jd9oZcYj59O/+Zu/aWWudTmnj+tR+Wbg+Zyn2RaM/zfffLOV//f//t+t/Nxzz7XymTNnWplztN3X6kYsvuycyvrWjlt/tbn74sWLs4zNT33qUx973tzkd9Mq7PqVsZBtb2soHuc62c6pXNOw9ZrNjcOw9X3Yu7F5jUz51uVvOT5WvvOn/G3Cxih7Rpsr2e58x1wDnz17dmWjRFETQgghhBBCCCGEMBPyh5oQQgghhBBCCCGEmbDW+vTXf/3XrUypDqU9JtHslf2apKgiy61ImUyKaFKxinSRkuz33ntvZf0vXrzYyqdOnVp5TkWGPBW+J9o5fvjDH7byjRs3Wpn2KMpBrd4muaxIBnvfH7F+YDI5+61ZX+YKY5Ple++9t5X53iivM5sSJY08zuvzONup9zp8PzzOfsTj999/fyt/+OGHrfzggw+uPId2J0qyKb1mf+H4Rng+Y2XcZ1lXnme2C5NEmrWsV9pO2KZmObPj9i55nPflcbY7j1Nqz+OMR5Pasp3nSqWOvfai3uvYOb3zZuV4ZW6tyITNBsJ+R0sFrce0eY5tm4y7ytg+xXZkUvDKGohU1gG9VuJey3ClvOR5k2M+x6S//Mu/bGWzXVpf5Tm27qhsF9D7/s3+UlljMz5+9KMftTJtQ0ePHm1lrisOHz7cymxbPjvnw7H1idjz2PjCNQ3vfc8997QyrcdcH/A6HC84jlRsKhXrR+W4jXd2vPfbycaZObGp8aPXrjrlmpW51d4h+69dk32T/Y5tZf2rspXBOouZWQutTsTWrpU5yyymvK+1kbV7ZesTUvnbQWUNZ7+192FEURNCCCGEEEIIIYQwE/KHmhBCCCGEEEIIIYSZsNb6ZBIek3SSXvn0pnZoJr07dVdkWZbRhm1y5cqVVqZklBJTk72ZxHId1l6Url29erWVX3rppVY+d+5cK9NSUnnHm6JX5rupLCZ8xt5+sNPQVsL3bDJLywDQa1UglXaqWAvtmnZ9ywa1Z8+eVuYzMjsMrRM8xyw7lMFTHj/uU/w/1slkqZWMHZXze6XOlfHUpN0mk63IaiuWALMQmB1srlTmr8pvezMhVsbI3n5B7Pq9v52S6YVZZg4cONDKnE8Zf8MwDC+//HIr0/a7qSxcm7Ir98qqp7yzyvm9mWh6LWM7AfsJx3myqWw8U/pCrzW8105n4zEtRG+//XYrX7t2rZW5juX8SMsR15LrrKt8B71jllkaadu3+ZFZrM6fP9/KZvPvfce9a1rrc5V1UuW+S4jNKd96U+bcTVG5r9l6CPuyWX/MJm5rWouDdfZ6s3eSTY1BlcxK9gxmcepdf26K3q0/KrE5/+gNIYQQQgghhBBC+ISQP9SEEEIIIYQQQgghzIS1OvIpUvopVhW7fkVaZXWoYDvNE0pnmWGH9fzFX/zFledUsql8HKx9bdduSlq5yz3lqr2ZCXozFvRK4Oy3U+T4ZAnSUGKZASo7plfklNaWFneV7ASUZVqfZyYOlpmxgZmeWKblgXFqGcmY4YKybUKbFTM4McaHYRh+7ud+bmU9LLNDZRf6SvaO3hisxJRJRnutW6QiASV8drYbLWZLYIpFqCK935QNdFOZoSrZTgzrU+wLtD4x9mlvHGdwe+utt1rZrA0mjZ5ia+k9x2Kt9zq91oleu13lOnPF7OQVuXpv1h1SGaft/EqGqd44td9y7KdNmDYjZnGi9YkxyPlwXT15XbNkV7LXcC7n3M/MVbYe5nhRsU5U+hDptUb2vjM7v2KfmxNTrE87Re9WHqQydlYyAtt2GTaW025ome+GYRhu3brVyrQsclywe9j6vtfOXbFrVspT3kdvVuaKdda+SYxlfZ2GEEIIIYQQQggh3MXkDzUhhBBCCCGEEEIIM2Gt56Z3x3GjV0pdkZVWpMG99e+VOFHeefDgwVb+/Oc/38rMTFGxMqyThlXsKL1tTbsTJa2UiW4qq4XVYYrUs1eCT0ziPmep5UdYX+2V1Jk1h5g9im1s8mTKkNmnbNd6xhSfxTI98be8PiWdbCuTbbLM3zImKK8ey5/N+mX0Wi2mWFxs93+T6dsYZLJzs9v1yoKtTe7kjv2bYIolYTvqMMWm05uFr3d+6G0HjgMcW2hFHPdfzs3vvPNOK5u1weq3qSySrDfHoykWQmPKc9lxs4gvIVsiMfuAlW3snJJJzerTy6bsMjzOeZBzK+1OBu0VnA/XZTKlDYo2DLYLY4ftTusyM7vRjmXWA2LWiUqGpop9tNde3ruNgLGENe0ngcp3W2UdbuNSJasU44xxM86Cx38zpsxSZHWyZ+vN9ETYFpUtBaZY9e1Zeq2OFTurEUVNCCGEEEIIIYQQwkzIH2pCCCGEEEIIIYQQZsJajf4USWdFTlvJBNEr1zTpvcmy7Lhd3+T/lDCbrJLnMIPMvn37Vt5rbKEwiRd35KZclRku3nvvvVa+ceNGK5u1oyIL347MXr12iSk2vMr1lwD7BfuYvUPL+mTPbX3epHyWsYdU5I20OVDCzMwvJqs064xZw2i54nHG0zqJIu1YlJb2ZmsivZm3KljssEyZu/WVSnYBG2etDibbrVjD5oS1a+98t91sKsNe73UqY7wdZ2xRmr3OPkx5N+OU82OvxcDeMeds2jdo2eDxmzdvtnJvRp8Km7JKVSTfS6BirzRZusWyWUvtuK3jSEXOvyn7O39r6wdaC7netMyJlsFp/Lz2DpiNlHO/rY8Zy5yz2RaMfc73lknQ5vveDGukd+6z3y5tjfpJY4rdza5jW2dYH6ysNxhDXG8Pw9ZvQxvXLBYqc2XF7lSxPk2xoW7Ht2TFGmnv1YiiJoQQQgghhBBCCGEm5A81IYQQQgghhBBCCDNhrfWpNxtALxVZUK/EryK3J70ybMvucurUqVZ+8MEHW5lyS9qPbt261cq0clDmOa4D60p7AuXgFUkrj1My2mt32lSmkLmxBGl3JWOFSSWNilXQ+pdZVRgjlZiixJoZ0x566KFWPnbsWCszXtjHaYswa5g9C+vM31JSPZYrmiS7N4MIMVl4L1OsqqwzxxxaOXh9O27yTrNWWeasuyXrk52/3WPPpuS9lfOt75utw9qK/c4yX4xl2+Tee+9tZY4LFYsBsbagdYLj0Z49e1qZ6wCuD775zW+2MsemXqZYk6bYo3qtHzsN+56NSZUsc722hYoFtvLbyjw+xWJplnrGINuE1if+lv19nRXa/s+yO1kfY9y9++67rczYZ50eeOCBlXWoZDGrjHF2vtFrtzR2KsvgJljK90GFTX07W5uYtdCwMYfzJte3wzAM999/fyu//fbbrcysb73bkVTqZzYrUrEJ9/ahTfW57bAozn9mDSGEEEIIIYQQQviEkD/UhBBCCCGEEEIIIcyEtdan7cjgUMmCUZHx9kpG7Ryrj13fZJ+WQYLSLZ5P69Ojjz562/uO/49yMu6Qz2dgZine74MPPmjlDz/8sJVpoaow5d1sh8ysVxq6BIuTQWsI+xjLlgWpYomq2J2sn5tdphKbtCYcPXp0ZfnQoUMrr8l7sV/zXibbpP3QMnTwuXid8f0oGSe9/fNOypgr47iNlWYPW2cV+wj244rcfyzPXSq9cuUKlawLvef32uZYZiyTSmY6wv7Fedbk3+PnNVvilPHfnpN2J45TzDLDMi0bXB9ULH7W7hU70hSb0nZc805hc2JvVsnKdWxeNmuVZQGakpGyd5zhfblO5NqQ60qewzmRdkD+dtyvOZ7TmlQZC4jZZlk/jjtcKzAeKxlbKtmgbK1emWenbNnQe07YHJV5tvLNZOugynxnYz/Ppx2QmdrG8zXj2azolWxzlT5v42kla+xO9fPeNfOU79/5z6whhBBCCCGEEEIInxDyh5oQQgghhBBCCCGEmbDW+lTZxXxKhh+7jkmHjIqMqGKDsrLVgXJLyjspIaO0k3LQvXv3tjJ3uGd5DKVvlG5SvkZ5J+9NCRmtGZSxWhvZzva9u3lXjpPe3fKnZK9YGuwnJnes9HnLutMr1zU7FY/b9a1MWwAzpbC/0/bHvs/d7HmOZTkz21/FVjb+P0qpORaY5aPCHPqqyb/NpsRzOPZV7AS9svM5UZG4TskEUrnvpjL/9NaT4xKtDGY5YhxUsp/xfM6B6/qXxeMUqw7Htd27d7cyM9Xt27dvZV0tS+Om4PNXsq31ruFsfF+C9Wm7LYeVjECVtqxYArcbxrJlJGNc83yz5jMOxr+xccTa1+xOltWGsc8yxweumS1TKpmS+bRynEzJIDiH9cPt2JQVdw7YOGDjca9tyqxI9luez3nZLP/DsNUiZTZ2e088x74NKnMQ2Y6tM7abyt8XKs8y/5k1hBBCCCGEEEII4RNC/lATQgghhBBCCCGEMBO2LetT73WmSJ96r99rx6FEi7Kx+++//7b3ouyLcsuKjG1d9grLEEBpKSWnzPrE3bxZrsg7K7viW50rxytMsQ1Udl23dpgTlAZXrAHW3pVsFBXriWVHos3OfstnsQw/fBbGlGWzosXJMrX94i/+4srfWpaod955p5Vv3ry55RlM2s5nq8hBlyLvtHpOkez3ZuCbKyZXnpKxZVM2qCnZoMxWyb7MuYyyal6TsTzOnrbqvpWsbbQTjW2MNqZsKvMRr0m7Jo/z+d96661W3lSGuF56s3X22lnnSm9GFZPqE8v0ZDZQu/6mxr8p2cx4X86h7Kc2Jlgd1tnlbY1SWTeavcrGGs73XA8fPHiwlWmD4lhjayzWp2IztPOnjNfG3TKHzs0G1WtTqtj8K9mNevuLzcuMg3VbR/TGeYVKG/VmE54bvX83qXxvzn9mDSGEEEIIIYQQQviEkD/UhBBCCCGEEEIIIcyEtdan3ow6vZKwigyq11pVydzUa8fhb/fs2dPKR48ebeVHHnmklbnTvNk3Pvjgg5XHTT45xmS1lt2JMlazPpnUjbI5k6j1ZtUyKv2DVOTWFSld7w7kO03lmaZkxKq0t9mdLCMQsyhY9gbaFihn/uEPf9h1HdbhzTffXPkslZ3zP/zww1ambWr8W9o8WH7vvfda2aSoJotfIjYOWFYtwvapZK5ZGr2y7U3F7JRzbFw06y6tP8yGxHmQccqYsj7CPsVzeB3OueO2NQvSFIsaLY3MSEfrBNuCVknOuRzjzKqwKVt47/qscq8lzJVkyjs324KNTxWbC8u7du1q5evXr7cy+3xv9qEp8L5cS5qdl23CNS2Pj7Oamq2a51l/s8yJzGRqdmPGLOfoQ4cOtTLnfrO0VWxsFSoxVfk+qVj15soUi679druz6pGKPYh9kJkK7XvOrm/3snazrE2swzieuFUH53jLsNZr9+K9uaZn2dbGS18n99Z/WZEcQgghhBBCCCGEcBeTP9SEEEIIIYQQQgghzITba////2yHbNasJ1OyTU3JBkV4nDJMyrlpcTAJqGVEuXHjRiufOnWqlU2iNr6WyVIpq2Z2CUqvKTenzGxTkuaKDLtX+r8du+LfSbnkprHMRxXZZK982uTGZkkg7F/2W0osWX/aCExuzP7OelK2TNsU24Hxa5JhWiosg9swbI1bZoazLDMmnV9CxrEqJgVnPzBLwKayDOwEFUn2prIl9NKbTcWsT3yHJu3ev39/K1PmzIwrlFFXrCg2PnCOHvcdXov16IX1Y+YMWlb27t172+twPJoi7Z6y3iKMU8syUrF1LGHssmetrD9tzLa52NrJ1opPPvlkKx85cqSVn3/++VamrWeKVa6CWYssU1klg9M4NtlenCtt3qzY/DkWWDYo1unAgQOtfOzYsVamZZrXsQxQvZlrercOqPTRJWfMqdh5Kr/djkyzFSqWKM53nDeIfc8xviw2zW7J9SrXvbatxfgetk1AZX5hPe69995WZtZkwm9Vy2J8N1EZr6OoCSGEEEIIIYQQQpgJ+UNNCCGEEEIIIYQQwkxYa32qSPmmyP16M9SYvM12Xrc6VI4TyqWZyYHSLUq6KBOzTC+W3YbXH2PPz2emrYm72V+9erWVTdLZu4M3qdiITKpr1+ktk95sYUvL+mR9wWTClSw6lDpWpMsm2+d1rMzzKW+k7JP2pX379rWyZX7hcdoiaL/icWZC4315DtuKx8dWL7YLbREcO8ziVdnxf+nYM/LdmxWhkuljTkwZnzaVXbEX9nPaDth/zXZgcy5tg1auyN1tbGEdrP7jf1vGmgo8n+MRsz9yHcC5mHYnjjV3MuNb73qrsmYy6+JcmWI5tOxFXNcxXji2WdYUXv8//sf/2MqMkVdffbWV/8N/+A+t/O6777Zyb6avSl9gPc2uSmxeZvmee+7Z8hs+A8cR2oftfmxfex/cqsAyrPG9njx5spVfeeWVVuZa2izcZg+0Od3Ww73fNsTWakuwJdp7rlhiK2N575YM2zGesW/SgkQbFNelb7/9diszVmzdZHXmvRhbNl8Nw9b16pTMzZx/uTamNdrOp036brI+9VrZo6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTChnfTJ6Mw/Y8YqcqpKZgudMkRVTonbw4MFWfvDBB1vZbErWJrROUCJr2RXWZX1i/fgb2jx4DqVylqHH7AabylximLyzIqsjn6SsTyZ35HGziZiVxLIZ2Dl2vtmaKllHbHd6SjQtI8TY8rCqnpa5hXJQnsM6UF49lnCz3izzPEpaCZ+f7XU3YeOyxSzPWZeZYO5sSn7eO7b12lYYO+zztGCY1YJ9llkqOM/QJmyxUpED27jHOoxjiH2J97NMFsSyP1rGCs7rlK1/8MEHrUwb1JQ+McViTCz7TGWetaw3c6XSZjaH8v0TtgffP/sX12V2PvsmLTvM9MQ5i33KxtfeDI+Ev+X4ULHn2nzK48Ow9ZkrdlDWie+DdkKOWbRL0Gpx8eLFVmZb8z098cQTK69/7dq1VuacXtl2oWJFm5IJsbcfzInK92BlDVmZRzaVMc/Or9yX8ywzj5k1llsBsF9zvrPvJNu+Y52l0dZgpLJFAr97LWsy70ULlq3p7yZifQohhBBCCCGEEEJYEPlDTQghhBBCCCGEEMJMWKv9rci3zHa0qd31K9Iq2/GbMsZeOTClXnv37m1lStR4DiWphHWj7PPQoUO3rcNYrmgSUMrDKIOjnIzyWUrSKzaEivSQbMo6ZH1iirRxStaxOUHJrbW3ZUXplX+bhNbsTmY5rGT1oZzZMjpR8s3noryTv71x40YrU/Zpz8g6UGLK42P7IC1OJg1nXSvZbnrjbonYO+jNMDQnNmUVrYxhU8Zs9kH23+PHj7cyrb4vvvhiKzMGGWucc2n9MasvZdGMr8p7Zh3WybTNcsx509qRdaVU+4EHHmhljilmfeF4beMm2ZTVza5ZscZNyZS5NKZk3WH/+vSnP93KXO9dvny5ldnvOI+wT1lmIcaXrYF5zpR3aOsBs9SzzuxrtDeNsTV6ZS1itg1e0+Z7ruOZ0Yn2KK77H3744ZV1YDZVWlYq3xtTMtfavGK/XcK8Sexbb0rGOVtzWl+r1I1U5mLLQEi7HscNxhczINEGZf3C1rSMD24pMN4qge1r34mVeZP34HqC4x2/TyuZZZdOZSsPEkVNCCGEEEIIIYQQwkzIH2pCCCGEEEIIIYQQZsJa61Ov1GiKlK+yy7fJCU0CaTK5yq71PN9kcryOWVFYpqSNclDK4Uxiuq5+JnW9efPmynvwtyybJLtiXyEVWVelf5DKfY270UJiO8NPkdVbPzc7nVlSKjFrclNajSgLtz5r9i7KmRmbvCb7kWW5YpxSProuIxul8JS0UobN91fJBHE30Wu9Y/uYzXWubIeFpff8Xlk4+ynlyezLlbHC7FGWgYLHbY62sd+y6ozrN8X6xExPe/bsWflb1puWS87FrCuZYpmryNF77T2VzFtLsAkTG2PMMsCy9T3a3o8cOdLKhw8fXnn+448/vvK+nF94nHOWZVMiU2zc9oxci3KOZl+2dmP9x2s9y3LI6zJOeW+zSPA4r2+xT0sjxyluT8BMNGxTZrmj1dOeecp80Ds39G73MCcsqy/LjBebLypjXu9ve6lkYiJcP3L+pYXo+vXrrVyxJZnd2NbPw7A1FnozJHKcYqYnljlu2pYKlW/1pWD9oNK2UdSEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJpSzPlVkub2ZeUjFpkGJUG/mpl47lVmr+IyUTFrGCstowx3l7fxxu9n/sX62MzjLlffam/2h0icMO8dsDlOyUG2HXHgnMPk8qdjL2MaWccmsRlOkodZHKFVmmXJNypbN9sXf0gbF82nNYJnXJ7Q+UPI8DFtlrJSossx3wF3u70ZrXpWKBcNsaXNlU3bP7cDam7HPPkvpNWXLFy9ebGXGmtkJeX1mmOI8yBg0aTqtUpzfLXvUMGydp2lHojzbbBS8Fp//4MGDrUwbFOdfPs8Pf/jDldc3eucjO78309OULGJLGLtsjVrBbD68zqVLl1rZ3j9jhxaZP/7jP27lK1eutPKzzz7bypx3Kmtmy5hD7P2b1dfswFYHjg/juZXPzzKtRpxbK3ZowuNme+b1OcczQw0tbXwGWhr5jvnMUzIxVd5Z7zueK71jjNmgOEdwDrLMe8S+xSrfOobV2eYvswBzXratOWze5FzH+7KtaCscn1f5vmOZY4TN2Xxn/K1ZK5fQh9dh/dUscFt+uy01CiGEEEIIIYQQQgjd5A81IYQQQgghhBBCCDPh9tsN34ZKRiAer2Rfsh3c7ThlRMxMYXYGyirNykGpGOWQPJ8yLkrpTLZvcksepzzTZKXje9NGYVmjTpw40crMOENpmVlHrI0qtqZeyWDFHtArWa6cv7Qd8vneLJNFJSsT5b2UKLJPvfXWW63MflHJFjIlK42NJ4xNyo15Pvs444h1s4wzlsGJsnOOCcOw1V5Fu4hlr7h27dqwiiX0ve3Cnr03y9vS6LWZbiqTlGVbY5lzAvsv51nGBa/JuYxwzGHcMYY4zjCWGfv87bqsgCYrZ9myRfIcy7jDGOeag5k5+AzbYXvrHWcrmTh7swbulJ2vh95MT2aRYP/k+6dN6emnn25lZgTiuuzdd99t5VdffbWVX3vttVa2+DJ7Pqn0i0qmGFoZeJyxVrFvjPsOY6qSIZJtzTHInsesUoTjGs/n8/CdMVsNrZs2JpJKBqhe+9KmMv/tNJV5iliWoePHj7cy+96FCxdameN0b2ahKd8fFgu2RiWMKcu6SGx8YL8m43awzLIWp7ZG51qZMWjfLeuyxC2NSqanWJ9CCCGEEEIIIYQQFkT+UBNCCCGEEEIIIYQwEz6W9clk2LYTtUl+KlYFk1bxfF6T2Y1YH0q/rA68/q5du1aWmUGCEnE+L49TDmm735vsayxFo+SS/8esE2fOnGnlw4cPt/I777yz8jjbkXJNtlevfHZKBqjejAWV6xi9Nq45YdY0sz6ZNY+yu6eeeqqVz507t/Kcq1evtjJtR7Y7e+Ud2jtn/WnFMgkzr8/2oezcMtRwTLBMEZSMUrI+DFvjnOMXf8P2mpIx65OA2Uf5/uZKb5Ye0ms36cUsBZyzmLlo3759rcy5j5mbGAu8Pi3GnFtoDWTcMZMS5yVaong+zzGbxjBsjUHaHS0TBuGcy7YwGxQl9Rw7NjV/bcc8ayxtTqxgNh97VrMtEI5P7OfMCMT4oq2J2Z04tvE67NtcN9oakvWZklHQ5ke2A2OQa2/GDeOA5w/D1ixsXJdyzcHfmA2Scy7bjusStgXHCMusw3UDn4fX5NqbawCOidZvtnveX5ptpDK2EfbJQ4cOtfJnPvOZVjZbyeXLl1uZa0vL1lWpW2VOt+vYVh72TW3HzU7EazJurF+P72Hfg1Yn+2bmuoFwjLBtHZZIJYveui1OPuLum4lDCCGEEEIIIYQQFkr+UBNCCCGEEEIIIYQwE9Zan0xGZRKvSkYnSg4pY6QkmfIolimPojXDJFqsg9klKJ+jBIlyLdvNnbIxtgnldrbrvNWN54/luGw71ptSNmYaYLaeL3/5yyuvw7LJdk32NsW+UdnBvlf21msPWLK026xM1mZmj2IfZp8/efLkyt+avcgyvFTeoVkwTM5MeTLl38Ssjqwz49r6gkm+OV4Nw1apM/+Pv+GzcSd8ZofZlMVlKVRkxHwHS2ufKdaDitx6U5Yai3HOv4yX3bt3tzJl5HYd3pfX4fm8po0tFdvjOJY5P/J5OI5Y9hlmEOGYyHmT1izGMq2O1i6kYney4xUJfiVTiDEl69ic6F2/VDKq8Bzaf7iG4nH2f84JlSyKFguVelbgWMt5jPMVz7HsRqwnn51Wp2Go9VtaKK2ujHleh+MI1zpmobXMr7a+ZxsdO3aslfnubW1k9Gb+u1ti07ahsPbgmGoWN64PmaGLfYprRcsIPOVbpNJP2Uc4L/Ebmf23kiXK7FHss+uyJbJNLQOUZUikvfnAgQOtzLjj2Mf1M63XvRm55gz7AfulZeEiy/1SDSGEEEIIIYQQQrjLyB9qQgghhBBCCCGEEGZC2fpkEiTKqyh9orTHMjqZ7NNsBJSo8V6WsYF1qFhF+Cy0gfD6lM8dOXJk5XGTorEOFbvWWPLH3/D/KJ2iJJs70rNNKefm+ZYdxzJZVOSAJvWbskP6dmDZhuYK34+VzUbH/nbhwoVWZlYTxintAjxOaT8l0BVZscGxghJIs2hRnmzyTEqvKxnWLPsGGT+jZdqwMYVtapmhPglYjJsNYAlZAGycs/Hb4sKkyxX7Uq8VwiyNnEM5D3Ju4XHGAaXTLJstkfYKxqxlaKHl6C/+4i9a2TJLDMNW2wnjjr/hPZiJyrJOUi5P61Mle0WvZakic+c7q1h9WDZLNuu/ZKtFr12MbVDJOMe+zfnLshhZG/M4+13vGEIq4wxjjZYFWhmsnpaJ8uLFiyuPD8PW+XX//v2tzLbjdwJ58MEHV16X8zrfh2WTNWst52uOd5YJjN8AXK9w/bypdexOrZO3k8q3gmUy5RhMex3He84vp0+fXnkO18Psz71tbNl+eC/GDo/bXGRzl7WVWZgJ23xsfarYjG3soA2Q3/B8T4xrxsg4M9zSsGyC7AeVTE8kipoQQgghhBBCCCGEmZA/1IQQQgghhBBCCCHMhI+V9cmsIZT5UCr4yiuvtDLlhJQGUx71/vvvtzJ3T6e8mfeiRI31pMyKUiPW33ZzJyYpt928KQ1jnXk+5ZmUsbFNaOsYhq0yUdaVv+G1+PyU/b3zzjut/PDDD7cy5aas69mzZ1ee05sNyjLr9GbB6D2n8tspGax2ApOiVySx/C1jjXH6xBNPtDLljbt27WrlN998s5UZp2ajsHdltgAe530pw+ZxxhTl/zyHkmSOOZZ5jXFAqeZYFsrfUALK45Ud/E3+u4Q+ORWTjPJdLsH6RCrZOazM52Z/4xjP/sV5wOT/Vh/OcZxn+Fuz2BJeh/2dcnRmT2Ic8BkZ4yyzbuwjtPaOZd5mF+F5tFGwj9HOwPtxbmXWK9qHWdfe8dqoWNd6+xnpzSZjltq5Ymtaez8VG7TNd+yT1vaWEWhTmX8q742xfOjQoVZ+6KGHWplrUZa5rmS2GsswNt6mwOKOcFwzK6bNm3x/PN/ai+/DMsFxzOKagN88tHEx++p2zF93iw2q8q1gWxRwHfvaa6+1MvsLx3ubv2i5tXnQ6lzBtrawbTEsTtkHeQ77F5+dfZnf4LTaM87G/7Z3Y1ZBbqPAMYL34/qAbW33nRuVWOO7ZDvYezWiqAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMWGt9ojyHskHKqyj/+dKXvtTKTz31VCv/7u/+bitT/kMpGq9p0qrdu3e3MqVSrBulx/xtRcZFOxFlXNxtm+cz64RlvzLrBGXklMtSojbe7Z73oKWKxymtY/vyfGZ94j0++9nPtrJJ61566aVWXieb+4iKfHpT9qXe45a9YAmZLMzKZLvimzzS5IeUTT722GOtTIsT3z8lo5R88/q98mzKkHlN9lk+L5+R/Z3nMO5Mtm/yZFqlxv2d45rZGnmc57PM9uU9lpCJbBjcAkrsuM03ZAnWp4rdpNdSwX5kmYhoaaUUnPFiNmHWh7Ye1pkWwkceeaSVv/71r7cy453X533Zr/meOebweWl94vXN6jWGbcS5nM/DNuU9WCfej2Ml27cyjkzJ7mRya85fXEPQVsk5nWsXe/dcP7BNrK2XMG8a1vY2b9oa1ca/7Zbw99rEGXeML9qdaIvns9v8y77D/sI5jXPd+Dxah4jZh4mtgRmzrLdZa3gdxs7hw4dbmese2hZ4nBlhaSm37QI2xZIzspnlx9bsLHM8vnr1aitzDPv0pz/dyhzv+a1n9+I1ubbs3bbBMrhxbck5h9+SnBMtK7FZq3hNy0g1zkRkNkP+nv3frE9mDeV4we8HWxvdSVufjemV9Zxtp8Jxlt8z69YurQ6VSocQQgghhBBCCCGE7Sd/qAkhhBBCCCGEEEKYCWutT5QXUU5LaQ+lZb/8y7/cyr/2a7+28nzKKSmJpPTr4sWLrUyJLqXdlKIx+4zt2E+ZmWXQ4E7tlCyNM7x8BKWUlGSarJJQPkfJ2brMCfyNSbNYV8syY1Jw213fJL8vvvhiK/NdUt5m72NTGZ02JYeb8+7it8PaoCLZY3+jXYJ9jfJGykfZv2g55FhBObBZAUwiTjkr72V2KrMdMK5t53/2TcowGR8mux0Gt/6xrS0eOfZRGm474c/B/mOZwPju2YfYD2wc4PtgmzAzCOeAuVKxPNgcYX3M7LHsR5yzOKcw6wjrQ8mtZdB4/fXXW5nvgdeh5JlzIutTsY2wzAwyvK+tPVifsT2CfZX1MCk5YZ9kDPIelDFbppDtiFmzsrBP0IJBWwvHOHLt2rVWZv15nP3DMunMFVsTTsmiWMmu2MumMnTZcY4hHL85V1bWgGZrYN8xm/743pWsT/w972frXt6b493Y5rHqXox9ywDF63MMYTvS0sW6sf7bwdJsUDZ+2FYbZt3lGMxvw9OnT7cy3y3XXOwXXPudOXOmlZlViu/T1jVmn7RvI9aB/Y7xyDrzHF6T84BhWbTGz2BzDevKWLYtCdjnuSakDapiGbb+3Jstz2xKbDu2tW2jwL9HcJxhm/BvH1xXVWzwUdSEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJpSzPpnckRLaP/iDP2hlypJfffXVVqacjDIoSmuvX7/eyh988EErW6YFk58R2wGbEmvuVM0dmk0WzXuxDnxGSkBZf0rG2La8zlgmSskZ5VV8HrYp24jns8xrssz3d+LEiZXPY3YUSqNtF3LDLAEm552SWaEiF54rm8pqxTL7xZUrV1r55MmTrcx+wZ3zn3zyyVbmO7906VIrs/9bPDKz2zhDxEdQ6sl7mWSSMkazN1LybNYwMo5NSmkpiWRM8fnZjrw3n5/1u3z5citTJrrdfdVsorS2MivY448/3spf+cpXWvlb3/pWK9MqUrkvsWxQc6KS8aFitbCx9tatW61MaS3nHc5ZvO+NGzdamfHO+1LOb/My5fwHDhxoZcuARGhfY2zavMlnsYxMfEbG2TBs7Uv8ja0D+AwWv5xnK5JsUhm7K/OgZe+gVYxrGstcY5lFCK3NZrVeAr0WkEoGt4rVnVRk+JVzpmR6orX00KFDrcx1L/uFZXMz6yXnZfY1xtkwbP1+2Lt3bytzjGM88t4cIxiPLDNmK98GvJdlUrPsrZY57oknnmhlzn3c1mG7WfKa1uZNsy6yzO9H2qD4TcO1G+c1zkfWtzk/WjYoXp9l24KC8xKf0a5j2ZNtXGfdzOo1DFv7PO9nNlvGNtuI78Di17K5TRlbDbOA0ibMzMjsK4xfe0azBnNM45p/3XYnHxFFTQghhBBCCCGEEMJMyB9qQgghhBBCCCGEEGZCOesTJVKWpYjnUwZFCRbPYTaKCxcutPLLL7+88vqU/FMSZVYbk+hSKnb06NFWpmSYElD+ltekfInSMtuBnjJMy6Jl2RiGYaskjthO2jxOqatJrdh2rB+l55RScxdrk6qabJVUJL9mvavIfytyOLMizBWT8Vo8VjJQ8LeU8nFHc8YLpZLMKEIpNfsjZaI8Tnkgs0rx+ux3jDXLzkYZsmVjMBsN44bSTp5PKegYxhrrx+dhv+U9KJM2uSmtpLSv9GYZsR3v2V7Hjh1rZcpBn3766VbmuGRZefiMlomDMc6+aOPvXLEsFb02TbPWMsMa25jSXc5flHOzXTnX2HjCOOX8xWdk7PNd0S5TsSmxv1t8WNYeu/6qf6+6n2WD4705LnDNYZlcpswplWxhFr9m72J9uIYzKyKtbjavVKync8IsEjZXVjIV9lKxeFSsT5Vrmn2HNjiWab21+/IcznWMG44bjK2xVY5zis0jHKc497MPmw2GmI2XMct1D+cptl3FRsIx2r4x2EZLWHNuN5Xxo7Ltgb1P2sfZ79iHCddBXNOyX5g93bKAErMBWV/gOayzWZ8Yp4wt9lOO3+PvQsaz2aq5LufamvMm3wEZW5RX0Wv1tHGT62e+M66ZuKal3YnPwjZl5ia+D64N2A9o+eZ3cbI+hRBCCCGEEEIIISyI/KEmhBBCCCGEEEIIYSastT7Zjv6URFFmRukT7RKUBlMeRtk7z6e0jNfn+ZRpmXSIUlLKnWjLoiyccnGew3uZpJMyLkojKSumJIptRVklJVrcpXz8PJRg8T2xfmYx4P3sHMrj2C58TmYD4rNxN3te0zJA9cp5ezM3GL0Wqjlhcn4er2Q5IOznlOm99NJLK69P+Sj7CGWSn/nMZ1r5V37lV1qZ/YW2OUopbZd7lin15H3NJsn44vNathqTNrNfD8PWuDCZJeWRrDelpIxNG4MYs5RY8zix5+d9P/e5z7Uy7U7/7J/9s5XXZ0auN954Y+W9zp8/38omBTZbE9vaLB5zxexOUzIYMJZpBaCdkPMO5fZ8V5yLOeeaDYTzL+OU8yb7tWVoIrwmYVzb++ez8zo8f2wRZkwRy7xYsVLzHpRGm32jMpf1ZhiybHnMwsU2tXbgWM/+xLWLjY8Vm9CS2VQs99q7p2AZFTkOMFscY5ljiMUvx2CWOT+wT3GcoYVkGLb2K853lkGH8W+ZLC1rHS1eFgtcN7CfWwZKy2LLZ2Fbs3zu3LmV19wOlrC+nZIxr2KD4vzFfkRrjq1j2RfYh22c5tjJcZHrL7M6cq3E+GAsc1xntjRek32Q36q2hhpn/OO/OUbwOTnX0NbHeZNliy/GMsuVbzTLBMa2tuzOp0+fbmVuO8BnYTvQDsx3YxZxfidwXOod66OoCSGEEEIIIYQQQpgJ+UNNCCGEEEIIIYQQwkxYa32iZIkSMitT4khZE6VclCZRHma7rZv1qZJtgFIxSrcogeRxSt14fUrmKFmi9Il1o2WJbULZF6WUfEZKvSgfHdePcmtKwm7cuNHKJl3lPVgnvidekzI7yuYopzt16lQrM5uXvVeTTFcyIlQwe4/Jl5cgDSWWucva0qwNZkejfY39k32KNgfKL3k+JYSWOY51o8yQdaOMkcfNrse6mS3CrGGURTPmLLPKuH58BsYOZbUV6xPvzbGS9lGzgHKcpS2C7+mpp55q5c9//vMr60PJKGWfHONYH+6Ez7GFz8u2o0yU8cg+ZHLWuVIZe0jFIsP2Y9twjjDJN9ubNiWLQR63sYJSX/ZT9hfGptmU7D2b9YnzHvsOzx9nZLMsF5aFzTLlMNY491mWN17HxuveTGC8po0tHHMZy4TPy/fEcebKlSutbBnCzNIzVypZY6ac32t3szVIr8XDrs8+zj5imW4qGcxYZ47xXDNcunTptucPw1abLS2HjG3ONTzfLCVclxNe06wZPIfPz7i2bLIWm2xrjl8Vm/onicr40RuzbFf2z7Nnz7ayZS6ztR/XUJaZkedzrmSfZSyw7/Pb0NarvD7jmvMVj9v307o5ivfmvM71La18rBPnFMaU2WZZb5uvK+OprXX4fcosldy+gZY2zu/8hmV9OFfaWMnjZluuWIajqAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMWKsjNyk6LTKU7TA7DOWKjz/+eCtTlsaMJZSBmR2DZbNyUAZFORUtTpRrUWZFKEWjdI1SsUcffbSVKfWiBI42ILM7VbJfjWG9eT+2BSVnttu2ZRNh+1IOyOtTGkg5INuF75hyWJN79UqNjSkZo5Yg4abUl8/E4+xXlewV1t7sRxcvXmzlM2fOrLwv44tjhWVaYB1YZ/YR9lnGTkUuTpkh68O4piyW/Z3WAZPRjq9rGdYop2R7caxhTPF87khPC5JZR3gdyj4PHjzYyg8//HArM0sQf8vn4pj+3HPPtfJrr73WyjYuUfJt2Xb4niivXWdrmSMV+6ZZFK1scx/fD22vHO8pgWZ/Zh80+y3vZRJmSp75ntl/bQ5lHfhueZz9wuY6nrMuMxj/z8ZQs44wrnk/SqNPnDjRypVMSYbZY1h/WhopTec7oPyb12S/oYSbfYjrAbNuLc0yTHptRHbcrlNpmynWp8oa2NZoXIvavMz5juMx+w7Ltp5nfJgVbxi2jgtcN3MdzPuZxcXi2tY0Zv3jOsa+fxgXnKf4LBwHOc9yvGN9NrX+XFps9s6bxNa0toakZZhbW9A2amsWvk/2TY7HZhXkvfjOWeYcx7jj2M+2Yn2I2bhsThtnfeLvOV6wHfnMPN+sxGYr5jzFudXmTesrfE+MX1omue5lBiiuk9ifuD6ntf/ChQutbN/Otv2ErbeMKGpCCCGEEEIIIYQQZkL+UBNCCCGEEEIIIYQwE8pZnyhZMvklZV2Ub1G+RAsSs4Xw/Ir9wXaDpsyMMktKnCwjDK9vGZ0oH6U0jnKya9euDatg3SizMovKGNbVMlRZtgxKzymVo4yT16Fcle/GMvfweSgz4315Hcpk+fy9VjeTDlekzNanl2B9Mim6ZQ+o2J3YNmY/5Ls6f/58KzOTGvsF447vnxJTyj7NusV+av3RssZQYmm731sGHJMujiW4rDfvx3bkuMN68N58Tkpd2b6/9mu/1sqUiVpWPFqfeF/ucs+xjHCM/r//9/+2Mm2ulP9aZjo+I+9LO6S9J5aXlvWpMiZV7BKWIcRik+MD38/NmzdbmfJbYlmf2PaMQcukxPdJWfTYNrjqmryOZc3gM7KvjfsI44iWCtaPbcc1CuvN+nF9wLjmbymv53xq85rJ+vnuWWfKzjmeUsLOdmQd2A/OnTvXypbtj1RsP3PF2ruy1ujN5kZ6bSiVMcHmdPZ/rvW4RjMbLvu4vWfOs+xHjC1aiHjf8bPQ8sBrmW2QfdvWMTzO8zlGWDYdnm82Dfs2sEy0LLMtaM3glgef1AxQFkcWj6QSX+xH/Fbl+GdZN2kt5fxoWXBZH65vzcbLOY7nsw5mp7O5iHXm+bY+HbetZfvlvENLFM+3PszrmM2f1+HaxcZowvZlW1hWRN6X7ct1OLd7oM2f37C9c2WlT5MoakIIIYQQQgghhBBmQv5QE0IIIYQQQgghhDAT1urITfZvu62zbDJh2iVMPm2ywYr9xTK2sEx5FGWftgs324G/pWyT0idKOCntp+TKbFzcYXqc9amS0YfyLZNjcYdqns9nZpuyrjyfUlKWKf+2LBgvvPBCK1NubRnFtkN2bH1oCVh9zSJhsWzyYb5nk+/xXXE3dMob2RcOHDiw8jrj3eZX1cHeM+WTlk3ILFGUPTKeGDeWcYWy0mFw2SfHCP6eklHGNc9nXXk+3wfHNWZs4b0Y74QSWD7z2bNnW/krX/lKKz/zzDOtzFjmu+FYYVY3/pbvj+1g/dssf3OiEpsm3a1kfiEV+wbfrUmSbby37ISV2GQfNPm3ZbXgNa0OZlEc2/jMDkx7Bp+H9WOMmD2SMbt///5WZj/nvTjHcwwllsGN4+mRI0damXJ0Pj/fJefZV155pZU5btj8a/bypWWWmWJl6s3otN3YO2FMcV6yzGjsa+yz7Au0DlhWFvYvxgrH9XFsco1rWRVZJ9oNbCyzDDqWbY7X4TNzfWB9gufzvrb24jxOCzBtkrzOpphDf70dFUu+UcmWyOPsF8yiya0tOKaalZ7rQMs8Rosb5y/LdsqY4Nxi6zXei7Fi37lmbR6vw9kPLZMgn41jDa1crCvvbd+MnI/YFnw2wrjm+2CGU7MJW8YsxiNtibTJsQ8Rs+2TXpvwsr5OQwghhBBCCCGEEO5i8oeaEEIIIYQQQgghhJlQzvpkcjKTwVLixOtYZoopEiFKvCh9ogzZLCEmrWI9CeValhHDpGsmd6dVyjLdDMNWKRqlobaDPY8z4wPrYb9lPVi2ncopgaNEj9Kyhx56qJUp56Y9jM9IuTiPs33NCmGybZMLLyFjhVGRhvZmd7LYZLuaXYjvzaT0tls+78vr075jlkn2O/YR6+8/+tGPWpnxZO3A42NborUFf0PZs1mEzLbAsYljCscdtinLfGbWm++VMfjf/tt/a+XvfOc7rcwYtHgx25hl+mH/YL+kDJfvaQkZMSrWwgqVDBeV61eyJRg2PrAvsO/bfEJ5svVNy17I+DD7r40n43uYxJztwntTzs05y8ZTSqz5PMwywuw4tHLY+EgJ98mTJ1uZMn0+M/sEr/+DH/yglWlvZHzZvGn0nr/TbCrrU2+GyYo1o0LFZsi+wDnH6sb4YkzwmoQxyLne1vBch4/rz/mCc7w9p2Wo4vm0FrJOvBd/y9hkzLI+nHN5TY6DlUw0HFsee+yxVmZ2RbMVV+i1zi6BUlYc6XvsL3w/9p7ffPPNVqYdh23Jbx3OCTY/0GrDeZDjLq/Pfmq2Ic5Ldo6db2ur8VYZfAb2ST4/4XhhWU0ZR1zf8vmZKZYWJMsOzHbnWMNMqXyX/E4gHMteffXVVv7e977XyvxWr1iDK1TOj6ImhBBCCCGEEEIIYSbkDzUhhBBCCCGEEEIIM2Gt9cl2pTYsU4zZAirSIctEY7vcU/pESZRJrCmBpAyf9aRszDJiUBrGZ6G0jHW2Xd4pv6Jsb3xvSvQo5WKZ9eZz8h4mMbdnYBtRJstrUm7LOtCWRpkcd79nG/EZ2V7MMGT2qErGKNulfQlYjFR2zjeJrsm8zQJpdgZmImJ92Hf4W/YR1s3sSOx3NiawPhwHiGWWsXGDfWQsKeezsa9ybLId+W1nfz6n7fLP5+R7sqxXllnjq1/9aiszu1NFjl7JqlbJ2EfMeleZh3YaswNXMrJV2pJU5s2K1YLH2cbss2Z1tXGAfbmScYVzEeOGFoFr1661MuOM9Rzb4/hsjDVey94N68FnNosfZe4c1/jMtCNdvHixlRnvHINOnz7dyrRBWcYK1u3FF19sZdqdaA/pzUA2t+xHH5deu9OmskFVrtlrrTLrk2XS41qJ6zuzI5hl2NbnjLN11kvbeoBrUcuQyHNYtrU768F5jVZEjnFsLz6zWa54jtkr2C7M2nb06NFW5rp3CVkON8UUq2AlE52N8eyTHJtpRzPrEK3qPMfuyzhlX+BajLHJmDArYiWuK1mCx9e3fs5tNBibltGJ9+a8xnpw3uR92f+ZccmyanF7DVqfeA7HMrbXlStXWvnP/uzPWplZn6xNeufBXotiFDUhhBBCCCGEEEIIMyF/qAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMWLsxB/1htn8LoWeLXi5Lq2WeekuhaF5q2+eAdaYXjf5E89vanjY8hx5Gev3o4aMnj3Uwbxzbavy8lsKNe4Kw3R944IGVx3ld1tX8wjxu6dLoq2WKUqZaMz8jn8vSn/M69DPS4//GG2+0Mveusfdn+7AsAfOSV551SqzxXvTVmkecMcjzWU/GCJ/LUs7a9dl3bK8mPhf7OM/ndTgOrIPX5f3oeefzWEpjXoftwv7MeOd1eJzXpKeabffd7363lb/2ta+1Mv37lTHXyrYvkvl8bb8DvuMlxKml5+5NjV3ZE8OOV/YUsbZnH+HYz70cOJZznrH90lhmO5innp5y+tE5D7z88ssr68n+Owxb49HSl3Is4PPbXlqMNT4b37f56Hkdm+9szxGOCawbY4rz4HPPPdfKTC06Ze+LJe9LY/siTtmjhlT22ZiSntuuwz7FvsNz2McJ+5HtM8G+bPvFsQ6MCUvnOww+l3PO4t6GTElv78/mb0tpbHvecTzifVk3rmlsrW97o3AMsT00bD3Xy9Ji1uZNi19i35g2/3INxffJbxq+H47H7DtMAc13aHsk2v6FrI/te8R+yrHc9n9jmb+19OLDsDVe+J1o846NEbwu247j1PXr11uZawvuOcs2ZRux3bkvDeOL12Q/YPtyPcz9cPiObS21qbIRRU0IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmwlrrU29KRksVWjleqYOdT+kXJVGWgpJSJkqfmC6NEtATJ06srAPvy7RulJmZpI0SO0rgLJX5+Lr8P5ZZb5Nts96UQ/MZ2Hasqz0PZWmUyFOGThmbWUVMqsh3Qxki5XO8l6UVrqQJ7rUo7ARm2zI7IanIvO1ehFLlW7dutTL7He/Fvsn3Q/kk+xHPp2SS/d3sMmYDYrwzlilVZjxWZfD8N9uF/bMSj+znfK+0l9j5lJ6arYM2y9/7vd9bebw3XW9Fgmzpnw2ewz69hHSlFVtYxVJmcUq247jZoDhXUKrMWGO/rqQrNRsUrX7Hjh1rZcYmLbCUZrNu4/sxLszOTbuiWRgIZdWcKwnrzTgllLZzzOJxezecu3/wgx+0Mq3KjJ2KhNuelyzNUlGhMuZXxrzeVN2kMtZyPrF7sY/bcc4hLPP67Gucrzm38Jq0I9iadBi2xhfX5YxnptxlH2adzArOOvH6tn7m2pUWKq6HOS8zvsy6xTUA53G2HVN18x1Msf0uLTbZN8zaY9i3qtmQbSxk37bvCc6DXJeald5seXxGziGV9Nk859ChQ63M/stn5JxmabtZt2HY2l6cj+w5LVU9MZs044jPfPz48ZVlrg8Ya/w25L34LKz/tWvXWplWats6ozJXVrYC6P07SBQ1IYQQQgghhBBCCDMhf6gJIYQQQgghhBBCmAlrrU9TdhmvXKeSgaciPaVcjZJJSi7tHEq0KGOjrJrSNcrPbty40cqUU1EmxzqY3Yl14w73Fy5cGAglYZRiUrLGuto9TPZJSR+laGwjs51QysV7mcXDZHWUw/EZKWPjDvyU2NKiRukan4v1N4napvr9dmJyuUrmpil2J4tTywxGWwRjh5JeywrHGLRd69k3K8/OmGW/sIxv9ryM6/EzsA+zz1v2KUqdLUMNpau8PvsB6802orzzO9/5TiufP3++lS2up8j3TYJsMnXCtuZvl5D1qYKNN5sqV+zJvdmgaFO4dOlSK1uGNct2wX5ttiGOJ7T1fPrTn25lji2cK/jbcb0ZIyyzT5pVg2MW24XPzzHO5Nz8rVk0LbsJn41zHO1OXDdYXJPe7ESbymC0E1SyH24q1uwd9lrKzLpnNnzakAl/y9jkOpH91OwCXN/yOC19/C3jg7E4/j3ncs79NlZy/q5Y2jlGWKZMth1tJGw7jnG0WZpVjFlQ+Z5s3OSYaJarXpZgg2Ibsy+xbTj+2Thk34+2hrR1I78T2Rf43syCY5nUbJ3JPsK1JJ+LccdvIN6LNmHa2W1+tGyn43+zn/Mb1dZybBfLbGgWaL57lvl9blnu2C62jQDfJbM78dvA7E5mN2U9ba6fYjGOoiaEEEIIIYQQQghhJuQPNSGEEEIIIYQQQggzYa31yawhpCKnteOV31akQ4RSLFpwLFuCXZ9SLEqezRJEWRqlWLQsUM5JKZrZrNbtkM96U4pGCR2fkxJTSt/YRrw+z7f2MnsJ24vXpOSMUjFKBtnPKEW7fPlyK9MGxV2++T5MJtqbyWyumNSzV4pesUFVMEmjSQUpB2X92RcIr0PJM3e8t+xRHBMYpyZbZX0s+9DY+sT+bLYdk5XzOOvNOGLbWbYL3ovP+e1vf7uVv/GNb7SyjY/GlAwoNm5U5MtsqyVYn6zP23GT7W/3mFQZK+w4x1pKrDn/0NbDODp8+HArM444b9KCwDGebcjYZyyPsyWalYnSaLYFbSFm5+A6gOdbdkmW+ZxWB86bHAcox6fd6YUXXlh5jsUaqVifKr9dGtth7Z9iFSW8DvuLZVLjPGAZV8yGzH5ttgP2Qa5pbZxmzLHvj9eM7KtmWWFb8N7WFjYX87esH8uWBZVrUa4/Gb+sM+tgWwHwvrSH8D2NvwHuZtgeXAdZ27CNef7Vq1dbmX2vsqUGz2EcXbx4ceW99u3b18pcc3FOsOyljBf+lsdpMeZ3Huv58MMPtzLnWfY7xi/nSmYbY9sOw9bvUj4zLconT55cWW+ebxZNztM839qIbWpbJLDMNf2bb77Zyq+//norP/fcc63Md1BZo1qWskp2z97vtChqQgghhBBCCCGEEGZC/lATQgghhBBCCCGEMBM2mvWp1+40JWMFMZuSSY/NykM5me1yT9mjSRptZ3Je8+DBgyvrT9kXrz8MnnWCcjeTSlbsCXx+StQqdie7DmVylABWJNmUf/McylApf2Qd2FaVjADsE/aMc8Ji0+Sd9tsp1ie2E/sgy3yHzGZgVkqTGVqWJMpiGYNmkbF3y7rRasFd8Rm/4z7Lfkj5JWOYsck2Mvk05aAmSef5tGMwo9PXvva1VrZMV71MGcdNLk9s5/wlZJbppTeLTq9NbVNUxnhKjCkLNzkwY4XX4Tm85uOPP97KnKMYE4yn8b05XtCmxfinxJoWEd6Pv2WMW4Ybk3Dzvmaz5HqCEvznn3++lTeVHabC3WJ36s36ZEyxG5sdkv3IbBR855X1DvsybRSWLdBsCpZpkfMmf8tr0iY5vhbLBw4caGVaNRgvtCbR5sA4sq0ALAMlx6CzZ8+2Mp+T74NZdmgD4bvhusTmdMLxy7J83Y3zoK3N+M1Fqw7bm/3t93//91uZWybwnVRin/2ItjlekzZe9guuFTnnsJ+yL/CdWxZUrt14HWZkOnXqVCu/+uqrwyps6wu28zBsjWfbGoCxQ2xrA/ZhPqdZnxg7rAOz/bLtWGden+/+zJkzrcx3aVsBmN2pkq2JTInfKGpCCCGEEEIIIYQQZkL+UBNCCCGEEEIIIYQwEz5W1qcpWZl67RiUpVkdKLOi/MzkkJTJmSyRMihKL00WTXkXy/ytZTp66KGHWtl2KR8GlzezTpSSWxvxOSkHrbw/k7BbnzBbGo+bNM7ks5bZi1T6Jct8riXIStl+lfdAtiPbhclWTfJPTErNWDBLI/uO2ddMrkh5KiXPlNdaHLAO4/qZbL0iSWdsWhYJwud/+eWXW/kP/uAPWvncuXMr67kd1qdN9T+zRy3BlmjvymwONv5NyZxIerPS9L5Ds0WwzDhgfFBuzTLji+ez/1LyTCn0+BmZzYLxdfz48VamfJxWZ5Ob2/jCZ2a7cP7lmoPncAxiHRjXX/3qV1fWmXNihd5MT3dj1idjU5mberE+QrsP+4VldSGWOZBjqmUiYp9iFjaWaeuwrKSWTWUYtq6PLasa78F4ZF0vXLjQyrROMDZ5HbOIs70Ym1x7M075XcF2fOSRR1Ze07JBcSyz7FwVeuN3TticyD5Dq9Gv//qvtzLnCI7xf/iHf9jK3//+91uZ743YuoZ9gTYo2u/sHfL9Wx9krHGuZL+jXZF9kNkP+Vtmg7KtP8h4TOO4Qysi7UK2zQFjk++Gz8x4MXuRWZ94Du/FMYTxxYzDLLPOlQxNRuVvIrbtRrI+hRBCCCGEEEIIISyI/KEmhBBCCCGEEEIIYSbckaxPlPlUMhKYRJNlszvR+sNzKJmkXMssS5SiUbrF3/L6LFMa98EHH7QyZVwms6K8a7yrNOtHOSmlqJSSUgJISTapSLAs+05FEkbZn1kY7JqUt7FstqneDA3Wt5Zgr7AdxzeV0alCRRpqWYwYF7QgVd6n2RX5bk0KTqkqY8KyKlk7UzI5vp9ZHDmmsI/xefhbk6haVoAf/OAHrcyMFWxfsik59KbsrMRicwm2RLPo9sassR3ZoHqlu4Qxy7mI0mNKuCtZmMziwPpw3qcsfFxP9jezQfFatF3w3iZhp6yc51esX4xljomvvPJKKzNrG7Pm2PhgbMrKtAQbhbGpWOs9h7D9ON7bmpbXN7sT5xZ7P7wX7UGMA8KYZTxy7cl70brI3zJWaNkYhq3Pw3mKGeOY9Y31vnr1aiszjjgG0YJkduNr1661Mp/NbIy8DtcTtCjy+szEwxhnu5uFqjezzJLhOM3+TIvniy++2Mqf+9znWnn//v2tzHfOLHkcU3n9im3UYpB147jO+YixTHsU18l857yXZR3l9xDjgxZg9h3amPiNSMvgOGNwZZzn8/PZ+DyEdeJ4xPfHtTWf3yyB9p3IWGYWVFqfGHeVb0Ozr1e2epliRfzkjAIhhBBCCCGEEEIIMyd/qAkhhBBCCCGEEEKYCR8r6xPlPGZlqmTXqciFbKdkygZtt21KxShvs6wxrA+vbztmU7plO5ZTJsfrUN7F83nOWD5GmRbPo8yUcq9du3a1Mi0YfDbLUFKRyBOzt5nlwfoE5b9mIeHz2vVNcmbSNevrc2VT2XWmWElMWsksZrQzsD9TAk0Jt71/SiB5HUogLX7NBkWLA6/zcdqzkkXC+hX7JH/LMYvXoSSb0l7K0yn/trjYbqZkW1ty9gr2YWKZ60hvhqZeejNGVTBZOOcosyaxb5oViTYI1p82Z16H0u5h8PiiJYPvw2KQ1+FzmiWZczzHMp5P2fq3v/3tVv7Wt77Vyq+//norW7YSo2Jx6o01W5MtgV77V8WuOAVen2sc9hFb31UyLXIs4hxNmxLjgOtbxi/nE9aH87LZsiwT3DBsjVW2+40bN1Y+A/s/n59zH8cF2kv4bcDY5LhjNrBKNiDWgRYn+0ayjKtsU1uvbvc8sRPYtwj74ZkzZ1r5P/2n/9TKX/jCF1qZfY/tx+9E9lXbhsHg+zSbLDMKsq/xWbgGti0vePzEiROtTLse164cHxjv7FOs8zoLGOOFliqbH9m+9j3MtuCawDIo27uxb0mOTbRGPvvss63MODVLI+n9m0UvyfoUQgghhBBCCCGEsCDyh5oQQgghhBBCCCGEmVDO+tSbTcakSWY1qtTB5IGUblKmRNkjy7REVTKQ2K7SZoOivNMy2vBZbMf3sWWD/7bd4+1+ZiPib01aZlJ1UrGLVGwOhG1tu3NXbBQV+bJl5JkrfIdT7Ay9Uj62JfvqY4891sqHDx9uZfY7yh4p+2SZbc8YP3ToUCuzz5rNhP2F8cjjvM54x/uPsD4yzrhi9jpKOi2mzL7FtjbJ7BtvvNHKly5damW2dSU2t0M+bXNApb+yDZeW9anXblI5p7f9yHa3Ga/PfscsGzyHdj3GNeXotC9wHCBmmxpL6Bn/HLM4hjKbjFkOLSskY5NZYHicz8b6/Mmf/EkrP/PMM63MzBSVrCS9VDJ7VayI251Z8E7Rm7XDfluxjLPM+Yv9mes79iOz/tg1aS+wMsdX9k3a8mgpYEzYmpx14/m0XQzD1rnMrMs8h5ZIWhjsfox3ro35zIxNjgnE3rHZOth2n/3sZ1fei9e0rQwss9uUOWauVL6P2H7f+c53WvnVV19tZVpwWGZccM1l46vFF98/+5RlK6JtyDJb0bJkGQIPHDiw8jpc97E+nEP5vLw+23bdvMm44HUJ12y0VvLZOM/yGbhFAu2Qtv0By7w+x4qXXnqplZmdin2osjauZDruXdv1zpVR1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEmrLU+9VKxR1UkQmY9oQyKdifK28zyYHInqw+ll5RZUTJKqZdJLymHo0TLdptetws1n4FlXpfSUmZ9otyN7WWZqyryLWL2oko2JT4n61ORh/VmbrA6VDI9zAnLTmBMsRmavJk72z/11FOtfPDgwVamBJh1phSR8cLsEvv3729lWheZBcYyJ1BKTIk045ESY8pKWR/KU9fFB+PfMldRlmqZCXg+Y5zPzx3/KfVkXS3TRK/daco5FneVLICV43PFsgyx7jZ3EGuDXhtKrxy+d6wgfBbG8pUrV1qZGV14nGOLzVc2R1vmmmHY2o6MQWa14Dmsh40FlGfzeVjmvMx1yfPPP9/KP/jBD1q5kilmu5nSV5ZgtaiMJZVYq8jhK/ZrHmcfYb+zNaGNr+y/ZlmwLCu03DE2Gcscuzif2lzMeYznD8PWeY315nmc73mc9+A8WLFdsK5sF65dOO5Y5kjCPmHZ3+zbwKxYlk3SWFo8EpvLLAMvx3J+63ENxXfOPs++xjY2qyvhu6pkImK8MB4Z7xz7ObfY+WZlsr7DOvO3tGWNLWA2NvE3XEPzmfk+LNsl60H4jW3rataHdmOWuU5mv6lsbdG71UslI9sUm/D8V70hhBBCCCGEEEIInxDyh5oQQgghhBBCCCGEmVDO+lSRC1lWEzuHmKyUUEJFSRslUZSNUU5W2S3fds6nRJoSa8rkWDaLg2V+oESNu9SPZaK8Lq9FTGZKGSelcrwfJYa9kq1Klq/KddheJjGs3HenMt3cKSjXtXaqWFIq74Tns/9zp3br25QAs3+xzN+y/pbtotJ3KIWmHZDHLdMTMUvjWBbLNqK8k+MIf0/JKOtBSS5l4RcuXGhlWrl4TbZpRdY/5bidU7EcVixObJMlx+mmqNipiI27vRLdXhsUy4xZzsuUJ9MqRNuBjVG0LHDuYsytkxVzHjSsfTlOcW3BOOVz0t7J7Gyvv/56K3N83I6sSb1S7Yp9bsmZnqZYArvl6jL+WX9m2fqz1ZN2D/ZxxhTXsTyH9mRanBiblcxIXFdahjSuYYfBMzLSvjT+zar68R6cH2mj4HqCz885nusb1oExXrEVsx0Z+2Z55bxv65LKGL1k6xPfP+nNbGiWIs4XjBeznle+IdgXLPuf2Y7YB/lbjgPs48ymapndCJ+La0Ou280mNgxb18psO96b2xPwe5NjBNeojCm2ndmjeC+zMPMd0655+fLlVra+RaZYyo2KVbXSv6OoCSGEEEIIIYQQQpgJ+UNNCCGEEEIIIYQQwkxYa32akinGzqlg17RduykfpuSQ8qiK5cruxTIlWiyb1JMyNspHTQZFmRhlX8Pgklnem7LPkydPrnwGStQofTOZWcVSZPWsHK9kVqhch/Rmh1maTJRSRGIWCcusZbvWWxub5PDixYsrr1/Z/Z3nUGLM+vC+lHHympQ3mmWBliPey+w44wwyHzFuH7NWst68N20R/C3lsC+99FIrf//73195fRsv+A4qtpCK7LM3u5PJi81iavVZGjb2WGya3JrjulkazVpH+FurA9mUnYXXYR+s2Bgpw2Y70F5BeTWfa9wOvJbZfnkPiyObyxnjHFM4Jp47d66VOd7tlHWoEte9MbiEmN2ODHKV57Z7VTK+Ve7LPstsn8yYtHfv3pX3tYyCnN/ZXxh3Fis2vo1tQxwX7LqMX8bd/fff38rMVmUWY9o0WA+zMll2VMvCxTLrQDvGo48+uvJeZlOxulXsw0uIR2JbbVTsfpV1rM079n1n/ZZls2vbFhRHjx5tZWYapeWO8wbrzHmGFiJug0ALlW1lwfbhfDjOwsT/sy0DeF3GC8cO1oNxzfvZWMN3wH7ONrVMT9zyoJJFcafmwVifQgghhBBCCCGEEBZE/lATQgghhBBCCCGEMBPKWZ96ZdKVbDwVKT2lUpR4EVqfmHWhIrFmHSjRooyLsjTbwZ5yZsoe2Q5mLWJ5neyR/zaZOyVqbAvem7Ixy2QzJROEYfIz2wG79/pGRQ76Sc1ewf5pmYtMPmp9h1Jly25EGbZZ8SiNZPYKSjJ5Pq9D6SnLrD93y6fsmvfl9dm2Y+sZz2MM8360ZTLTBssca77xjW+08quvvtrKjGU+G2WvbOvKDvO9fcjGL7OGmly2kvXJ+uhcqWTtsLJJ7O25GQu8DuPX2rs3e88UmzOfhXMlJc/2jIwnto/Z+2iJGIatsWrZXmxMZEyxzGfgPHv+/PlWZqY2Pmclg+Z2Y+++khFzU/PyTrMpy7VZfqx/2XUqNheLZc5f7P9cM/O37Mu05tA6z/Utn5HxxC0IeA7X5LzOOJMp50fbGoDWLI4FtDwwHjnWcI63zFU8zjZi23FNsy7746rjbFNCixrPMftrhaXZnYhZynrjsbJtg93L7FTEshWxH7Fvct1Hix6vY/Yr21KD5zMm7BuZz8g1Ju/FtcQwbI1VZoxj+/I425pjEMcaxhHfAedljhf2/hiDXD8zwxrbvRJHU+ay3u04ujMIdtcohBBCCCGEEEIIIWwL+UNNCCGEEEIIIYQQwkyYnPWp97eV45QIUY5FmRUtFZQNUhI1JbPBup3qP4LSOLNd8LeUdFHGxvNZ/7G9ib9hmfWg3ItyUO4SbtI9s3lsaif5Tf22YqWrZHfgb5dgqSDsb2adsJ3wTYJnGXvY12zndUKpMvsj60DpMXdnZ7xToslnpNyaMWKZWDhW8L6Up7IdeB3ajFh/tskwuEyU96Ys85lnnmllk91fvny5lSmZ5bshfAbW2zIW8Hyz6/TGl1lTKudX7ruEOK1YuypxZ3YJvkNaCG0etGyGlB6b1bFXdl6x1Ni4wXikLYBQOk3bBOH4MAxbxxEb+9j/TYZu2dxu3LjRyrSRMPbnZneaYl+yvrsE20VlXVOxRNm6yTJ48jqM3145vI0t7LO0P3A+5fkcKzj/WqZUyzBFGxT7O+dQs2GO4bXYppYBjnHN+dHWw/wt7RhsO9aBY+uePXta2Z7Txj62KbcmIFyXcN1eaTubE5dmUey1fPXa/yu2xCkZMhkX/C2tsVwb873x+4x2PfZTy/RrcyLHKMuuuXv37pX1GQbPJsUxxSxVrB+tWbYtiGVUtOPMjMV1Mo9XYrN3qwijt//1zpXzX/WGEEIIIYQQQgghfELIH2pCCCGEEEIIIYQQZkI561NFRjcliwShZItSLkqMKZOmtNCk/RXJvGUmMWkc70t5G6XdrA+fhRI4SrQo2+b1x79nPXgPyjIpCaM8znYV3yl6s0tUbGwVKdqmLF07AaWMluGHmNTTbBHWv3gv24WeckVKJlkHy9jA3eJtd3rLPMXMKrymxS/tFWYrHMfgR4ztFXxm1s8smrRIVCyRbEezpZmNyI5XMrxUMiuY/cHOsXJlvlmC9cmojE+W8bDSNpTtMx75nu04Ybz3ysgr/YixQ1k045F9n2OC2Ul4Pq2Hw+BZFc3SSSqSbM79tDbwnLlRWZ/Ze52SvWKnmTKesT04prI/V9bAU7KwcUygBeHkyZOtfOrUqVampYJrzqtXr7Yys6Zw7WoZS1lmO3CONisxy8Pg7c65n3CM43zKLFOMQdaPx20c4Pm0I+3fv7+Vr1271spmRyEcs15++eVWfvTRR1v5yJEjK69jY3Rl/ljamtYs2qR324PKGr9i7+39/rU+xUyAhw8fbmWuGdn3uY5lH+f1+VuORdY3bf3ImBiGre0yzgj1EYwRwnVGJUuWWb7t+5/tyLU05+Lx9gQfMWVbj8q7791mpcJyV70hhBBCCCGEEEIIdxn5Q00IIYQQQgghhBDCTPhYWZ+m2FMquy+blI82AsoJeyVOVh9C6ZbJM812QbkWZV8mnbYsGGMqklxei1I5Hh9L3D6CslLKWy27hjEls8IUm9IUSdvS5Nzsn3yfZpdgXzWJMi0DvOb169dbmVJH9mdKqXlN9kHbOd6kp5RxUhr5C7/wC63M2GdMVSTAlELz2Xk+49p2ux/fj7auc+fOtTLlmsy0wXa0evOd2fuzzF58l5bFxuLFrKQVi5OdYxZTY2nZKywLTGWu5BjM98N3SMk/s5HQwsDjtNYxkwmlxIxNvvNKNqjKWMtxiWMX487GActeZzaocYYL/tusZbwuxx2Od2ZdZtmyTs6NKVk5l5aFjdg4xHdl8WtZ7BizNs/a2Nxrg+I1aZFghhbGFK0T7Ke0xXNtaPdirHAsskw9ZsceZxfkdWnTolWfMcjxyGwUfAe0QrBsVmqzfJvVjeuDyjcG11K0dDLTDzNYmQ218g3Gdp9D1rnbYfZ8sh1j6pTvXOvb7NeMQZ7DuDt48GArW9bgStY5q79td8F6jtvBbFQ8buMg44jxy2fg+MXvBMssy3Z8/fXXW5lWRLNuGnfSHpisTyGEEEIIIYQQQgh3AflDTQghhBBCCCGEEMJMKGd96t3teMruyDzHpEyUYlV2Rjd4DiWdlHdRNkb51a1bt1aWKaU0iTjlbfaMlHCO62EydN6bEkrKSnfv3r3yHmahoRStkiVqU3YnUrHJVejNYrIETJbM57Dd3RlH7F/sF7w+j7Ovced13ov2IkLZI/uXWZkMyrlZH8otKSumLYmZHBgTJm1m3x/bB2nnoMSaNpXKDv5mWerNiGTyfbNm9FohejM6TclGMUUyutPYWGW2CD4rpfFjO89HHDt2rJU/+9nPtvJ3v/vdVqbF6ejRo61MK7FlTpySwaAiHee9aGm07DY2F1kmqXVUrHyEccp3ZlL1OVufjEqdtyOrxZ2i8p7NGsAxlfHCa1ofqWSWsXraGtXihf2Ra0DL9GSx3wufhdfkHEqL5RiOiWaX4LNxbWGZpbguf+ONN1bei2NHxdZEi4dlq7H1JOd91of1vHTp0srf9m45UbESzQmrb2Xt05tRkfRmvLTsTuzbXAPa1hSMWcYdbX8sc31becaxzfAj2Mcts9swbF0rmiXbMsWafYnxYusMjh2MccYIrZtsa34z9K4bp8xfle9Hex8VoqgJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTChnfarI7XslapXrmJSpIlu2+vfuBk0pFqGVgXJLk/DxWXg+7RjcvZ9ys/G/K+1F28X58+dbmRI6StcoN6Ws1qSxFdluxfJQkRtOkdpXrjPFTrUTUEZHawDfp+0Mzz5G2aBlTuE1eQ77GvsUMxrZrvWW0Yn9hbJP1pm2KcaOZWZgO/A6rA+tgayDWZ/27ds3ED4/JbAsm92J9bDMIhVLEccHPjOPsw58f9bnrZ4VW5M9C49XMv0sIR5JpT1MJsy4O3HiRCvzHV68eLGV//W//tcrf3vq1KlWfu6551r5i1/8YivTRvG9732vlTk3sb8QywZl87JlHuOcw/ZhjPM4y5zfOF+NYdxaVh6TJduzmdViinVku6nMfVMsjUvA5kTrt7TEcj6ipYjXsTWh0ZvRju3NPm+WAq7dWDezwJp1guMP28Gyo1bl/xxH+Ay2fQDnY7Mb2PYBtHtx3Dl9+vTKuvLdcD1h1icbEwn7BC2pXMfwnfVuFWFz9BKsT2RK1qdNrRes/ew4257rPvZlxg77pmVuYozbPGZrV/Yji007fxjcbm1ZnzjH85l5nPfgMzMueA5tUzzO9rW/EZA7aZ/f1HYcZFmzbAghhBBCCCGEEMJdTP5QE0IIIYQQQgghhDATPlbWp0q5ch1iWZwoJzSmSPxMmk4oM6P8itJrHjfZJ5+F9hDKaynJHGOZmIjtMM4d/9nWlNZR0klJK49T0tYr897Urtp2TZP0kYo0dAky0YqEm+/HLDI8h/3FpNGEvzXJt0m7+R5oR7IMVoT9l/c9ePBgK7N9GF/8re2oz98yxllnWjOGwTNNUKrNczgW9MrfzX5o446Na6xDxfphlgf7bW82At6L5/B57VnmhD2rZfSy52P/tIxRZ8+ebeUnnniilS2bGy0b7PPMjGaWjSmZa/jsnFsq79bGN44V62xMfE72ec61ltmOz8w53mzIS6TXDmz9ewnzJvsb+4JlG7x27Vor0ybMPkUrAPuOZTXp3QqA59DmzKxwPE67Ii0CnJcso6LZnzkWcc3IcYxtyFix+gyDZyy1rKicj3kttrVZRLjmZtuxfhybWB+znNm4QWxNZv2j1/Y75btrTmxHHXszZRmVb0ybK9i/eM6hQ4damfHIufjAgQOtzDjg/MMyr2PfzmZdGs+/vJZ9l9qcbRlk7R3Y8/B8jr+2XUIvvVa63uzDlayfJcvrbc8IIYQQQgghhBBCCHeE/KEmhBBCCCGEEEIIYSaUsz7Z8V7ZXeW3FUtNRZZr9algO1JTxvb++++3ssnMeF+ThlLStu7ZTd5tbc37USZ6/fr1VqakjXJQQjloJWOLMUXGOSWjk12f9Wd7LiHLjGXoomyQthtadWiR4Dk//OEPW9kyibFtKhnArF15PqWYlH3yHMtYYRkYeA7j67777ltZH9aT8c77UubNaw6Dy+grWc8qMlyzG5h1xDLo8Pp834bJv61uJt8nlfHaMmGZbWpO2HuwOYXtYZZTjs3nzp1rZUrvX3/99ZX34vm0SPD98/xdu3a1sll6rV+YtZTj1d69e1fei+ewHWi7sCxyfK5xtgq2tdm9LBMVxyazHlt2s51iipWpYtuz473rgZ2G4zT7hdkHGAucCzjmmc2ud+w0+N5oGea6lHMfMwtxDWhxanHA8YfxaFlcLAvT+Bmtz3B+5RrFLMqVeZZjB9vrvffea2WOuZbJle++8r1R+eaxdqhYd+y+S8v6NGXsrGT7rcRg5bitgS3zGvuXZWoz+5JlVTKrpo1jZjdeZ51nfFWs+r0ZnTmfMtY4vnD+5XhUifftwPpWb+bp7mx//VUNIYQQQgghhBBCCNtB/lATQgghhBBCCCGEMBPKWZ/suEn2KsftOr0yQKtbBbsOJZ2Uk1FKSvmkycns+pR6sUzZ6lh6R6kcZWMVGRWla5bdh1I5Ss5M5m471ZMpFrjK8V65XcVqsQQJN98VZZN79uxZeZz95cSJE638ve99b+X1LU4rskmTg7IOrBuzMtEKQWuh2Q8tAxT7OOvA89kXKvJRMrYoMl4oGbXsO9a+lonJ+iefweyXdrySza03O0IvFWno0rI+EXu3Zhnhc9Oa8/DDD688n1khmEWC75Ntxn564cKFVmY2qErWJ9bfspfwHMY+60PLUmVO6LXvVK9r5zN+uSaglJxy9iny5kp9KvFYsU/a8YrdaW5Wrx5snjJL3Trbzqrjdp3erDGW0Yx2J8YyYSxzDqWFiJhFkRaE/fv3tzJjlnFgc6utdYdh6zObBYnjpllGK98D/C1tn2+++WYrs335Li3D1BQbVGWdWRkHjSWsY8mUsWSK9cTOr1ifrMw+y8xxfCe0AO/bt6+VGe8PPPBAK3NMGNt7V2E2K44bZrMaBrcpERvXKlskWHvZeMrnYRv1fgtvit6+ZeVYn0IIIYQQQgghhBAWRP5QE0IIIYQQQgghhDAT1urIKzsr99pfTEo6xbI0JZuQ1Y3SSFoqKpmeemWJZuVYJ/PvleURe2baoOyadl+7fu97miJT7812YedUnnGnoZzy3XffbWW2Gd8nbREmKzaLmJ1TkuzhOpQuHjlypJW/+MUvtjKl17QvUbZMOWQlswaf17LDUMJNaSjl35Rb8prD4Lvz834V64FlCTL7D5+/kpHNsnqYTJ/H2UZm0bJ6WhYnqz+Psz0rkt+dxjJTmZXt4MGDrXzq1KlW/s3f/M1W5ru6detWK3O+ePnll1deh1m/GHe0TXGssHfLtq9Y+nicMcUy+5SVCePMrJTjMZ7XoiXM5hqzcnH8Ynvx+puS79vxylxm44xZlni8YoPqzZIyJ+yd95bZzysZPyt2fnsPjH3CcZGZPC2TI/ss68b+S+v08ePHV9bNxns+I+drjhVjyzDjkZYts4HxmVkny4jD52S9eV9bP/E6HHNt64Bem1zl+CeJih2Y9NqXes+pjHO2biL8fqS9j+V33nmnlWl5Zmxa3ycWp7bu5TVp7xvf26yvxLYS4P3Yz3kdm5dZb2ae41y8qXlnUxmdKvXptSXOf2YNIYQQQgghhBBC+ISQP9SEEEIIIYQQQgghzIRy1qcpUr5KpidjSqanXksUJY2UYlHeWMmOUqmD7WTP64+hRYq/r0iwKtJKytVMwj6Wrq6iIi+u0GuV6j1nCVJtg3JK9hlKdCmZvnnzZitfvny5lSmT5nue8g5NPmq7tlN+yeszywpjhM/OOGCcXr16tZXZDnwuWj/YDqwPjzMjBOs2DFvj4u233155Hutt8dVrG6zYHNhGtsu/2ZRMOm70xlSl/qzP2HI2RypjsGVXoTWJGdB4TdqaaBdgf2asPf30061M6y6zTlB6TbsEZcuWScrGBHtGHmeZcUd7FGPL7DjrpPJ8BtrArO+ZnYOwHzIzh9lKzU5FKjFeyWA4xeJk7Vvp00vIAGXrl14pus2JZg/l3MHjtCSzDrQ/8L0xZm2tSEuFWYZZT8bgZz/72Va2+ZHXoTWB62eeT0vFeN40WxTblG3B+DW7MduFbc0y68G1AsdBricqa3TrW9tha6p8byzNTlUZe4xei9OULD08v9ceyn7EDMIcH8xuX8kCatmWPk6WMPu9tdeUTLHjceEjOI5YRuR1tudVVCxOm8reWOlblblnuV+qIYQQQgghhBBCCHcZ+UNNCCGEEEIIIYQQwkxYa32qyH92KstBr3y4YpuqWJy2w65lO9xTJjcMW6WllIxWZJC92ZpYp4qks1c21vuejClSN2KywrlCqa/JL2lzoMyS8l5mPKAEumJzqUj1K9kraMuyneAZC5RCcyd4Xp9yZsYKpeP79+9vZduNfvfu3a1Mi8P42Tl2mPXAmJK9wCyQFQmvxaPZpgw7f1M2KLPJzZV12fo+wuxotMfRgmR9mzHyzDPPtPJv/dZvrTyf8wttU+wLPMeykFX6Hc+nPJkyb1oZeF8bN3ol8eueoZKtyjK9sd05Rtx3332tzDHLrDKVOdqskdbPzErK4ybfN/trbxaWuVLJUtprmbcMUHw/tDhxzvrc5z7XyowLxr7Z5Lkus3GDlgLWmXF38uTJVv7Sl7608vrnzp1rZc6/jFnel/VkedzmlqGJa13aqywzKanYMXh9wu0F7L1WtnvYKdvR0qyIxLJcVtYRFZsS6f2uNGwctetwruf8yzGB60z2d/7WLLY2n9gYz3YeZ9Sk/bjXWkbs+4T3Y4zTlmnfKr22rinfifbs9r57+1BpO4muK4YQQgghhBBCCCGEbSN/qAkhhBBCCCGEEEKYCeWsT5uyg9xJOV5lt2aTRlbkSJVzeiVRrA93yx+GrVYWSuIq9TDpsv22kt2JbEpKSHplnFNkn7aL+lzhbuiWBcmsQyYhZJ+y3eMrfc1sHZR3WmYGZq0yWbXt8s5MN7Q1Ua5I2TYtFSappl2A/WJsO+D/sa5vvvlmKzN+rY9ZP6zIsC1mTT5b6fN2L7a72aN6xyVrX74/ynGXgLUN5b3sF+z/Fy5caGVmYOG8wNinnP+1115rZcYa++bzzz+/8rc2t5jM2+ZNxinLfHZKnmnTsDGH9+V11tmTezMh2pjId8n2YpYOjnEco2mpsPualNoybJnFcixhv931TbI+xXo5V3qzPlXGMOt7bJsrV660Mscwxu/hw4dbmXZg2umuXbvWyuxT58+fb2XL+sR+wXfFuZL9mvWnTYMxy7WEZZbkOWM7P9uOZbMgcRyxrDEWs5V3XMl2WTk/9MO1Vu+4UrE7Wca8ipWtYoshtnUA+ybjlFsTHD9+vJXZr2mJ4thv430ly1U1q6fZCStbRtjfEbgW5ZrGrsMxgedbJtNKuTdDGOm9jr2nWJ9CCCGEEEIIIYQQFkT+UBNCCCGEEEIIIYQwEz5W1ic7x45XMo1MqUPv+b0SRZPMTdkh3CRzlH9S9jYMW2VzlYwFvVlXKnaMyjUrMjs7n0y5V+WcXqnbnDB7ETFJtsl4e2XhxOSNJpNkhgtaP2jZYP+nJPvTn/70ymvyvTGrhY0/bDfL2kR5KstjCw7tJdypnmXKNa1OJjGt2BMMk3/32v2mjHeVGDfp7dJik8/BPmZZLWjhoQT60qVLrcy+Q3sU5cAmJeb57Gu0CprlweKXmPyZz0XZNq0cvf3OLLyW6WiM2etMAs570OLEsYnWDrapZasxWT/byyTTZn2y7E42tpCKfN/mht41xhKYYmGx+fTtt99uZYsRzlk2PrBPvfHGG63MccNsQ2YReOWVV1Y+C+cuWiY5D7Ivc7y6fv16K1umqmHwtYhlwuM4VZnLbN1j9FqZ5mx3WloGqEp2ykoGPHtum8sq16/MfbZOsd+yPowRxi/jhefwXlx72r0q3whj+7+tV2xbBNbJxhrLXPzcc8+18sMPP9zKtHRyvKMFdPydvOq+dtwsxhXbb8VyVrHVVbj7ZtkQQgghhBBCCCGEhZI/1IQQQgghhBBCCCHMhHLWJ2OKJWpTWZMqsvpKFqPKzu52/d4drykZpUydu+VT8jkMWyVevdYns1FYdo1KlqwptjQ73muV2o4d4ZeQ9cl2STcpH/ubvX+TOpKKlJi/pbzx6tWrrUyLwMWLF1uZkmnLWrVr165WPnjwYCtTirhnz55WpiycliVm4ti7d28rM87YJpR2M3vUMGx9NkrGeW/LAESrgmHSU2Ky+ykZ73rtEla3iq2J96XEn9jxOVEZk2hn4HNzzGefomSYfZiZVtgnKRmmpNmsA2Y7MEm5Wdb47IxTltnfLdMc28cyjFlmsHFfs/GR2HGOC3x+Wrlo3XzsscdameMRrS8sEz4zGWeY+4je2OyNcZOCk0rbzok7aQexNQWzgTErIG2/u3fvbmXG+Llz51qZMU67RMXqyj774osvtvKrr7668lnM4mBzvWUXrGKWLbIpW8Gmfjs3lhCPhNY/+9ax75jKWFixPvWOqRwjK7YsYmsAzhuWXZDrf2ZC49xasQOzj/A643qzbOsGjju2puU75rh27NixVuZzfuELX1h5L46h3/zmN1eew7YjZkurWJ96syuazdWy3RlR1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEmrLU+VTJyVGRpFYlir4WFmF2mkm3KMjBYFgXLhEB5Zq/E2Ha4p7xtGFxmbNJzkwaaJcbkWNYulWxKvXan3gxhlfta+5jkrCJF22loGWB9TXbH47ZTfa981Kw8hOdT8v/WW2+1Mi1Olh2F5/yP//E/WpkZZE6ePNnKtCC89NJLK+tGC8mv/uqvtjItJPwtZeqUXg7DVmsWn9Mk4JRNmsSUbMpaaJkMWM+KXNgsc6QyLlWslHxPS8syY9kPOLZzfmFGFfZ5sw6ZVcoyQFHebNlUKhanSuxT6sv+zuvwGStZjyrZh8Z9pGJRJjY+0o7CeD98+HAr04LyS7/0S63MzFBnzpxZeb6NFRZHtt6yOOU7s2tanFasAkuwjfSOo1OeydYgfG+0yfIc9i9aBF5++eVWZp+qWF3NimUWAfvtptpnzBysOtv1bOH23H///a1MizMzjtl3SSWDX8X6VFl/sQ6cTytbTXAtw9/Sqs9xmudzruRxyxDHcsXCPLbycJ1R+UaztRmvy3P4vtlebAs+G8/nXMwsUf/lv/yXVuY2Irb1A5/R6mnzoPUV+762ebn0t4/bnhFCCCGEEEIIIYQQ7gj5Q00IIYQQQgghhBDCTFhrfSImraxkgek9bvJDk1lVJP9m/ahI8i0DhcnnrH2snpS0UeY6lpf3ylvtt8Qk7JUMUL0ZmipS0sp9TdrYm8nCpPxLyPrE+trO66SS4cfOqVgLK7vxs59XMjmYzJ/2KMYLYUYnysj5zikfPXr0aCvTukQ7CTNu0LIwDFufhxkLeG+TnzIDFo9z3GHb8TqWocfksCbFpD3Grm/2lUqsGfztz/3cz7Uys+qYFHau8J3zvdk7vHXr1spzmDHM3g/L/C3tDHyHlJSznrRBWSxXxhBSmYtMnm0ZGCyGqjaFynxkcz/vzT5p7ch7PfjggyvPoTzbJP6W3crqaWO6jYOW0ac3w2PFDrfT3Ek7i7UT25vzSMWWfe3atVbm+6zM1xWJfeX8ylqvynZskWB12o4sUXOjNyPqnOAYaWMh50H7jjMqW2dU2q8yHhusMzMg8dl5nHM3rVK2Drc5tJIBedw+le9w0rvtCMvcbsC+1TnHHTlyZOX1n3zyyVbm2Mp+w7qxTc0aRyrWJ16fda5Yko0oakIIIYQQQgghhBBmQv5QE0IIIYQQQgghhDAT1mrTKXU3Oa3J7c22QCq7cFdk9RXJkmHn876Un9ku4r2yOsueU2m38Xl2vCLtrtTP7tWbocneccWK1nt9O87n4o7fvD4tGHPFbFuVd1WRG/e+c/utZVgzyahleOG7suvQBkWLh9l3aFF6/vnnVz4LM2ussyUSWrMqmdp4LRvXKNE0KtJbk8+yXcwGWBnvLMYrcnxad3j8/fffX1nPuWJ922w7fCdsex6nzYHjEy1OZnPhcbNi2fxOGI88x+LLrDb33HNPK/MZ+Vy0JVq7TcWe2eyBrAfHF2bkYjY4s6bwt7RQse0s4waP8/0RHrf5zt69zRM2RllGk7li4+t22J17bSicNyjbt3pWsqza2qoSR73WmY+Tka+y3q1YKirWjMo77rWH7RSVNfCSbVCcC/hMHDstY62tzSqWH1v708JCqzptSjbuclznXLF3795WpvWeNiDOlZYplMdtjUnMVjxeW1n/6d3+oJLNk+sA+5sC253txTmUz8zjZ8+ebWXOyyxznWlrncrfIyzrE5+RfaXyvRlFTQghhBBCCCGEEMJMyB9qQgghhBBCCCGEEGbCWusTpbKUZVZkdBXZXa8cj5KrSgYku9emzrcdqSuZdHqlqmMonbIMQCYr/TjZMlZRsTNMefdWT7tvRSJs8lde87777rtt3XYa9rfeWNjUO68ct7r1ynJpr+A1zV7AzCqWoYhljm+V3dmrY5dZ+XptBZRNmiXVJL+UVnJMN2sZ284sNDZ+2fs2OSufyyyKPGcJ9gqzsBCzoZh1iOdY3+b7Z7yY9cksbmZhtv5vcmZKuDmmUsLMccz6qcXQx5HzVzJ88N58H5aBg7/lMzBzCX/LZ2Z2M3tms36xf9ACV7Fz99obzWbFc/gsc4Xv06yWm6IyV9p7Zl+w92Y2B8av2T0qNiM7vslsUFPW4r3rmE294znYiHot7kuYNzlfWCY69n+OebSxW//nGMz243hMaxXHcs5Zhw4damW2q63LOPfx/N27d7cyLVS8l40PhPe1eZxtWP3GrKzXezNmVc63dSOfje+Jz8asT2zrp59+upWZvZVZF1lmfzK7OGE92Z/Y52x9U9nWIIqaEEIIIYQQQgghhJmQP9SEEEIIIYQQQgghzIQfm8MO5iGEEEIIIYQQQgghipoQQgghhBBCCCGE2ZA/1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEm5A81IYQQQgghhBBCCDMhf6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTPj/AAC5zj7HjzajAAAAAElFTkSuQmCC\n", + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " 2020-08-05T18:23:18.381179\n", + " image/svg+xml\n", + " \n", + " \n", + " Matplotlib v3.3.0, https://matplotlib.org/\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], + "text/plain": [ + "
" + ] }, "metadata": { "needs_background": "light" - } + }, + "output_type": "display_data" } ], "source": [ @@ -643,7 +5102,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.6.9" } }, "nbformat": 4, diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index 259800c237..2ccd18e01f 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -11,8 +11,10 @@ from abc import ABC, abstractmethod from typing import Any, List, Optional, Sequence, Union +from monai.utils import optional_import -import itk +itk, _ = optional_import("itk") +nib, _ = optional_import("nibabel") import numpy as np diff --git a/requirements-dev.txt b/requirements-dev.txt index 8346888221..ee1e3dc30e 100644 --- a/requirements-dev.txt +++ b/requirements-dev.txt @@ -5,6 +5,7 @@ parameterized pytorch-ignite==0.3.0 gdown>=3.6.4 scipy +itk nibabel pillow tensorboard diff --git a/setup.cfg b/setup.cfg index 6e843b4dfd..9a32814ff6 100644 --- a/setup.cfg +++ b/setup.cfg @@ -26,6 +26,7 @@ all = tensorboard pytorch-ignite==0.3.0 gdown>=3.6.4 + itk nibabel = nibabel skimage = @@ -38,6 +39,8 @@ gdown = gdown>=3.6.4 ignite = pytorch-ignite==0.3.0 +itk = + itk [flake8] select = B,C,E,F,N,P,T4,W,B9 From ac2874e00c4d4a526772ef2b40608415261631da Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Mon, 17 Aug 2020 06:52:35 +0800 Subject: [PATCH 09/37] [DLMED] fix optional import issue --- examples/notebooks/io_factory_test.ipynb | 35 +++++++----------------- monai/config/deviceconfig.py | 10 +++++++ monai/data/image_reader.py | 2 +- 3 files changed, 21 insertions(+), 26 deletions(-) diff --git a/examples/notebooks/io_factory_test.ipynb b/examples/notebooks/io_factory_test.ipynb index a81ee1a558..f517598ad3 100644 --- a/examples/notebooks/io_factory_test.ipynb +++ b/examples/notebooks/io_factory_test.ipynb @@ -43,7 +43,7 @@ "metadata": {}, "outputs": [], "source": [ - "# temporarily need this, FIXME remove when d93c0a6 released\n", + "# temporarily need this, FIXME remove when MONAI v0.3 released\n", "%pip install -qU git+https://github.com/Project-MONAI/MONAI#egg=MONAI\n", "%pip install itk" ] @@ -66,17 +66,18 @@ "name": "stdout", "output_type": "stream", "text": [ - "MONAI version: 0.1.0+328.g4686724.dirty\n", + "MONAI version: 0.1.0+329.g162c2e8.dirty\n", "Python version: 3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 19:07:31) [GCC 7.3.0]\n", "Numpy version: 1.18.1\n", - "Pytorch version: 1.6.0\n", + "Pytorch version: 1.5.0a0+8f84ded\n", "\n", "Optional dependencies:\n", - "Pytorch Ignite version: 0.3.0\n", + "Pytorch Ignite version: NOT INSTALLED or UNKNOWN VERSION.\n", "Nibabel version: 3.1.1\n", "scikit-image version: 0.15.0\n", - "Pillow version: 7.0.0\n", + "Pillow version: 5.3.0.post1\n", "Tensorboard version: 2.1.0\n", + "ITK version: 5.1.1\n", "\n", "For details about installing the optional dependencies, please visit:\n", " https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies\n", @@ -113,25 +114,9 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "metadata": {}, - "outputs": [ - { - "ename": "AttributeError", - "evalue": "Optional import: import itk.\n\nFor details about installing the optional dependencies, please visit:\n https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mfilename\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"/workspace/data/medical/Task09_Spleen/imagesTr/spleen_10.nii.gz\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mloader\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mLoadImage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmeta\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mloader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m/workspace/data/medical/MONAI/monai/transforms/io/array.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, filename)\u001b[0m\n\u001b[1;32m 77\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreader\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mverify_suffix\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msplit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\".\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 78\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mRuntimeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"unsupported file format.\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 79\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreader\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_image\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 80\u001b[0m \u001b[0mimg_array\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreader\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_array_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 81\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimage_only\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/workspace/data/medical/MONAI/monai/data/image_reader.py\u001b[0m in \u001b[0;36mread_image\u001b[0;34m(self, filename)\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mclass\u001b[0m \u001b[0mITKReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mImageReader\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mread_image\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 59\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mitk\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 60\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_meta_dict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mList\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/workspace/data/medical/MONAI/monai/utils/module.py\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 184\u001b[0m \u001b[0mAttributeError\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mWhen\u001b[0m \u001b[0myou\u001b[0m \u001b[0mcall\u001b[0m \u001b[0mthis\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 185\u001b[0m \"\"\"\n\u001b[0;32m--> 186\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_exception\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 187\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 188\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0m_args\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0m_kwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/workspace/data/medical/MONAI/monai/utils/module.py\u001b[0m in \u001b[0;36moptional_import\u001b[0;34m(module, version, version_checker, name, descriptor, version_args, allow_namespace_pkg)\u001b[0m\n\u001b[1;32m 148\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mallow_namespace_pkg\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 149\u001b[0m \u001b[0mis_namespace\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mthe_module\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"__file__\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mthe_module\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"__path__\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 150\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mis_namespace\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 151\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# user specified to load class/function/... from the module\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 152\u001b[0m \u001b[0mthe_module\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mthe_module\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mAttributeError\u001b[0m: Optional import: import itk.\n\nFor details about installing the optional dependencies, please visit:\n https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies" - ] - } - ], + "outputs": [], "source": [ "filename = \"/workspace/data/medical/Task09_Spleen/imagesTr/spleen_10.nii.gz\"\n", "loader = LoadImage()\n", @@ -140,7 +125,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -165,7 +150,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 6, "metadata": {}, "outputs": [ { diff --git a/monai/config/deviceconfig.py b/monai/config/deviceconfig.py index 9d57366c99..7bdb6196f5 100644 --- a/monai/config/deviceconfig.py +++ b/monai/config/deviceconfig.py @@ -58,6 +58,14 @@ except (ImportError, AttributeError): tensorboard_version = "NOT INSTALLED or UNKNOWN VERSION." +try: + import itk + + itk_version = itk.Version.GetITKVersion() + del itk +except (ImportError, AttributeError): + itk_version = "NOT INSTALLED or UNKNOWN VERSION." + def get_config_values(): """ @@ -84,6 +92,8 @@ def get_optional_config_values(): output["scikit-image"] = skimage_version output["Pillow"] = PIL_version output["Tensorboard"] = tensorboard_version + output["ITK"] = itk_version + return output diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index 2ccd18e01f..56b232b8d1 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -13,7 +13,7 @@ from typing import Any, List, Optional, Sequence, Union from monai.utils import optional_import -itk, _ = optional_import("itk") +itk, _ = optional_import("itk", allow_namespace_pkg=True) nib, _ = optional_import("nibabel") import numpy as np From 2c1c244410983d3801a924ecf907e515d60ec8b2 Mon Sep 17 00:00:00 2001 From: monai-bot Date: Sun, 16 Aug 2020 22:57:00 +0000 Subject: [PATCH 10/37] [MONAI] python code formatting --- monai/config/deviceconfig.py | 1 - monai/data/image_reader.py | 4 +++- 2 files changed, 3 insertions(+), 2 deletions(-) diff --git a/monai/config/deviceconfig.py b/monai/config/deviceconfig.py index 7bdb6196f5..b19e996de4 100644 --- a/monai/config/deviceconfig.py +++ b/monai/config/deviceconfig.py @@ -94,7 +94,6 @@ def get_optional_config_values(): output["Tensorboard"] = tensorboard_version output["ITK"] = itk_version - return output diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index 56b232b8d1..50b469505e 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -11,11 +11,13 @@ from abc import ABC, abstractmethod from typing import Any, List, Optional, Sequence, Union + +import numpy as np + from monai.utils import optional_import itk, _ = optional_import("itk", allow_namespace_pkg=True) nib, _ = optional_import("nibabel") -import numpy as np class ImageReader(ABC): From adceec83b33912eb3a1cb19d6a480cfa71e4a153 Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Mon, 17 Aug 2020 07:24:45 +0800 Subject: [PATCH 11/37] [DLMED] fix flake8 issue --- monai/data/image_reader.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index 50b469505e..12717417a1 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -10,7 +10,7 @@ # limitations under the License. from abc import ABC, abstractmethod -from typing import Any, List, Optional, Sequence, Union +from typing import Any, List, Dict, Optional, Sequence, Union import numpy as np @@ -40,7 +40,7 @@ def read_image(self, filename: str): raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") @abstractmethod - def get_meta_dict(self) -> List: + def get_meta_dict(self) -> Dict: raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") @abstractmethod @@ -60,7 +60,7 @@ class ITKReader(ImageReader): def read_image(self, filename: str): self.img = itk.imread(filename) - def get_meta_dict(self) -> List: + def get_meta_dict(self) -> Dict: img_meta_dict = self.img.GetMetaDataDictionary() meta_dict = dict() for key in img_meta_dict.GetKeys(): From 774ed7745589342bcb813116a32bb20ade1f6abe Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Mon, 17 Aug 2020 07:37:50 +0800 Subject: [PATCH 12/37] [DLMED] format code --- monai/data/image_reader.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index 12717417a1..5b74d7226c 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -10,7 +10,7 @@ # limitations under the License. from abc import ABC, abstractmethod -from typing import Any, List, Dict, Optional, Sequence, Union +from typing import Any, Dict, List, Optional, Sequence, Union import numpy as np From 2fcd74b07e1329db90b777ecf02967b7e9a3a8ab Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Mon, 17 Aug 2020 08:01:17 +0800 Subject: [PATCH 13/37] [DLMED] add for test --- .github/workflows/pythonapp.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/.github/workflows/pythonapp.yml b/.github/workflows/pythonapp.yml index 6dfe983694..fddd821231 100644 --- a/.github/workflows/pythonapp.yml +++ b/.github/workflows/pythonapp.yml @@ -34,6 +34,7 @@ jobs: run: | python -m pip install --upgrade pip wheel python -m pip install -r requirements-dev.txt + python -m pip install itk - name: Lint and type check run: | # clean up temporary files From 0b3eac784823f1ab5f4f20c98e3b960e8a3e09aa Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Mon, 17 Aug 2020 09:55:15 +0800 Subject: [PATCH 14/37] [DLMED] test flake8 --- .github/workflows/pythonapp.yml | 1 + monai/config/deviceconfig.py | 9 +++++++++ 2 files changed, 10 insertions(+) diff --git a/.github/workflows/pythonapp.yml b/.github/workflows/pythonapp.yml index fddd821231..bbb342f719 100644 --- a/.github/workflows/pythonapp.yml +++ b/.github/workflows/pythonapp.yml @@ -34,6 +34,7 @@ jobs: run: | python -m pip install --upgrade pip wheel python -m pip install -r requirements-dev.txt + python -m pip uninstall -y itk python -m pip install itk - name: Lint and type check run: | diff --git a/monai/config/deviceconfig.py b/monai/config/deviceconfig.py index b19e996de4..7cd0db15ee 100644 --- a/monai/config/deviceconfig.py +++ b/monai/config/deviceconfig.py @@ -58,6 +58,14 @@ except (ImportError, AttributeError): tensorboard_version = "NOT INSTALLED or UNKNOWN VERSION." +try: + import gdown + + gdown_version = gdown.__version__ + del gdown +except (ImportError, AttributeError): + gdown_version = "NOT INSTALLED or UNKNOWN VERSION." + try: import itk @@ -92,6 +100,7 @@ def get_optional_config_values(): output["scikit-image"] = skimage_version output["Pillow"] = PIL_version output["Tensorboard"] = tensorboard_version + output["gdown"] = gdown_version output["ITK"] = itk_version return output From 60cf0f2f7bd9057fe4db7a2a05052a959281094a Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Mon, 17 Aug 2020 16:14:54 +0800 Subject: [PATCH 15/37] [DLMED] add unit tests --- .github/workflows/pythonapp.yml | 2 - docs/source/data.rst | 14 ++ docs/source/transforms.rst | 12 ++ examples/notebooks/io_factory_test.ipynb | 137 +++++++++++++++-- monai/data/image_reader.py | 182 ++++++++++++++++++++++- monai/transforms/io/array.py | 17 ++- monai/transforms/io/dictionary.py | 37 ++++- tests/test_load_image.py | 115 ++++++++++++++ tests/test_load_imaged.py | 43 ++++++ 9 files changed, 533 insertions(+), 26 deletions(-) create mode 100644 tests/test_load_image.py create mode 100644 tests/test_load_imaged.py diff --git a/.github/workflows/pythonapp.yml b/.github/workflows/pythonapp.yml index bbb342f719..6dfe983694 100644 --- a/.github/workflows/pythonapp.yml +++ b/.github/workflows/pythonapp.yml @@ -34,8 +34,6 @@ jobs: run: | python -m pip install --upgrade pip wheel python -m pip install -r requirements-dev.txt - python -m pip uninstall -y itk - python -m pip install itk - name: Lint and type check run: | # clean up temporary files diff --git a/docs/source/data.rst b/docs/source/data.rst index fd9118fba8..214edcaae2 100644 --- a/docs/source/data.rst +++ b/docs/source/data.rst @@ -49,6 +49,20 @@ Patch-based dataset :members: +Image reader +------------ + +ITKReader +~~~~~~~~~ +.. autoclass:: ITKReader + :members: + +NibabelReader +~~~~~~~~~~~~~ +.. autoclass:: NibabelReader + :members: + + Nifti format handling --------------------- diff --git a/docs/source/transforms.rst b/docs/source/transforms.rst index 58878a775e..2521fc823f 100644 --- a/docs/source/transforms.rst +++ b/docs/source/transforms.rst @@ -195,6 +195,12 @@ Intensity IO ^^ +`LoadImage` +""""""""""" +.. autoclass:: LoadImage + :members: + :special-members: __call__ + `LoadNifti` """"""""""" .. autoclass:: LoadNifti @@ -630,6 +636,12 @@ IO (Dict) :members: :special-members: __call__ +`LoadImaged` +"""""""""""" +.. autoclass:: LoadImaged + :members: + :special-members: __call__ + `LoadNiftid` """""""""""" .. autoclass:: LoadNiftid diff --git a/examples/notebooks/io_factory_test.ipynb b/examples/notebooks/io_factory_test.ipynb index f517598ad3..cf7d7a61dc 100644 --- a/examples/notebooks/io_factory_test.ipynb +++ b/examples/notebooks/io_factory_test.ipynb @@ -57,7 +57,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 5, "metadata": { "tags": [] }, @@ -66,17 +66,18 @@ "name": "stdout", "output_type": "stream", "text": [ - "MONAI version: 0.1.0+329.g162c2e8.dirty\n", + "MONAI version: 0.1.0+335.g0b3eac7.dirty\n", "Python version: 3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 19:07:31) [GCC 7.3.0]\n", "Numpy version: 1.18.1\n", "Pytorch version: 1.5.0a0+8f84ded\n", "\n", "Optional dependencies:\n", - "Pytorch Ignite version: NOT INSTALLED or UNKNOWN VERSION.\n", + "Pytorch Ignite version: 0.3.0\n", "Nibabel version: 3.1.1\n", "scikit-image version: 0.15.0\n", - "Pillow version: 5.3.0.post1\n", + "Pillow version: 7.2.0\n", "Tensorboard version: 2.1.0\n", + "gdown version: 3.12.0\n", "ITK version: 5.1.1\n", "\n", "For details about installing the optional dependencies, please visit:\n", @@ -101,7 +102,7 @@ "\n", "from monai.config import print_config\n", "from monai.transforms import LoadImage\n", - "\n", + "from monai.data import NibabelReader\n", "print_config()" ] }, @@ -109,12 +110,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Test loading Nifti files" + "## Test loading Nifti files with ITK" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -125,7 +126,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -134,10 +135,10 @@ "text": [ "{'ITK_FileNotes': '5.0.10', 'aux_file': '', 'bitpix': '32', 'cal_max': '0', 'cal_min': '0', 'datatype': '16', 'descrip': '5.0.10', 'dim[0]': '3', 'dim[1]': '512', 'dim[2]': '512', 'dim[3]': '55', 'dim[4]': '1', 'dim[5]': '1', 'dim[6]': '1', 'dim[7]': '1', 'dim_info': '0', 'intent_code': '0', 'intent_name': '', 'intent_p1': '0', 'intent_p2': '0', 'intent_p3': '0', 'nifti_type': '1', 'pixdim[0]': '0', 'pixdim[1]': '0.976562', 'pixdim[2]': '0.976562', 'pixdim[3]': '5', 'pixdim[4]': '0', 'pixdim[5]': '0', 'pixdim[6]': '0', 'pixdim[7]': '0', 'qform_code': '1', 'qform_code_name': 'NIFTI_XFORM_SCANNER_ANAT', 'qoffset_x': '-499.023', 'qoffset_y': '-499.023', 'qoffset_z': '0', 'quatern_b': '0', 'quatern_c': '0', 'quatern_d': '0', 'scl_inter': '0', 'scl_slope': '1', 'sform_code': '1', 'sform_code_name': 'NIFTI_XFORM_SCANNER_ANAT', 'slice_code': '0', 'slice_duration': '0', 'slice_end': '0', 'slice_start': '0', 'srow_x': '0.976562 0 0 -499.023', 'srow_y': '0 0.976562 0 -499.023', 'srow_z': '0 0 5 0', 'toffset': '0', 'vox_offset': '352', 'xyzt_units': '10', 'origin': array([499.02319336, 499.02319336, 0. ]), 'spacing': array([0.97656202, 0.97656202, 5. ]), 'direction': array([[-1., 0., 0.],\n", " [ 0., -1., 0.],\n", - " [ 0., 0., 1.]]), 'filename_or_obj': '/workspace/data/medical/Task09_Spleen/imagesTr/spleen_10.nii.gz', 'affine': array([[ -0.97656202, 0. , 0. , 499.02319336],\n", + " [ 0., 0., 1.]]), 'filename_or_obj': '/workspace/data/medical/Task09_Spleen/imagesTr/spleen_10.nii.gz', 'original_affine': array([[ -0.97656202, 0. , 0. , 499.02319336],\n", " [ 0. , -0.97656202, 0. , 499.02319336],\n", " [ 0. , 0. , 5. , 0. ],\n", - " [ 0. , 0. , 0. , 1. ]]), 'original_affine': array([[ -0.97656202, 0. , 0. , 499.02319336],\n", + " [ 0. , 0. , 0. , 1. ]]), 'affine': array([[ -0.97656202, 0. , 0. , 499.02319336],\n", " [ 0. , -0.97656202, 0. , 499.02319336],\n", " [ 0. , 0. , 5. , 0. ],\n", " [ 0. , 0. , 0. , 1. ]]), 'spatial_shape': [512, 512, 55]}\n" @@ -148,10 +149,126 @@ "print(meta)" ] }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(512, 512, 55)\n" + ] + } + ], + "source": [ + "print(data.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Test loading JPEG files with ITK" + ] + }, { "cell_type": "code", "execution_count": 6, "metadata": {}, + "outputs": [], + "source": [ + "filename = \"/workspace/data/medical/MedNIST/Hand/008334.jpeg\"\n", + "loader = LoadImage()\n", + "data, meta = loader(filename)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'origin': array([0., 0.]), 'spacing': array([1., 1.]), 'direction': array([[1., 0.],\n", + " [0., 1.]]), 'filename_or_obj': '/workspace/data/medical/MedNIST/Hand/008334.jpeg', 'original_affine': array([[1., 0., 0.],\n", + " [0., 1., 0.],\n", + " [0., 0., 1.]]), 'affine': array([[1., 0., 0.],\n", + " [0., 1., 0.],\n", + " [0., 0., 1.]]), 'spatial_shape': [64, 64]}\n" + ] + } + ], + "source": [ + "print(meta)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(64, 64)\n" + ] + } + ], + "source": [ + "print(data.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Test loading Nifti files with Nibabel" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "filename = \"/workspace/data/medical/Task09_Spleen/imagesTr/spleen_10.nii.gz\"\n", + "loader = LoadImage(NibabelReader())\n", + "data, meta = loader(filename)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'sizeof_hdr': array(348, dtype=int32), 'data_type': array(b'', dtype='|S10'), 'db_name': array(b'', dtype='|S18'), 'extents': array(0, dtype=int32), 'session_error': array(0, dtype=int16), 'regular': array(b'r', dtype='|S1'), 'dim_info': array(0, dtype=uint8), 'dim': array([ 3, 512, 512, 55, 1, 1, 1, 1], dtype=int16), 'intent_p1': array(0., dtype=float32), 'intent_p2': array(0., dtype=float32), 'intent_p3': array(0., dtype=float32), 'intent_code': array(0, dtype=int16), 'datatype': array(16, dtype=int16), 'bitpix': array(32, dtype=int16), 'slice_start': array(0, dtype=int16), 'pixdim': array([1. , 0.976562, 0.976562, 5. , 0. , 0. ,\n", + " 0. , 0. ], dtype=float32), 'vox_offset': array(0., dtype=float32), 'scl_slope': array(nan, dtype=float32), 'scl_inter': array(nan, dtype=float32), 'slice_end': array(0, dtype=int16), 'slice_code': array(0, dtype=uint8), 'xyzt_units': array(10, dtype=uint8), 'cal_max': array(0., dtype=float32), 'cal_min': array(0., dtype=float32), 'slice_duration': array(0., dtype=float32), 'toffset': array(0., dtype=float32), 'glmax': array(0, dtype=int32), 'glmin': array(0, dtype=int32), 'descrip': array(b'5.0.10', dtype='|S80'), 'aux_file': array(b'', dtype='|S24'), 'qform_code': array(1, dtype=int16), 'sform_code': array(1, dtype=int16), 'quatern_b': array(0., dtype=float32), 'quatern_c': array(0., dtype=float32), 'quatern_d': array(0., dtype=float32), 'qoffset_x': array(-499.0232, dtype=float32), 'qoffset_y': array(-499.0232, dtype=float32), 'qoffset_z': array(0., dtype=float32), 'srow_x': array([ 0.976562, 0. , 0. , -499.0232 ], dtype=float32), 'srow_y': array([ 0. , 0.976562, 0. , -499.0232 ], dtype=float32), 'srow_z': array([0., 0., 5., 0.], dtype=float32), 'intent_name': array(b'', dtype='|S16'), 'magic': array(b'n+1', dtype='|S4'), 'as_closest_canonical': False, 'filename_or_obj': '/workspace/data/medical/Task09_Spleen/imagesTr/spleen_10.nii.gz', 'original_affine': array([[ 0.97656202, 0. , 0. , -499.02319336],\n", + " [ 0. , 0.97656202, 0. , -499.02319336],\n", + " [ 0. , 0. , 5. , 0. ],\n", + " [ 0. , 0. , 0. , 1. ]]), 'affine': array([[ 0.97656202, 0. , 0. , -499.02319336],\n", + " [ 0. , 0.97656202, 0. , -499.02319336],\n", + " [ 0. , 0. , 5. , 0. ],\n", + " [ 0. , 0. , 0. , 1. ]]), 'spatial_shape': array([512, 512, 55], dtype=int16)}\n" + ] + } + ], + "source": [ + "print(meta)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, "outputs": [ { "name": "stdout", diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index 5b74d7226c..a2e62411a3 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -10,11 +10,12 @@ # limitations under the License. from abc import ABC, abstractmethod -from typing import Any, Dict, List, Optional, Sequence, Union +from typing import Any, Dict, List, Optional, Sequence import numpy as np from monai.utils import optional_import +from monai.data.utils import correct_nifti_header_if_necessary itk, _ = optional_import("itk", allow_namespace_pkg=True) nib, _ = optional_import("nibabel") @@ -22,45 +23,123 @@ class ImageReader(ABC): """Abstract class to define interface APIs to load image files. + users need to call `read_image` to load image and then use other APIs + to get image data or properties from meta data. - """ + Args: + img: image to initialize the reader, this is for the usage that the image data + is already in memory and no need to read from file again, default is None. + as_closest_canonical: if True, load the image as closest to canonical axis format. - def __init__(self, suffixes: Optional[Union[str, Sequence[str]]] = None, img: Any = None): - self.suffixes = suffixes + """ + def __init__(self, img: Optional[Any] = None, as_closest_canonical: bool = False): self.img = img + self.as_closest_canonical = as_closest_canonical + self._suffixes: Optional[Sequence] = None + + def get_suffixes(self): + """ + Get the supported image file suffixes of current reader. + Default is None, support all kinds of image format. + + """ + return self._suffixes def verify_suffix(self, suffix: str): - return False if self.suffixes is not None and suffix not in self.suffixes else True + """ + Verify whether the specified file matches supported suffixes. + If supported suffixes is None, skip the verification. + + """ + return False if self._suffixes is not None and suffix not in self._suffixes else True def uncache(self): + """ + Release image object and other cache data. + + """ self.img = None + @abstractmethod + def convert(self): + """ + Convert the image if necessary. + + """ + raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") + @abstractmethod def read_image(self, filename: str): + """ + Read image data from specified file. + Note that different readers return different image data type. + + """ raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") @abstractmethod def get_meta_dict(self) -> Dict: + """ + Get the all the meta data of the image and convert to dict type. + + """ raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") @abstractmethod - def get_affine(self) -> List: + def get_affine(self) -> np.ndarray: + """ + Get or construct the affine matrix of the image, it can be used to correct + spacing, orientation or execute spatial transforms. + + """ raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") @abstractmethod def get_spatial_shape(self) -> List: + """ + Get the spatial shape of image data, it doesn't contain the channel dim. + + """ raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") @abstractmethod def get_array_data(self) -> np.ndarray: + """ + Get the raw array data of the image, converted to Numpy array. + + """ raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") class ITKReader(ImageReader): + """ + Load medical images based on ITK library. + All the supported image formats can be found: + https://github.com/InsightSoftwareConsortium/ITK/tree/master/Modules/IO + + """ + + def convert(self, as_closest_canonical: Optional[bool] = None): + """ + Convert the image as closest to canonical axis format. + + """ + # FIXME: need to add support later + pass + def read_image(self, filename: str): + """ + Read image data from specified file. + Note that the returned object is ITK image object. + + """ self.img = itk.imread(filename) def get_meta_dict(self) -> Dict: + """ + Get the all the meta data of the image and convert to dict type. + + """ img_meta_dict = self.img.GetMetaDataDictionary() meta_dict = dict() for key in img_meta_dict.GetKeys(): @@ -73,8 +152,10 @@ def get_meta_dict(self) -> Dict: meta_dict["direction"] = itk.array_from_matrix(self.img.GetDirection()) return meta_dict - def get_affine(self) -> List: + def get_affine(self) -> np.ndarray: """ + Get or construct the affine matrix of the image, it can be used to correct + spacing, orientation or execute spatial transforms. Construct Affine matrix based on direction, spacing, origin information. Refer to: https://github.com/RSIP-Vision/medio @@ -90,7 +171,94 @@ def get_affine(self) -> List: return affine def get_spatial_shape(self) -> List: + """ + Get the spatial shape of image data, it doesn't contain the channel dim. + + """ return list(itk.size(self.img)) def get_array_data(self) -> np.ndarray: + """ + Get the raw array data of the image, converted to Numpy array. + + """ return itk.array_view_from_image(self.img, keep_axes=True) + + +class NibabelReader(ImageReader): + """ + Load NIfTI format images based on Nibabel library. + + Args: + img: image to initialize the reader, this is for the usage that the image data + is already in memory and no need to read from file again, default is None. + as_closest_canonical: if True, load the image as closest to canonical axis format. + + """ + def __init__(self, img: Optional[Any] = None, as_closest_canonical: bool = False): + super().__init__(img, as_closest_canonical) + self._suffixes: [Sequence] = ["nii", "nii.gz"] + + def convert(self, as_closest_canonical: Optional[bool] = None): + """ + Convert the image as closest to canonical axis format. + + """ + if as_closest_canonical is None: + as_closest_canonical = self.as_closest_canonical + if as_closest_canonical: + self.img = nib.as_closest_canonical(self.img) + + def read_image(self, filename: str): + """ + Read image data from specified file. + Note that the returned object is Nibabel image object. + + """ + img = nib.load(filename) + img = correct_nifti_header_if_necessary(img) + if self.as_closest_canonical: + img = nib.as_closest_canonical(img) + self.img = img + + def get_meta_dict(self) -> Dict: + """ + Get the all the meta data of the image and convert to dict type. + + """ + meta_data = dict(self.img.header) + meta_data["as_closest_canonical"] = self.as_closest_canonical + return meta_data + + def get_affine(self) -> np.ndarray: + """ + Get the affine matrix of the image, it can be used to correct + spacing, orientation or execute spatial transforms. + + """ + return self.img.affine + + def get_spatial_shape(self) -> List: + """ + Get the spatial shape of image data, it doesn't contain the channel dim. + + """ + ndim = self.img.header["dim"][0] + spatial_rank = min(ndim, 3) + return self.img.header["dim"][1 : spatial_rank + 1] + + def get_array_data(self) -> np.ndarray: + """ + Get the raw array data of the image, converted to Numpy array. + + """ + return np.array(self.img.get_fdata()) + + def uncache(self): + """ + Release image object and other cache data. + + """ + if self.img is not None: + self.img.uncache() + super().uncache() diff --git a/monai/transforms/io/array.py b/monai/transforms/io/array.py index 4075b1d8e9..5dce96afa9 100644 --- a/monai/transforms/io/array.py +++ b/monai/transforms/io/array.py @@ -41,15 +41,13 @@ class LoadImage(Transform): def __init__( self, - reader: ImageReader = None, - suffixes: Optional[Union[str, Sequence[str]]] = None, + reader: Optional[ImageReader] = None, image_only: bool = False, dtype: Optional[np.dtype] = np.float32, ) -> None: """ Args: reader: use reader to load image file and meta data, default is ITK. - suffixes: file suffixes that supported by the reader, if None, support all kinds of files. image_only: if True return only the image volume, otherwise return image data array and header dict. dtype: if not None convert the loaded image to this data type. @@ -61,7 +59,6 @@ def __init__( if reader is None: reader = ITKReader() self.reader = reader - self.suffixes = suffixes self.image_only = image_only self.dtype = dtype @@ -74,7 +71,14 @@ def __call__(self, filename: Union[Sequence[Union[Path, str]], Path, str]): img_array = list() compatible_meta: Dict = None for name in filename: - if not self.reader.verify_suffix(name.split(".")[-1]): + supported_format = False + suffixes = name.split(".") + for i in range(len(suffixes) - 1): + if self.reader.verify_suffix(".".join(suffixes[-(i + 2) : -1])): + supported_format = True + break + + if not supported_format: raise RuntimeError("unsupported file format.") self.reader.read_image(name) img_array.append(self.reader.get_array_data().astype(dtype=self.dtype)) @@ -83,8 +87,9 @@ def __call__(self, filename: Union[Sequence[Union[Path, str]], Path, str]): header = self.reader.get_meta_dict() header["filename_or_obj"] = name + header["original_affine"] = self.reader.get_affine() + self.reader.convert() header["affine"] = self.reader.get_affine() - header["original_affine"] = header["affine"].copy() header["spatial_shape"] = self.reader.get_spatial_shape() if compatible_meta is None: diff --git a/monai/transforms/io/dictionary.py b/monai/transforms/io/dictionary.py index b53caf5fcf..f3bc5f3c02 100644 --- a/monai/transforms/io/dictionary.py +++ b/monai/transforms/io/dictionary.py @@ -21,7 +21,8 @@ from monai.config import KeysCollection from monai.transforms.compose import MapTransform -from monai.transforms.io.array import LoadNifti, LoadNumpy, LoadPNG +from monai.data.image_reader import ImageReader +from monai.transforms.io.array import LoadImage, LoadNifti, LoadNumpy, LoadPNG class LoadDatad(MapTransform): @@ -83,6 +84,39 @@ def __call__(self, data): return d +class LoadImaged(LoadDatad): + """ + Dictionary-based wrapper of :py:class:`monai.transforms.LoadImage`, + must load image and metadata together. If loading a list of files in one key, + stack them together and add a new dimension as the first dimension, and use the + meta data of the first image to represent the stacked result. Note that the affine + transform of all the stacked images should be same. The output metadata field will + be created as ``key_{meta_key_postfix}``. + """ + + def __init__( + self, + keys: KeysCollection, + reader: Optional[ImageReader] = None, + dtype: Optional[np.dtype] = np.float32, + meta_key_postfix: str = "meta_dict", + overwriting: bool = False, + ) -> None: + """ + Args: + keys: keys of the corresponding items to be transformed. + See also: :py:class:`monai.transforms.compose.MapTransform` + dtype: if not None convert the loaded image data to this data type. + meta_key_postfix: use `key_{postfix}` to store the metadata of the nifti image, + default is `meta_dict`. The meta data is a dictionary object. + For example, load nifti file for `image`, store the metadata into `image_meta_dict`. + overwriting: whether allow to overwrite existing meta data of same key. + default is False, which will raise exception if encountering existing key. + """ + loader = LoadImage(reader, False, dtype) + super().__init__(keys, loader, meta_key_postfix, overwriting) + + class LoadNiftid(LoadDatad): """ Dictionary-based wrapper of :py:class:`monai.transforms.LoadNifti`, @@ -174,6 +208,7 @@ def __init__( super().__init__(keys, loader, meta_key_postfix, overwriting) +LoadImageD = LoadImageDict = LoadImaged LoadNiftiD = LoadNiftiDict = LoadNiftid LoadPNGD = LoadPNGDict = LoadPNGd LoadNumpyD = LoadNumpyDict = LoadNumpyd diff --git a/tests/test_load_image.py b/tests/test_load_image.py new file mode 100644 index 0000000000..0d9e2c7ad8 --- /dev/null +++ b/tests/test_load_image.py @@ -0,0 +1,115 @@ +# Copyright 2020 MONAI Consortium +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# http://www.apache.org/licenses/LICENSE-2.0 +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import tempfile +import unittest + +import itk +import nibabel as nib +from PIL import Image +import numpy as np +from parameterized import parameterized +from monai.data import NibabelReader +from monai.transforms import LoadImage + +TEST_CASE_1 = [ + {"reader": NibabelReader(), "image_only": True}, + ["test_image.nii.gz"], + (128, 128, 128), +] + +TEST_CASE_2 = [ + {"reader": NibabelReader(), "image_only": False}, + ["test_image.nii.gz"], + (128, 128, 128), +] + +TEST_CASE_3 = [ + {"reader": NibabelReader(), "image_only": True}, + ["test_image.nii.gz", "test_image2.nii.gz", "test_image3.nii.gz"], + (3, 128, 128, 128), +] + +TEST_CASE_4 = [ + {"reader": NibabelReader(), "image_only": False}, + ["test_image.nii.gz", "test_image2.nii.gz", "test_image3.nii.gz"], + (3, 128, 128, 128), +] + +TEST_CASE_5 = [{"image_only": True}, ["test_image.nii.gz"], (128, 128, 128)] + +TEST_CASE_6 = [{"image_only": False}, ["test_image.nii.gz"], (128, 128, 128)] + +TEST_CASE_7 = [ + {"image_only": True}, + ["test_image.nii.gz", "test_image2.nii.gz", "test_image3.nii.gz"], + (3, 128, 128, 128), +] + +TEST_CASE_8 = [ + {"image_only": False}, + ["test_image.nii.gz", "test_image2.nii.gz", "test_image3.nii.gz"], + (3, 128, 128, 128), +] + + +class TestLoadImage(unittest.TestCase): + @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4]) + def test_nibabel_reader(self, input_param, filenames, expected_shape): + test_image = np.random.rand(128, 128, 128) + with tempfile.TemporaryDirectory() as tempdir: + for i, name in enumerate(filenames): + filenames[i] = os.path.join(tempdir, name) + nib.save(nib.Nifti1Image(test_image, np.eye(4)), filenames[i]) + result = LoadImage(**input_param)(filenames) + + if isinstance(result, tuple): + result, header = result + self.assertTrue("affine" in header) + self.assertEqual(header["filename_or_obj"], os.path.join(tempdir, "test_image.nii.gz")) + np.testing.assert_allclose(header["affine"], np.eye(4)) + np.testing.assert_allclose(header["original_affine"], np.eye(4)) + self.assertTupleEqual(result.shape, expected_shape) + + @parameterized.expand([TEST_CASE_5, TEST_CASE_6, TEST_CASE_7, TEST_CASE_8]) + def test_itk_reader(self, input_param, filenames, expected_shape): + test_image = np.random.rand(128, 128, 128) + with tempfile.TemporaryDirectory() as tempdir: + for i, name in enumerate(filenames): + filenames[i] = os.path.join(tempdir, name) + itk_np_view = itk.image_view_from_array(test_image) + itk.imwrite(itk_np_view, filenames[i]) + result = LoadImage(**input_param)(filenames) + + if isinstance(result, tuple): + result, header = result + self.assertTrue("affine" in header) + self.assertEqual(header["filename_or_obj"], os.path.join(tempdir, "test_image.nii.gz")) + np.testing.assert_allclose(header["affine"], np.eye(4)) + np.testing.assert_allclose(header["original_affine"], np.eye(4)) + self.assertTupleEqual(result.shape, expected_shape) + + def test_load_png(self): + spatial_size = (256, 256) + test_image = np.random.randint(0, 256, size=spatial_size) + with tempfile.TemporaryDirectory() as tempdir: + filename = os.path.join(tempdir, "test_image.png") + Image.fromarray(test_image.astype("uint8")).save(filename) + result, header = LoadImage(image_only=False)(filename) + self.assertTupleEqual(tuple(header["spatial_shape"]), spatial_size) + self.assertTupleEqual(result.shape, spatial_size) + np.testing.assert_allclose(header["affine"], np.eye(3)) + np.testing.assert_allclose(header["original_affine"], np.eye(3)) + np.testing.assert_allclose(result, test_image) + +if __name__ == "__main__": + unittest.main() diff --git a/tests/test_load_imaged.py b/tests/test_load_imaged.py new file mode 100644 index 0000000000..736409e269 --- /dev/null +++ b/tests/test_load_imaged.py @@ -0,0 +1,43 @@ +# Copyright 2020 MONAI Consortium +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# http://www.apache.org/licenses/LICENSE-2.0 +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import tempfile +import unittest + +import nibabel as nib +import numpy as np +from parameterized import parameterized + +from monai.transforms import LoadImaged + +KEYS = ["image", "label", "extra"] + +TEST_CASE_1 = [{"keys": KEYS}, (128, 128, 128)] + + +class TestLoadImaged(unittest.TestCase): + @parameterized.expand([TEST_CASE_1]) + def test_shape(self, input_param, expected_shape): + test_image = nib.Nifti1Image(np.random.rand(128, 128, 128), np.eye(4)) + test_data = dict() + with tempfile.TemporaryDirectory() as tempdir: + for key in KEYS: + nib.save(test_image, os.path.join(tempdir, key + ".nii.gz")) + test_data.update({key: os.path.join(tempdir, key + ".nii.gz")}) + result = LoadImaged(**input_param)(test_data) + + for key in KEYS: + self.assertTupleEqual(result[key].shape, expected_shape) + + +if __name__ == "__main__": + unittest.main() From 1b7fb4c3b614aa25b9ffb3ab54056eea3326a313 Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Mon, 17 Aug 2020 16:24:45 +0800 Subject: [PATCH 16/37] [DLMED] remove test notebook --- examples/notebooks/io_factory_test.ipynb | 307 ----------------------- 1 file changed, 307 deletions(-) delete mode 100644 examples/notebooks/io_factory_test.ipynb diff --git a/examples/notebooks/io_factory_test.ipynb b/examples/notebooks/io_factory_test.ipynb deleted file mode 100644 index cf7d7a61dc..0000000000 --- a/examples/notebooks/io_factory_test.ipynb +++ /dev/null @@ -1,307 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# IO factory test notebook\n", - "This notebook shows the basic usage of `ImageLoad`, `ITKReader` and `NibabelReader` for Nifti and PNG data.\n", - "\n", - "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Project-MONAI/MONAI/blob/master/examples/notebooks/io_factory_test.ipynb)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Setup environment" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33m WARNING: monai 0.2.0 does not provide the extra 'itk'\u001b[0m\n", - "Note: you may need to restart the kernel to use updated packages.\n" - ] - } - ], - "source": [ - "%pip install -qU \"monai[itk, nibabel]\"" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# temporarily need this, FIXME remove when MONAI v0.3 released\n", - "%pip install -qU git+https://github.com/Project-MONAI/MONAI#egg=MONAI\n", - "%pip install itk" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Setup imports" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "MONAI version: 0.1.0+335.g0b3eac7.dirty\n", - "Python version: 3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 19:07:31) [GCC 7.3.0]\n", - "Numpy version: 1.18.1\n", - "Pytorch version: 1.5.0a0+8f84ded\n", - "\n", - "Optional dependencies:\n", - "Pytorch Ignite version: 0.3.0\n", - "Nibabel version: 3.1.1\n", - "scikit-image version: 0.15.0\n", - "Pillow version: 7.2.0\n", - "Tensorboard version: 2.1.0\n", - "gdown version: 3.12.0\n", - "ITK version: 5.1.1\n", - "\n", - "For details about installing the optional dependencies, please visit:\n", - " https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies\n", - "\n" - ] - } - ], - "source": [ - "# Copyright 2020 MONAI Consortium\n", - "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", - "# you may not use this file except in compliance with the License.\n", - "# You may obtain a copy of the License at\n", - "# http://www.apache.org/licenses/LICENSE-2.0\n", - "# Unless required by applicable law or agreed to in writing, software\n", - "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", - "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", - "# See the License for the specific language governing permissions and\n", - "# limitations under the License.\n", - "\n", - "import torch\n", - "\n", - "from monai.config import print_config\n", - "from monai.transforms import LoadImage\n", - "from monai.data import NibabelReader\n", - "print_config()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Test loading Nifti files with ITK" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "filename = \"/workspace/data/medical/Task09_Spleen/imagesTr/spleen_10.nii.gz\"\n", - "loader = LoadImage()\n", - "data, meta = loader(filename)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'ITK_FileNotes': '5.0.10', 'aux_file': '', 'bitpix': '32', 'cal_max': '0', 'cal_min': '0', 'datatype': '16', 'descrip': '5.0.10', 'dim[0]': '3', 'dim[1]': '512', 'dim[2]': '512', 'dim[3]': '55', 'dim[4]': '1', 'dim[5]': '1', 'dim[6]': '1', 'dim[7]': '1', 'dim_info': '0', 'intent_code': '0', 'intent_name': '', 'intent_p1': '0', 'intent_p2': '0', 'intent_p3': '0', 'nifti_type': '1', 'pixdim[0]': '0', 'pixdim[1]': '0.976562', 'pixdim[2]': '0.976562', 'pixdim[3]': '5', 'pixdim[4]': '0', 'pixdim[5]': '0', 'pixdim[6]': '0', 'pixdim[7]': '0', 'qform_code': '1', 'qform_code_name': 'NIFTI_XFORM_SCANNER_ANAT', 'qoffset_x': '-499.023', 'qoffset_y': '-499.023', 'qoffset_z': '0', 'quatern_b': '0', 'quatern_c': '0', 'quatern_d': '0', 'scl_inter': '0', 'scl_slope': '1', 'sform_code': '1', 'sform_code_name': 'NIFTI_XFORM_SCANNER_ANAT', 'slice_code': '0', 'slice_duration': '0', 'slice_end': '0', 'slice_start': '0', 'srow_x': '0.976562 0 0 -499.023', 'srow_y': '0 0.976562 0 -499.023', 'srow_z': '0 0 5 0', 'toffset': '0', 'vox_offset': '352', 'xyzt_units': '10', 'origin': array([499.02319336, 499.02319336, 0. ]), 'spacing': array([0.97656202, 0.97656202, 5. ]), 'direction': array([[-1., 0., 0.],\n", - " [ 0., -1., 0.],\n", - " [ 0., 0., 1.]]), 'filename_or_obj': '/workspace/data/medical/Task09_Spleen/imagesTr/spleen_10.nii.gz', 'original_affine': array([[ -0.97656202, 0. , 0. , 499.02319336],\n", - " [ 0. , -0.97656202, 0. , 499.02319336],\n", - " [ 0. , 0. , 5. , 0. ],\n", - " [ 0. , 0. , 0. , 1. ]]), 'affine': array([[ -0.97656202, 0. , 0. , 499.02319336],\n", - " [ 0. , -0.97656202, 0. , 499.02319336],\n", - " [ 0. , 0. , 5. , 0. ],\n", - " [ 0. , 0. , 0. , 1. ]]), 'spatial_shape': [512, 512, 55]}\n" - ] - } - ], - "source": [ - "print(meta)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(512, 512, 55)\n" - ] - } - ], - "source": [ - "print(data.shape)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Test loading JPEG files with ITK" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "filename = \"/workspace/data/medical/MedNIST/Hand/008334.jpeg\"\n", - "loader = LoadImage()\n", - "data, meta = loader(filename)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'origin': array([0., 0.]), 'spacing': array([1., 1.]), 'direction': array([[1., 0.],\n", - " [0., 1.]]), 'filename_or_obj': '/workspace/data/medical/MedNIST/Hand/008334.jpeg', 'original_affine': array([[1., 0., 0.],\n", - " [0., 1., 0.],\n", - " [0., 0., 1.]]), 'affine': array([[1., 0., 0.],\n", - " [0., 1., 0.],\n", - " [0., 0., 1.]]), 'spatial_shape': [64, 64]}\n" - ] - } - ], - "source": [ - "print(meta)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(64, 64)\n" - ] - } - ], - "source": [ - "print(data.shape)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Test loading Nifti files with Nibabel" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "filename = \"/workspace/data/medical/Task09_Spleen/imagesTr/spleen_10.nii.gz\"\n", - "loader = LoadImage(NibabelReader())\n", - "data, meta = loader(filename)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'sizeof_hdr': array(348, dtype=int32), 'data_type': array(b'', dtype='|S10'), 'db_name': array(b'', dtype='|S18'), 'extents': array(0, dtype=int32), 'session_error': array(0, dtype=int16), 'regular': array(b'r', dtype='|S1'), 'dim_info': array(0, dtype=uint8), 'dim': array([ 3, 512, 512, 55, 1, 1, 1, 1], dtype=int16), 'intent_p1': array(0., dtype=float32), 'intent_p2': array(0., dtype=float32), 'intent_p3': array(0., dtype=float32), 'intent_code': array(0, dtype=int16), 'datatype': array(16, dtype=int16), 'bitpix': array(32, dtype=int16), 'slice_start': array(0, dtype=int16), 'pixdim': array([1. , 0.976562, 0.976562, 5. , 0. , 0. ,\n", - " 0. , 0. ], dtype=float32), 'vox_offset': array(0., dtype=float32), 'scl_slope': array(nan, dtype=float32), 'scl_inter': array(nan, dtype=float32), 'slice_end': array(0, dtype=int16), 'slice_code': array(0, dtype=uint8), 'xyzt_units': array(10, dtype=uint8), 'cal_max': array(0., dtype=float32), 'cal_min': array(0., dtype=float32), 'slice_duration': array(0., dtype=float32), 'toffset': array(0., dtype=float32), 'glmax': array(0, dtype=int32), 'glmin': array(0, dtype=int32), 'descrip': array(b'5.0.10', dtype='|S80'), 'aux_file': array(b'', dtype='|S24'), 'qform_code': array(1, dtype=int16), 'sform_code': array(1, dtype=int16), 'quatern_b': array(0., dtype=float32), 'quatern_c': array(0., dtype=float32), 'quatern_d': array(0., dtype=float32), 'qoffset_x': array(-499.0232, dtype=float32), 'qoffset_y': array(-499.0232, dtype=float32), 'qoffset_z': array(0., dtype=float32), 'srow_x': array([ 0.976562, 0. , 0. , -499.0232 ], dtype=float32), 'srow_y': array([ 0. , 0.976562, 0. , -499.0232 ], dtype=float32), 'srow_z': array([0., 0., 5., 0.], dtype=float32), 'intent_name': array(b'', dtype='|S16'), 'magic': array(b'n+1', dtype='|S4'), 'as_closest_canonical': False, 'filename_or_obj': '/workspace/data/medical/Task09_Spleen/imagesTr/spleen_10.nii.gz', 'original_affine': array([[ 0.97656202, 0. , 0. , -499.02319336],\n", - " [ 0. , 0.97656202, 0. , -499.02319336],\n", - " [ 0. , 0. , 5. , 0. ],\n", - " [ 0. , 0. , 0. , 1. ]]), 'affine': array([[ 0.97656202, 0. , 0. , -499.02319336],\n", - " [ 0. , 0.97656202, 0. , -499.02319336],\n", - " [ 0. , 0. , 5. , 0. ],\n", - " [ 0. , 0. , 0. , 1. ]]), 'spatial_shape': array([512, 512, 55], dtype=int16)}\n" - ] - } - ], - "source": [ - "print(meta)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(512, 512, 55)\n" - ] - } - ], - "source": [ - "print(data.shape)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} From b74197b7f16334c488b56a510e6cd3f6c8e674c9 Mon Sep 17 00:00:00 2001 From: monai-bot Date: Mon, 17 Aug 2020 08:27:50 +0000 Subject: [PATCH 17/37] [MONAI] python code formatting --- monai/data/image_reader.py | 4 +++- monai/transforms/io/array.py | 5 +---- monai/transforms/io/dictionary.py | 2 +- tests/test_load_image.py | 4 +++- 4 files changed, 8 insertions(+), 7 deletions(-) diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index a2e62411a3..39542b2c21 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -14,8 +14,8 @@ import numpy as np -from monai.utils import optional_import from monai.data.utils import correct_nifti_header_if_necessary +from monai.utils import optional_import itk, _ = optional_import("itk", allow_namespace_pkg=True) nib, _ = optional_import("nibabel") @@ -32,6 +32,7 @@ class ImageReader(ABC): as_closest_canonical: if True, load the image as closest to canonical axis format. """ + def __init__(self, img: Optional[Any] = None, as_closest_canonical: bool = False): self.img = img self.as_closest_canonical = as_closest_canonical @@ -195,6 +196,7 @@ class NibabelReader(ImageReader): as_closest_canonical: if True, load the image as closest to canonical axis format. """ + def __init__(self, img: Optional[Any] = None, as_closest_canonical: bool = False): super().__init__(img, as_closest_canonical) self._suffixes: [Sequence] = ["nii", "nii.gz"] diff --git a/monai/transforms/io/array.py b/monai/transforms/io/array.py index 5dce96afa9..ebe191c934 100644 --- a/monai/transforms/io/array.py +++ b/monai/transforms/io/array.py @@ -40,10 +40,7 @@ class LoadImage(Transform): """ def __init__( - self, - reader: Optional[ImageReader] = None, - image_only: bool = False, - dtype: Optional[np.dtype] = np.float32, + self, reader: Optional[ImageReader] = None, image_only: bool = False, dtype: Optional[np.dtype] = np.float32, ) -> None: """ Args: diff --git a/monai/transforms/io/dictionary.py b/monai/transforms/io/dictionary.py index f3bc5f3c02..7d2d8e40d1 100644 --- a/monai/transforms/io/dictionary.py +++ b/monai/transforms/io/dictionary.py @@ -20,8 +20,8 @@ import numpy as np from monai.config import KeysCollection -from monai.transforms.compose import MapTransform from monai.data.image_reader import ImageReader +from monai.transforms.compose import MapTransform from monai.transforms.io.array import LoadImage, LoadNifti, LoadNumpy, LoadPNG diff --git a/tests/test_load_image.py b/tests/test_load_image.py index 0d9e2c7ad8..1faa2a35cf 100644 --- a/tests/test_load_image.py +++ b/tests/test_load_image.py @@ -15,9 +15,10 @@ import itk import nibabel as nib -from PIL import Image import numpy as np from parameterized import parameterized +from PIL import Image + from monai.data import NibabelReader from monai.transforms import LoadImage @@ -111,5 +112,6 @@ def test_load_png(self): np.testing.assert_allclose(header["original_affine"], np.eye(3)) np.testing.assert_allclose(result, test_image) + if __name__ == "__main__": unittest.main() From be5b69c2f14f60e6b4d9b174604d3aef693d6930 Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Mon, 17 Aug 2020 16:41:11 +0800 Subject: [PATCH 18/37] [DLMED] restore notebooks --- examples/notebooks/mednist_GAN_workflow.ipynb | 4519 +---------------- 1 file changed, 30 insertions(+), 4489 deletions(-) diff --git a/examples/notebooks/mednist_GAN_workflow.ipynb b/examples/notebooks/mednist_GAN_workflow.ipynb index 6065de5e2c..e77a90c738 100644 --- a/examples/notebooks/mednist_GAN_workflow.ipynb +++ b/examples/notebooks/mednist_GAN_workflow.ipynb @@ -43,11 +43,9 @@ }, "outputs": [ { - "name": "stdout", "output_type": "stream", - "text": [ - "Note: you may need to restart the kernel to use updated packages.\n" - ] + "name": "stdout", + "text": "Note: you may need to restart the kernel to use updated packages.\n" } ], "source": [ @@ -62,11 +60,9 @@ }, "outputs": [ { - "name": "stdout", "output_type": "stream", - "text": [ - "Note: you may need to restart the kernel to use updated packages.\n" - ] + "name": "stdout", + "text": "Note: you may need to restart the kernel to use updated packages.\n" } ], "source": [ @@ -82,11 +78,9 @@ }, "outputs": [ { - "name": "stdout", "output_type": "stream", - "text": [ - "Note: you may need to restart the kernel to use updated packages.\n" - ] + "name": "stdout", + "text": "Note: you may need to restart the kernel to use updated packages.\n" } ], "source": [ @@ -109,25 +103,9 @@ }, "outputs": [ { - "name": "stdout", "output_type": "stream", - "text": [ - "MONAI version: 0.2.0+74.g8e5a53e\n", - "Python version: 3.7.5 (default, Nov 7 2019, 10:50:52) [GCC 8.3.0]\n", - "Numpy version: 1.19.1\n", - "Pytorch version: 1.6.0\n", - "\n", - "Optional dependencies:\n", - "Pytorch Ignite version: 0.3.0\n", - "Nibabel version: NOT INSTALLED or UNKNOWN VERSION.\n", - "scikit-image version: NOT INSTALLED or UNKNOWN VERSION.\n", - "Pillow version: 7.2.0\n", - "Tensorboard version: NOT INSTALLED or UNKNOWN VERSION.\n", - "\n", - "For details about installing the optional dependencies, please visit:\n", - " https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies\n", - "\n" - ] + "name": "stdout", + "text": "MONAI version: 0.2.0+74.g8e5a53e\nPython version: 3.7.5 (default, Nov 7 2019, 10:50:52) [GCC 8.3.0]\nNumpy version: 1.19.1\nPytorch version: 1.6.0\n\nOptional dependencies:\nPytorch Ignite version: 0.3.0\nNibabel version: NOT INSTALLED or UNKNOWN VERSION.\nscikit-image version: NOT INSTALLED or UNKNOWN VERSION.\nPillow version: 7.2.0\nTensorboard version: NOT INSTALLED or UNKNOWN VERSION.\n\nFor details about installing the optional dependencies, please visit:\n https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies\n\n" } ], "source": [ @@ -182,11 +160,9 @@ }, "outputs": [ { - "name": "stdout", "output_type": "stream", - "text": [ - "/home/bengorman/notebooks/\n" - ] + "name": "stdout", + "text": "/home/bengorman/notebooks/\n" } ], "source": [ @@ -223,12 +199,9 @@ }, "outputs": [ { - "name": "stdout", "output_type": "stream", - "text": [ - "file /home/bengorman/notebooks/MedNIST.tar.gz exists, skip downloading.\n", - "extracted file /home/bengorman/notebooks/MedNIST exists, skip extracting.\n" - ] + "name": "stdout", + "text": "file /home/bengorman/notebooks/MedNIST.tar.gz exists, skip downloading.\nextracted file /home/bengorman/notebooks/MedNIST exists, skip extracting.\n" } ], "source": [ @@ -262,11 +235,9 @@ }, "outputs": [ { - "name": "stdout", "output_type": "stream", - "text": [ - "[{'hand': '/home/bengorman/notebooks/MedNIST/Hand/003676.jpeg'}, {'hand': '/home/bengorman/notebooks/MedNIST/Hand/006548.jpeg'}, {'hand': '/home/bengorman/notebooks/MedNIST/Hand/002169.jpeg'}, {'hand': '/home/bengorman/notebooks/MedNIST/Hand/004081.jpeg'}, {'hand': '/home/bengorman/notebooks/MedNIST/Hand/004815.jpeg'}]\n" - ] + "name": "stdout", + "text": "[{'hand': '/home/bengorman/notebooks/MedNIST/Hand/003676.jpeg'}, {'hand': '/home/bengorman/notebooks/MedNIST/Hand/006548.jpeg'}, {'hand': '/home/bengorman/notebooks/MedNIST/Hand/002169.jpeg'}, {'hand': '/home/bengorman/notebooks/MedNIST/Hand/004081.jpeg'}, {'hand': '/home/bengorman/notebooks/MedNIST/Hand/004815.jpeg'}]\n" } ], "source": [ @@ -336,11 +307,9 @@ }, "outputs": [ { - "name": "stdout", "output_type": "stream", - "text": [ - "10000/10000 Load and cache transformed data: [==============================]\n" - ] + "name": "stdout", + "text": "10000/10000 Load and cache transformed data: [==============================]\n" } ], "source": [ @@ -525,10 +494,10 @@ "cell_type": "code", "execution_count": 16, "metadata": { + "scrolled": true, "pycharm": { "is_executing": true }, - "scrolled": true, "tags": [ "outputPrepend" ] @@ -566,4322 +535,22 @@ "cell_type": "code", "execution_count": 18, "metadata": { + "scrolled": true, "pycharm": { "is_executing": true - }, - "scrolled": true + } }, "outputs": [ { + "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAswAAAEvCAYAAABR6ZerAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAACq4UlEQVR4nOyddXgUVxfG39mNO0kgQAIEdw9uQVpoKRVKlQrU+7W01KlThbpRd6deSrFii2vwEDTECEQIcd3d+f644ztr2ewmac/vefJkdvTOHXvvueecy/E8D4IgCIIgCIIg9DE0dgEIgiAIgiAIoilDgpkgCIIgCIIgHECCmSAIgiAIgiAcQIKZIAiCIAiCIBxAgpkgCIIgCIIgHECCmSAIgiAIgiAc4NfYBXBEbGwsn5iY6PPjVlRUIDQ01OfH/a9B9ex9qI59A9Wz96E69g1Uz76B6tn7uFvHKSkphTzPt7S3vEkL5sTEROzevdvnxzWZTEhOTvb5cf9rUD17H6pj30D17H2ojn0D1bNvoHr2Pu7WMcdxmY6Wk0sGQRAEQRAEQTiABDNBEARBEARBOIAEM0EQBEEQBEE4gAQzQRAEQRAEQTjAZ4KZ47hOHMd9znHcr746JkEQBEEQBEF4ikeCmeO4LziOy+c47pBm/hSO445yHHeC47h5AMDzfDrP87d6cjyCIAiCIAiC8DWeWpi/AjBFOYPjOCOA9wFcBKAXgOs4juvl4XEIgiAIgiAIolHwSDDzPL8RQJFm9lAAJwSLci2AxQAu8+Q4BEEQBEEQBNFYcDzPe7YDjksE8DfP832E3zMATOF5/jbh940AhgF4FsBLAC4A8BnP8wvs7O8OAHcAQFxc3ODFixd7VL76UF5ejrCwMJ8f978G1bP3oTr2DVTP3ofq2DdQPfsGqmfv424djx8/PoXn+SR7y3020h/P8+cA3OXCep8A+AQAkpKS+MYYCceTEXiOni1DZLA/WkcGNWyh/kXwPI/qOit2bN1EIx15GRpNyjdQPXsfqmPfQPXsG6ievU9D17E3BPNpAO0UvxOEef9qsosqcc8Pe3AgpwQAkLFwaiOXqOny4YaTeHXlUbw7IaSxi0IQBEEQBOEUb6SV2wWgK8dxHTmOCwBwLYC/vHCcJsWnm9IlsUw4ZsneXABASY1n7kAEQRAEQRC+wCMfZo7jfgSQDCAWQB6AZ3me/5zjuIsBvA3ACOALnudfcnO/0wBMi4+Pv/27776rd/nqS318i749XIO1WWbp91dTQhu6WP8antpciZxyHo8P5NE9jny4vAn5yfkGqmfvQ3XsG6iefQPVs/dpUj7MPM9fZ2f+cgDLPdjvUgBLk5KSbm8uPsym0lQgK0P6Tb5J9gnbtxEoL0NISAjVk5chPznfQPXsfaiOfQPVs2+gevY+DV3HNDR2A8FxjV2C5oenGVoIgiAIgiB8AQnmBsJAipkgCIIgCOJficd5mL1Bc/Jh5nkeHMdh8ZEarMwgH2ZXEH2Y5w3g0aM1+XB5E/KT8w1Uz96H6tg3UD37Bqpn79OkfJi9RXPxYc4vrcbQl9fi3esGokP7EiAjXVpGvkn2kX2Yg6mevAz5yfkGqmfvQ3XsG6iefQPVs/chH+YmRPb5SgDAs0sOAeSR4TZNr2+DIAiCIAjCFhLMHlBRYwEAnK+sQ6UwLVJdZ9HbhCAIgiAIgmhmkGD2gNLqOmn62+2ZqmVl1Wbt6gRBEARBEEQzhIL+dHDVUdyUXYevUmt1l93aJwDRQQb0jjU2dPGaPU9vqUJ2mRWPDuDRi4L+vAoFlvgGqmfvQ3XsG6iefQPVs/ehoD8fYM9RvNZsBccB/kZmmD+64SSQekR3H58fYkI6Y+FUr5WzuRK+fxNQVoqgYAr68zYUWOIbqJ69D9Wxb6B69g1Uz96Hgv4akT7zVyH5NRO+3ZaB7KJKLFjBxHLL8EC72xRX6lugCcDa9Do3/nvwPLD9I6CmvLFLQhAEQRBNFhLMblBrtuJ0cRWeXpKK+xbvBQDMGpmIXU9OwuoHxmJk5xibbQ6fKfV1MZsNTdAb6L/H8dXAyseAVU80dkkIgiAIoslCgrme7M0qBgDcOKIDAKBrXDjGdmtps971n+7wZbGaFWRhbgKYq9j/ynONWw6CIAiCaMI0SR9mRdAfTCaTz49fXl6uOu6RIgsW7qzWXffw3l3IDmBJmKMrrQCAQa2M2JMvp5UT95VVakHrUAMCjP/tpM0VFUykVVZVNcr1bQ7UmHlsyDFjUgc/j4Zd197LWmILDqMPgMKCAhyia1FvnNUz4TlUx76B6tk3UD17n4au4yYpmJtS0J/VymPWE8vtrnvxpGQYDbKgufpi4K/9udjz415pXpseg9EmKgiz5v+DS/q1waLrB3mt7M2BsAObgNJSBAZR0J89nl1yCD8cycTYpL6Y0qd1vffjLOghf1cRkApYA0LoWngABfB4H6pj30D17Buonr0PBf35mKUHcm3mvXplP2laKZZFLu3fFuseGif9nvz2Rikv88ZjBV4oZfOEXDLsU1zFcnxX1Xk3n3fGOWbtzyup8upxCIIgCKI50yQtzE2Jv/Yxwbz36QtQUlWH9tEhKK8149HfDjjcrmNsqOp31jk2jHaN2YpjeWWICQ1ATJj97Br/BZpiDvCmgq+cdqyCuwfH0bUgCIIgCHuQhdkBRRW1WHskH3eM7YQWoQFIjA2FwcAhPNB5O4PjOHx/2zDpd5qQLaPGbMWFb23EpDc3eK3cTR3RJdfqxjZnS/R9yP/teLtNwQvS3MC7czUIgiAI4r8FCWYHZJyrAAAM6xitms9xHOZP64W/7h3lcHtxgBMA+HjjSdWy85V1sPxHfRI4QaS5Kga3nijE8AVrsfzgGS+WqmnBce7VUX3hhVcAh//mvUgQBEEQrkCC2QEZhUwwd4gJsVk2a1RH9EuIcri9nyIbRl5pjc3y9UfyPSugm+SXVuPnXdlub3e+ohblNQ3vS+tqe0HMZZ2Seb7By9BUEe8cb8tYEswEQRCEK/A8j5TMov+sO2WT9GFuKmnl/jlSAz8DkHFoN3J0gvuckVFicbg8Zf9B+OWn1beYbvPc1iqcKrUioOg4ogJdbyvNWlmBqEAOb4+3bTjUh7IyFmBWVVXt0vU9lcEC4DKzsmEy+baR0ViUninCg35LcDTNCFPZiXrvx1landzsbIwCYK6toRRHHkAporwP1bFvoHr2Dc2xnrecrsOnB2txV/9ADG/TJOWjCkor5wPEVCQfH9uO3vEWTJrg2PXCHmlnSoFtmwAAb1zVH93iwnH1x9tQVceEdK9evZDcv22DldsZj21dA6AGQ4aNQHxUsOsbrlyG4hq+wdKzhB/cDJSWICAoyKV9Zm3LAI6konXbtkhO7tsgZdCl7Cxg8ANCY713DBcJ2H8jRvr9hR0RIzEs+c5678dZWp2NNYVADhAY4EcpjjyAUkR5H6pj30D17BuaYz2n/HMUwAmEtOqA5OSujV0cp1BaOR+Sea4CnTXZLtxB6cN85eAE9E2IxMD2UdI8q6JbI72gHEUVtarteZ7HH3tzUF3n2FLtKqLvcFVtw+zvZEE5TuSXu18OwVjvaq+OOHCHxQqsTctD4rxlyC/zQhDgG92B1zo3/H7rgZFnVnWD2bvBjqJLhoFcMggv8/aaY3jzn6ONXQyCIOqJ2M9u/Y+6ZJBgtkOt2YozpdVoF11/NwR/nRH93rl2IB6d0h0AVEF/E97YgMlvb1Stm5J5Hg/8tB/PLU2t1/GLKmolEb7hWAHOljLxVVnruj+yPbH+1J8HMfGNDR5l+3DVh9lPcIexWnl8vS0TAJCaW1rv4zYHrELnj4H3bh5m0ReN+4++AAn3Kamsg7UeActvrzmOd9fV372IIBqTf1LPYldGUWMXo3HxUTB6U4UEsx1OF1eB54H2HghmP6Nt9bYMD8QlfZkbhpUH9mSdR1k1syYWlNWgziKn9xIF9fG8cny2KR0n8suQW1yFxHnLsEEYAGXxzizsyy5WHWPFwTNInLcMg15YjUEvrEaN2YKbv9gpLa+stWDp/lyXrMPFlXWq32lnSpE4bxm+257lQg0Apwor8PLyNN0PrKuJzIwGDsMNh9GiKhNiG8TdDzbP880qK4mFY4KZs3pXMItvPs6tJH/Ef5Xiylr0f/4fvLGaLMXEf4s7vk3BVR9ta+xiNCoGqXe4+XxLGxISzHbIKmIDjbTXyZDhKnoWZgAwCLW+J+s8pn+wFZPfki3LXZ9cgQUr0pA4bxnWH2Wi+FxFLV5cloYrP9yGtWl5AICl+9mAKvN+P4jL39+CBcvTpJt47k/7VMe75atdqt+puaWY8+Ne3L+YDd+95UQhVh/O0y1rSZVaMK84dNZmnZ92ZUn7UmK18vjf93vwycZ0pAsZR5S4+tAZDRwWB7yIeSdvkEZWdFf8fr8jC52fWO4dVw4vYOVEC3OdkzU940Q+s9RTlgzCFcQG9NL9/50UjwRBMKSUsI1cjsaCBLMdRMHcroUHgtmgX72i6PthB7PS5moG5fh4QzoA4KMNLHfz6fMsq0RJVZ1Url9TcrDzlNw99PHGdLyy8ihOFVYgOjRAtb8tJ86pfi9cwTJznC5m+5352Q7c/s1uaXl5jRnrj+QjJbNIykUNANPe26x7Po/9dhBL9uWiuFLtg9372VWKAVssqLNY8f76E6gUfKjrY/AV8xPrbWu2WDHs5TVInLfMRlD/ticHAJBdVIn1R/Pr1aXsS6yShblh/M3tseEoayiRYK4fe7LO47wm9uDfTH0brETjklFYgVzhfU8Q9UUadMxLFuZ/Us/izdXHvLLvhqBJZsloCmnldh0/Cg7A4T3bcIRzP6UcAFSZ5ZtKeR7F1e51f9cq3DSOnZLzKN/6hbp76KMNJyWR7Yg6CytXcWUd3vp5jTR/3fr1MHAc3t1TjT35tkLt4OkShFrtu3EMemE1WodwmD8yGAFGTsoGAgBrtuzCXcfqkF0mn0tVtWupzFJz6jBdmC46V8jKcugQggqPqNbbcroOeaVMvKxZb0KgwsJfUsI+Fu8s3YWNOWbc2icAYxL8VdsnC/+bQqqfkkrWiDqXf8aj8jhLqyMKZXMdpZWrD7NWViAhjMO8Adb/RP3lV7Lnt6ratZSQetR3u+aYhsvXvL67Gr1iDLi4o9poMmslM3x8NcV5EHt96zmjxIK2YQYE2OlZ/bfQUPego3p+eUcVRsf7YazmG1VcbUVUUOPZOTMyaoX/WTCZbHubPeUO4T4d5J/bIPujtHI+wGQyIbJlLKLO5GLC+PH13k91nQVYsxIAVKlNCstrANMaO1s5ZkOO7NNa1gC99e/skQdUWV4YjRmDE1C48wCASt31t5+xb/G08kBuBY/Ht5rxyOTuAA5Ky95KsR24JSAw0KWUL7k7sgAhVqh1q1ZA3hn07NULyf3UKfmyt2cCBw8BAIaPGI3IEPll83bqFqCkGKVcGIBitOnQGcljOqkPZGL/mkKqn9WpfwBVQKvoKPTxoDzO0up89c8WAECgf8OklXv894OIjwrCvROafsohT7FaeWDlcuSU8wgLC7Nbf+fKa/D6P8fw7LReCPI3+raQDUx6QTmwcQP8/APcv19WLgNQ/+erOabh8iVWK49ZK5fjUKEFr86+UL3QjbqvTz2fLanGrAVrcXVSAl6d0d+tbX2B2WKFhecR6Of8+cs5X4kEvZ5lD+9fLSaTCQm9klBZa7YZBG3WymU4dr4Wz9xwgTRve/o5zP1kOz6YOQgX923jdP8pmUXgOA6D2rdokPICQCp/Ajh+FO3at0dyco8G26+EF+qY0sr5gOKqOkSFBDhf0QH+OkF/AGDUWKxnDmuP8d1benQsPf7430jcnSynSbuoT2vcOa6T3fV/TcnBtZ9sh9niWQDYuYpazPv9oNP1XO3VtVjl8og+yKcKbH2ic4pkkV9jYcL+2SWHsHR/ruRwIPpke3ptvY3FRz7MooW5obJk/LgzC6//03S71BqSOqtrz8nCFUfw484s/H2g+fv9moWH9r+aVqopc+vXu5yv5CUKy5lB5ODpppm96NJFW9D9qZVO1/v7QC5Gv7Iem48X+qBUwKQ3N+DSRVuk39V1Fmw5oX/sw0JmKKUrpiOu/HAbpn+w1fNCKpBSwjpx4eN5HpuPFzqNU6qoMSO7yNY456kG8RYkmO1QXFmLqBB/5ys6wGhndECDZv6Ll/dB5jl9i667JCqCFAe2b4G5k7qidUQQAKB32wjMm+K8Vaj1qVZyUZ/WePNqtQXhttEdpemObuStVgrmrScKkThvGRLnLcNZ4fg1ZgsS5y3DN0IqOQDYlcGGx35Dx8/p443p0rTodvL1tkzM+VEOSBTT7IUHNb3OFZ7n8fOubFTXWSQfZnjRh5nneRiE7BiUJcN9zBbXRKMoMhuqo7q6ztJoPsRiFh/yYXYdq5XHuXLbHraGRgwSF1m6Pxd5pfUPct55qkhXzOhRY2b3RaCfe5LiXHkNVqWqu/Yraswui0JXOXzGNSG/N6sYAKTYGz28mSHi2SWpmPnZDt1lop5ozMaqFPSnKcLWE4U4pQjsX3bwDG74fAe+3+E4m9bsL3dhzKvrbeq0soHGnmhoSDDbobiyDlHBnglme2iFNMdxuH5Ye4/3O6ZrLEyPMBeS6QPjAQCBfkbcOKIDAHaTcxyHkZ1jEBpgdPvlNqJTDD68YTCm9msjCfORnWPw5NSe0jpT+rR2eX+FVVbsyy7GV1tO4XrFS+LHnVnIPFeBo2fLAADH7aS/W7wzC5e8twnrj+ajRJP+rtZsVeeQFh5I0cIsPp+ni6tQY24aD+eq1LN49LcDeHvNcVg51nXIWb1nYa61WCURRwOXuI/ZRdEofuDsxAC7TY+nV+IBTSYcb3PkbCn+2p8rCWVXz10PTwTH3qzzOFPSvILX3l13HINfXOPTDD0VNWbM+XGvKp2oElcCVa/+eBvGvLrepeOJ71B3vym3fr0bd36bgtJq+T0358e9uPrjbTbvdGcs3Z+LbSfVAe48z7sU1yOvz/47Cluq1Vg/j+eV4davdjXIAGNH8srsLvNGwO2SfafR5YnlDst+8xc7sWA5SxQgvsu0z/D1n+3A+NdN0u/soirhv+MG104hr3V5jTp9amVN0/gmayHBbIey6jqEB3lHMOsZnm8b0wmnFlyM+ybq+34mtLAdyrpLqzDV7zcEy++pBRfjzWsGSPNnj0rErJGJmC1Ygr+/bRgOPTfZJWtwzzYRGJoYDQBoE8Us1YF+Rvw1ZzTCA/1w17jOUuYKAHj4wu7SwCxa7hjbCVcnJUi/V2aYcfn7WzB/6WHVeu+sPY5xr5lw93d7HJZt3u8Hceh0KWZ/uQsvLlPvo9ZsxTnFR2F/TolquZXnUWexYtTCdbjwrY1uvZyr65jl+wOTPAjDgZximxR87lJUwbYvrqxVWJi9KJjNVrIwe4CzbsPqOgtO5JdLPSkGzVf4660ZNjnUnSF+qP7a3zBBMa4y5e1NuO/HvVLPjSdZZl74O63e4uKKD7ZirIsibn92MeYu3utQYNRZrF63/oquOOcrGv5ZvvLDrXj01/0280UBomdhTskswsAXVmOlTopQV8kvrZZ6AgGgQhA4gW766IuW3AqFYNotiCity1NlrRn7sosx6IXVuhk/5vy4F9d9ul0172heGRaukIPDd2UUged5mI7m459U2/O352qgvIe0Yu7pJYew9kg+UjLP627rDo4ak+5YmO09XzVmi+oYr648CrOVx/G8crvidsOxAqn3VuxVUz5SGTopY6Uyutitlleqfga1ArqpQIJZy4m1aJP7DypqLQgN9E63vfbDKcJxHB6Y1BUTerSyWdYqPFCa7tkmArNGJiJY8XL6e85otAoPkvajJCTAD/Mv7Y0w4Xw4jgPHcfjmlqEOy2k0cFhx/xj8fNcIvHfdQDx/WR9pWUSQPw4+NxljuzHf62B/Iy7p1wZGA4cLe8Xp7q932wi3AkJOu5EGqaxa/YDVmq0oKrdvRTFbeSm9Xea5SvR//h+XjyX6630nuIoUVdTi0kVbcMUHWxxt5hSxu9vfaIBFsjDX78WRW1yF/32fglkrK+wKhr1ZxbIPs48tzBU1ZiTOW4Zvt2eq5tearQ1m8bdaeZe7lO2RX1ot5ETPt1nmzMr6yK8HMOnNDdLARNrn/tm/UnH5++7dM55YdhsC8V6yuGklVt6DX2w5hV92Z+uu54r1uc5FV5grP9yKP/flIr2gHE/9eRBVtbb31TNLDmHwi2vcuuf09uOIWsFdwZ6LniekZJ7Hz7tzbBowh04zA4E2jia/rBp/7mWNre3pamusM/ZmnZcaF0NfXovhC9ZKy8pr2D3uroVZdOUoV7y/q4V5Yr2JDHtpLS5/fwuKKmpVYnfIS2vw+eZTNvvOLqrEqkPq8QWu+mgbftyZjVlf7sId36bYbCPefqtSz2LloTPSAGHKAcW0Yk6sY63l2V1O5Je7lPrPbOHx5B8HMfOz7XbXKdLpQSgsr0H3p1biq60Z0jzxlTRt0WaXehPEeCLxeeZ5HskKy7IWe1pHi7Zh585oxL6EBLOW1N/RIXMxKmvMCAnwPKL99av64+85o1XzHL04OY7DF7OGoFucbD2+cXgHdG0VLv3+/rZhmH9pbwT5s8v3wKRu6BMf6XbZWkUEYVSXGNW8/gnyfpTlnNa/rSS49Uh7YQoWXT8IANAmUraGb3gkWZp2JUK5vhRorES1FgtyHXTdWq28/YfSid+w+MEMDjDiWF4ZPha6/NJ1AhHdQXwp+xk56cGsr0vG1Hc3YflB9lGx11q/6YudkisGx3tuYXanq11sdHys6S6d/PZGKTinus7CsjJo2HqyUBWUU2u24qTOeqvT8jDm1fX4c+9pl8ul5YDQMzH7y11InLcM+YoXe52TD6QYvCM2zFz9eDiixuz+dSqrrnPpA7T1ZCGSXlwtCXw9RBFjL97RYuXx6cZ0G1GpratXVx7FdEUDM7+sGhe8uQEdH1+Oae9txg87snSvvZbqOgsWrEiT3LeUiI2LR387gO+2Z2Hj8QKbdcSBmFztHdp0vAA9n1mJPVmuWxPFOjNrKu1MSZXufVsfOj2xXPX71q9ZXn2tYJ7w+gabRqoeymd5+gdbYLHyuOKDrZj+4Vbd3gXRYOGOYFbm273grY2os1jx2aZ0qb60grlM8R7zF45Ta7aioKwGL/wt9zBuOl6A31JycPn7W/DWGttYF0f+ySK7Ms7jru/2SC4tyoZqpebeDhDquE5T3vIaM15fddTl3pRJb25AoR0jz9dbM/C4EEhvsfL4fkcWtpw4h593Z0uNIyV6gvk5oSdX+T509510SAg8rLVYkV1Uicd+O6C7nnj/ONu7KDHySqvRd/4qaX4FuWQ0EwLCYLRUo7LOgtAGEMwzBifYiFltlgw9lA/oc5f2RqLCfaKFEIwoClA7yThcQmutWXT9ICy9lwl8v3paRJSW+Tgh4BCAJPCVfH/bMPw9ZzQ6tXQ9WFAPbXdYrZnHkTP2/cGUFmYbLI79+8TtQgL8cOFbG1XBhp4gXgt/o0Gy+PL1tCieV7iYVDjo3hKP48iHuaSqzqUPe32sn1qNrQwceeTXA5jwxgaV2Bvy0hpc/+kO3PC57PM+7/cDmPjGBhvRkyMM+LPsoOvZKarrLFI0OgBUayyPaQph5syXUHx6aoQPplYw1YcaN1wZiipqceRsKfrO/wfDXlrrdP23Vh9DYXktUnPtC4rj+ez87VmYRyxYi5eWp9m6SFlsxc+erGJJfP2x57QUq3DwdAme+OMgrv6YWdB+3pWNJfv0Gz1fbc3AxxvSMfntjbrLATmQSxRzPM9LgyyFBrB3VXFlHVYeOoM3/lEP+b3zVJHK91hsQC1xoxEmnvuGowX4ZluGNH/EgnWY+MYGl/dTH7QCVq/x/P76E+j9zEpkF1Vi1pc7sWhvteq7sCerWLIsZ56rRH6ZrQtLbjGro7BAP6cN539SzyJx3jK8u/a4av7inVl4cVma9NuRxVYUqXrvths/34mHftmvcslTUh93IKUYrqjVtzBXafb79dYMLFp/At9uy0RJZZ1HLnvP/pUqTSufvUd/PYBLhAHFrvxwKya+YQIA1bl/LViUxdGBjQYO+wVXMK0UEZ/HgrIam1iB08VVWHeE9bRV1pjx9JJD+Hl3jmodsadGzw3tmSWHsELxLj6eVyatl3O+StVL7Oib1ZiQYNYSEAqjpRo8zyPEWy4ZCiFqb/hs8WMcEeQHg4HD7WM6YuH0vljz4DjJ5UJ8GWpdMNxB+9FPaBGMYKGh4Iqwd4Yy72ywxr8tIoBDj9bh6BMfia9m6buHfHzjYLf8a+dP6wWAvWx/2GnfkmK18vYDC8zyB4HneZs6Eh9m7fm4i8XK47mlqfjQdBKfbz6FV1YyXzt/IyefcwNYfvU+kmIXmCyU7X/kpn+wxaUP+1kH2VW0aK1HeojR8/kK/7YCxcc6cd4ypBeUY5ngIypapMUPk3idNh0vwOKd6mjtGrMFzyw5ZGOJufeHvbj43U2SSNf61pUqPnrOXAPEx0dsYCnPWXtP5ZyvxCO/7LdbL0fOluLVlUfsWpi1FtySyjpc/M4mTHl7EwAmUPNKq3HkrFoM8zyPrSdZ+ifxWb32k+12syuIVip7jQVRTH2/IwsbjhUgcd4ynC6usnte5bUsI4KeABd7IR797QDuX7wPS0/aCiBlV774sc8uqsT760/YrCtavRfvysaA51fjRH45QgPZORdV1OKu7/bgvXUnJMHH8zyu/ngbrvxQTs0l1tGxPPsNyJ93ZePeH/ZIwkw89wUrjuCZJakora5D4rxldrdvSOylNlXyw44sVNRacCyvDKajBdidZ7FxUTmruB+UDQixzrOKWEN38a5sdNZYu0WeW5qKxHnLdF0hANvsTGK9rT6ch5RMddYMsfcz7axza7EWe89QRY0ZP2reEyJKf2rxvWK2WPHqyiOSgC6qqMUHphOorrPgdHGV9K56eUUa+j//D/o/J7v9Ld6ZJQ0m4y72svOkZJ7HSaGXs6hCfm99uildFW+xJ6sYl72/BYnzltlk5yoXzmXIS2swYsE6ySUFAEYtXCdNl1abEaTTY/zE74fwzJJDNsGTPM/jm22ZuPt7FpdksfK44C25kasV59pGSVOh6eXWamwCwmDgLQhEXYNYmJ1hz09afCiemdYbAOBnNODaoepMGgGCYPbEN058kOZP64VurcPBcZwkxI0ejNj0/W3DsEdj9dUO2vDuhBDEhDHf7GCdug70M2By79YwuiiY/3lgLGrq2LpnS6qQV1qD0AAjKnQsyRaet/9QWmRR9O32TDyzJBV7nr4AP+/OxpdbTuGe8V0AQDfqXezOthcwejCnBI/9dgBvXTMApdV1+HJLhs06fgaFhbkBBfOBnGK0Cg9C68ggbD3J3AVccck46aKricoHjueB8jwgnGVNsVqZr9v9E7viysEJqBauk70AFmVDJa+0WtXDoiQ1t1T6ANbUWTHhjQ3o1DIU6x5KRrFgZa+us2Le7wdVz8+yA2fwzbZM1NRZ8cqMftL8NWnM5zG9oALd4sJt7mHli91Vi7EomJUCWytwH/xpP3ZmFGHG4AQM66R2kwKAqz7chrIas24u59WH83D7N7uxcu4Y9GgdAauV1/XJH75gLXgeOPz8ZPA8sDvzPM6WVOGx3w7ivesGqlymtqefQ882EfhldzaeuLinzb5c4ZONzN1mb9Z5DGgXpbvO/L9S8fue07ikn/OBGH47bmuhUwrtWosV61PzpY+yFvE9sEFIv3Ysr0x6/4oWZ4C5d7UKD5LWzy6qwoTXTegQE4K+Qm/hCaHHpcbM8uZyHIftJ8/h8Yt74rmlqaioteDvA2eQ8tQkG0upNod8dZ3F7QFtCstr8PSfh5yuFxbk59SPX3Q9VDZG+85X3z/KxrCyAVtazcYrOH1efi60banbvt6FNWm2MQBaPjSp3bNE0X77N7tt1q0xW/HQz/vx254cm2XO0HPN+TUlBwtXOGqQyidVUcMC595dexwfKMr88YZ0nC2thsXCq9Ke6r3itOMUuBNEW6ZjAPljr7oeihQBpp1ahiFPp1dAj5LKOkQovl32sqysO5KPDooUtiLi9bhfSF5QY7ai77Or8NL0vurjaKztP+5UxzQ0VZeMJimYG3No7PicM+gKIATVyEo/DlNNhleP58ebdc+xooq9oE4eOwJTma21BAAKC4VBPNLTYeL1g2iccV4QAOb8dNTWGWHKBs4LQ3dbzXUe1X9fI2AynUarEA75lTz27EnB+ZNGdG9hQJAfpxq2stps+8K4ONEIk8nkUDDPHxGE+dtYPWSl7sbZCraf9SnMWhsfyuOYTs9c2pGjyAvSbxBs22xCTRALZvxqG6uf3/7ZhIU72HGeWcK6xzJ0cmdPeGU1Cqp4u0PQLkuvxeEzdXjl960Y0Ub/8Xtn7XE8G1UMAKgoL9O9Blaexx/H6zAmwQ+tQgwor+Uxd30lbusXiOGa/W7dmYLSdD/MWlmBAAPwyYWh+P0ge4GKlmyLzrU2W3nVx2/NuvUuu+mk/fQseh55BymDXkVZRHeU1/LIKqrEQ7/sR0zZCRw/z16IZ0qq8fPydWgVoraE/bhsvSSY1+/Yi6os/brKPC53/S/fwIaKTy+ogMlkwtFT6o+E8vwOZrMXdu6ZMzCZbHO+XvLeZoxoa8TRIvW9tz/tJExW9qxlllpwt/EvbLT2Q3l5B2n/56utKKnhUVvLjlFaye6h1CNHYapi7jtVivvdZDIhI5/dS2kH96EqiwmYc1VWrM0yY3pXf+kjmaUQP+LxvjrAzvOXNTswJsEfNXYsUOKHu9czqzCijRHbzljQryU71ta9qSgtlj9Sx46kYdUOK5afqsOAgDy93cFkMsFs5VFWyyOz1IoDBeqP3Ol81tjYtS8Vhaf0LZ0b01g3cfpp/WOsW68fiCSe+4cmWXz+75M1WJdt3zK1PzUNsWUncP4ce47v/3EPhHYbtu+VxeeSNVvQtYURBZXytU8vrEB6YQUMVeycispr8P3SdViXXYe1WfIxu3FnVA30t37baGNd37JTbWF95Ku16B1jRJARiA83wN/AMZexOiAiUP95++5wDdZkObfCpWSetxvMtf5QFpIjCmCuZvfnjgNHdNcDgE0pssDbnCL7rX60ZCOGt/HDWY0of/mHNYgJ4tAlyoA1afULvL3yw224tY/+AFOHDh/Fb0ecp8bTo1jhribeRw87sPaaTCZpSHgA2L73IL5euw/bzuhb4Y+etA1AFPn7n/VYlWHb8LvzY/2gc713/8ZjtoL/gZ/kTClXvrUSaefksvlVncfqDa4NYLJu8zZ0iNBvvLUM5lBQJb9bHI0dkZGRAQDYfSQTZTUWPPnrXmnZ7PdX2dlK5sDho2hb5bmrIw2N7W32ngZOAKFcDQb164NkF4agrBfCEJAto8KRnDzGZrHf5tVATS0G9e+LZDtZJ37J3QOcPYOuXXSGeXaR4L0bgbIyjBw2BL3aRgBgmQFgWotWUWFITh5Xr/0q+bp7KRasOIJrLxqM4AAjkpMBbHsf20paYkTyJdJ6//Qtw76sYjz62wE8NbUnbhPOybDyN9X+Xr+qPx7+ZT+uG9oesy7ri/nbWF1OmjCeBQpt2YCVwktpcNd4HNtp25go9o/FX0dsXzwAsKs8AiuPGrHsvtFIX8m6F1/a4Zq7gfhC0btveZ7HqqKDALKxLsuMK0f3A3boW8NOl1kAfyC33Irw1r1QLuRV/fSmJPRvF4nSqjosXbURWXWhWHLPKOzKKIJ53TZ8kVqHeddNku4vAOjcvTe7j1cuQ60VGDduHBbs3YSQgEpwwjfXz2hAcnIyzlfUYu5P+/DajH548s9DWH1YFjJDR45WWR+054aVclds10BmwR4cHwQMTmbXZR1z6+iTNAJ+Z8qAHcwP+VxIB1yd3Jl1Ya9kAX9PbJYtVq3bd0af/m0Fn3R1Uv8B/QcAu9m8hTvla5ScnIy3Dm0GIAfEjB4zFn5GA1JzS3D0eBqAc0iIb4vkZIX1Q1Fvh4o4gDcCkIVJTOu2iO6SgD5tI3HgdAlu3jMdj2ExTGFLpGve7ckVqLVY0TI8EKitQY3VgFUBD+Oc33UYmfwUACEoZ81qqazl61YCsKDvgIF4Z+0JjO0ai8Vp2TiRX4Xlp/R9H8Xj/Xl2L5Cbiz69eyJ5YALLsbt6te42IqVcKIBS1BpDAJShX6/u2LrhJAD2EUzo1A3HjuQDyMOQ4SOAtbY+0CNHj8XDv+y3m+KO9w8CUImvD9fiq9lDgG22I9EVCs+LX3A4lNdKJLBdX2ivOQCMGTuOCZSVcjexI7EMAPEdOiF5XGf8lb8POHtaEssAEBufCKQyq2Dbzr2Q3K8NDuaUABs3q/ZxtMwfgBkWHnhyi21Q8UMb1PMiW7cD0tSW07jE7sAuWeAsPVmHpSfZNb52SDssvLIf7v1hD/4+cAbDO0Vj8R0jbI7z25m9QJZ7qQU7xYYiXREjkFlqxfaq1jhVysoXFtsWOKF2Y7smqR1+2p2NiLh2wGG2XsuEjkAq8/U2RicgObkHrFvWAJAbqJ8caJhUfZ8f0hfFCYmdgCP2Bb6rfHYiWBhm2v7ItMnJyTiRXwZsZC4EX6U6FupdOiUC6cd1l927Tl9krs7Uv3eTk5OZpX2l81EKRVLymFiODQtEoJ8BUS2j0ad/e2DbNqfbdu3VHyO7xKregyJKsSwS5G9AWKCfTbDiOS4SQCFCI1sA+YWA0Q+oY+e43slzCgBt2iUiOVk/xa47NPTQ2E1SMDcqgSw7RSiqEOQDl4y3rtFPsyZaJfQC5UREh3qPXDKsYiozeR8twwPx+EU9XBqv3hV6tolQp7ArPQOsegJ9QzsAU66WZneLC0fXVmHo3CoUg9q3kOb/csdQ4Bs2ff2w9pgxOAEzBsv5nJVoXTs6xbLrGWA0qLpGHeWxXZKSiZN8PLZqkuC7w5J9pzG5d2upq7WwvAZJL65RrXPPD/bzTBskqzqP2V/tkgaKuf2b3YgK8cfnNycBYP50W08USkEhtWarjT9YWY1ZZeX6cWc2juaVoX+7KLw9qh/wJwv+qzVbcds3u5GSeR4LVxxRiWWA+YDaE8zagJefU3JxvR/wxO/7EXA6VfIVBWBTD8WVtTiWV4bfUvS7V+cvPYyFK49IbhxK7GWqKK6sxf6cEgT4GeSoe4sVfkYDbvp8pxQUo7zvtcFKgX4Gm8Chb7Zl4pttmXj/+kGIC9evC/E+E7u4a81WdA/KAY6/hgd/ugQPT+5uY3UU3Tau/WQ76iw8Nh4rcJiVBmAuBb/tyUGdYIkX3wfaQEU9xIBI0dpWVWtRWYwe//0gOguBuPb8j0uq6hw+R8ogHr2ofSUHcmzFMgC7o569s+YY3l2n3/Nmj8oa+5kclP6zoquVMkBPJOe866kuAeD99baDZmy2M/QxwNxknl96WHK92Z7ecCPe6bn/KQf10MueERXK7vGzJeo4ggCjASGBRukal1c7F0ENiRjvoYfymRe5dXRH3dRzm08UOrweAPNJ76rIWuUMV/zG3UF0gXn1yn548s+DLqdVLK6sRWJsKKpqLS7nNb75y53YOm+i3eWTesYhvbBcyghVXWdFoJ9tecQ63SRkM3J1VNSx3Vpi56lz5MPcbAhgH4lQVLudU7I+9GgdoTtfzEXpaPAUaZQ2D4LzokMDcLKgQuVDx3Ec7hzXud77dIqQKs3PbNva5jgOgztEq+b1aSO/rJ6a6tifskWIugsvTBgC+/KBbREbFogJPVphxkeOW9qBYOXbn1PscD1H3L94H2aNTMT8S5kP+nI3MjUAsm+x+F/p/lFcWScFoxk5TjVKIsCi75WUVtVJ0c0AsHAFi0Q/fb5SCiqsrq3DgKdWSOv8rpMFoKrWglqzFaaj+ThTUo2Zw9rDdLQASYktbPw0rUI8sQFWVd5PPX5NycHHG9MdNg71xDJgP4BHjBzvHheOg0LapcpaCzIKK1UimwMw8Pl/8My0XjZZVay8vv8hAJyvrEWs7VhCTjME/L73NNILK+wOWKL8GDr7yF33yXacq6jF8E7seREbzq5E44vriN3IxTrbiO4f9up+xAJbq7MSZYCkM8HsLu6KZQAoF/wi9QTND4ohfI/nl+PGz3dIH/v6EORvsFtvfzjIsGG18vhii1rYXfnhVnx2UxJ2ZRThnh/2YGKPuHrlKteLE3FGiD97fyqDQPNKqxEe5IeQQCOyiipRXWexaTC7Q6eWoR6n5FTtLzYUE3u2wvvrT+KBSd1w/yRmqdQTzK7w6G8HcMPw9vAzcAgP8lNlINJDL82bJ4gpDNtEBeGG4R104170MFt5hAQYUV5jxqwvbXt39Kiz8Bjy0hq7yx+/uAcig/1VRg9X3jeu3h/3T+yCO74pabJZMkgwa/ETRrPj6twOxGhIaiXBbP8SiTrZ4IGF+f3rB2F1Wh7aRds68HsNIc8x76rQVwRXhQTY1sfmx8YrLPLqayZWDc8Dj07p4dKgA/5CF/yrK486WRNoGxlkE90tcqqwAtV1Fjz0y34pk4OrcNJ//Y+uGGRz1MFQqiKvrDyiEmKlgjXo3WsHAqVMJLsyNPb1n25XneupwgpJDGvzeSsFszNEK649geGIbSf1RY1oCYwNkxtQs77ciUOn1VH1a9Lycb6yTuUDKOJI5JVVm3Hv9/shfoZmrazQ7cbUw93R/ewh1ptohRSz2oiZMdxBbyAR8Z5ZYaex5yyNoHJ5zvkqGDjbgDA9AowGXDagLZYdPGM/9WM9EIWHs3IrxXN9+XDmYMz+it0dgX4Gl/Nnp+uMmpaSeR4DX5BdbFamnkV0qL5vryPqM66A+P5U5i4+KwrmAD+YjhZg2MvOUxba47qh7TCqSyzu/WGv85Xt8NTUnqp0dG0igyQjkl5Q8aLrB7p9vO+2ZyE2LBCxYQFOBfMKD0ZQ1JKSeR73L94HgI1v8PTUXthwtED3PtEyolMMePBOLejDOkZjxynXejI6t2TGq/euG4g5P7I6/Gr2EGxLP4ePNzj3OR6S2AK7MthzOH1QPN68eoAqY0ygnxE3jlCPO9GUoLRyWowsa0MA9NOm+JpwB92ykkuGBxbmVhFBmDmsQ723rxeSYHaxfnnHH82EFiHo1FK/y0xMuSe+Ng0u3PEBcL11q5e9YRB3DO24PBw9W4YeT690WywDslDmwFxktLy0PM1mnj3sdeEN7xQDSCP9Of+gaxsGSsvxlhNq9xWL8GpxNcNJffl6m+NBGJTiSCuWAfdGk1TyysojqKp2zU/TWd2KHx5PcTb6nqN29RkHKQGXuDkM9/XD2tvM+3PfabSLDsH6h5OR1KGFzlYyy+4bjdeu6o/3rhvo1nGdsS+7GO+vP+FQEPdo7fxDHeBCl3uXVvL7SNmIf2BSN6fbukJRRS1GdIrBlnkTpHn3TezqsAfOkWC215vaPiYEPVqHq1yT8ktrEB7kj0ChR8iRhXGcMBKsPZK7t7Lr5qWkT7x+T+ynNyXhIo3rYGSwvyTsEmNtDUEjO8fiuqG29ygAzJ1k32+2sLxG911sj4k9WmHR9Z7dw2JKw9iwAHRuGQqDgZNijZTER6m7u24f0xHf3zYMIQF+ql6yTY+Ox6q5Y1Xrhgf549SCi90ql7IMyd1b4fGLerqUVUx5r0QGs+uudCkN8jdg7qRumOpC1pzGgASzFiO7iP4wO+wi9hWuuWT4piwNhjTcs4v1W8/hoUMDjFIdiZYGPxcUsz9n/3jPCnmeRVpHsh6Jcd1aYu6krpjUsxV+D5yPTYEPqHKXuotBMWT1mgfG4Ze7bAN/BjsRHk6PYeAklwxXLMzuwAs17+5+tf741yS186gcVwyM92h7R7jaGPBzst5SFwVpB+4sOnD2rVdHz5bppjoUcedjr+SEMKDIWCfiR6RvfKTNx7O4sg5nS6rRMTZUembsIboOxIa5Vt673HAfe22V416jRyZ3x9vXDHC4jiuDLCktwEpfdH+/hntZBwcYVULpwQu6qe53bUYbjuPw8IXdsHLuGNUIrAA772n920q/75vYFZ/elIRL+7e1Edqni6tw+EypS7nUn5raExf1aY1LFftWcmGvOLupVZWM6cruvcm91QHwLUL8bRowYUF+uGxAW/x0x3BcPsD2+TcaOLSoysQn/m8gEOpepPioYNydLN9PGQunStPPXNILr1/VH7eN7mgTQ7P4juHY9Oh41bxLB9jWnSOmOogZevqSXpLxp3uculE3f1ovbH5svJTKDQCuHJwAg4FDN826gf4Gm3RwBo7dGyM7xyAuQn7mkru3xK93jcC8i3rYlKe90COtTBcZFeK41+Ozm5LwuCJFpfhcKAd2q8/gV76k8RVhU8NPtDDXIbARXTJEHIl28QFqiCF3fYowkh7PuSqY3euWXf3AWPRoHY4vZg2RB3WRRh5Srxuh4/ISYrTgznH6WUe0LfkY4cPob+Qwd1I39G4bqbeZxOI7huOhC5xbmUSheUHPVogM8Ud3HctXfbpYP5g5SD2DFy3ZDfOieuMqFsRqceKSEeRvwHe3DrOZH6Ppar55ZKI0/fUtQ3H5AP0Pr5JebWTrR4eYEHx842Dp98jOtjmOlXTS6TEY2D4KgK2Vyw+O70vxXjM6Wc9VNgQ+iA2BD9oVbO+tO4GhOiP6iXWqdVdyVZCKtBIE94N27t9bRnXEZzcl4doh7ZCUGG2z/HXh3mireYYMHHDkhSnSb3FAIFfdxMRrOqJTDB6Z3F3KlXyP8U/cGcJSqrkaj8JxwOUD4/HznbYNVIAJwC9mDZF+L9DklxVRHq9nmwjMGpmIeRf1UIm7Q89Nttlu1shEjO3WEt/eqj+QkxK9gYJiFNf0wPwLsf7hZOn3dUPa494JXdGjdQTatVDXbWigH24eIfc0tgwLwAW94sBx+m+G28Z0tBm4qY3QEFI+J13jwvHhDYPxyOTu6Bgbio6a54vjOMntMC4iEMndbRtl0aEBGJLIjANaF52okABpPAIRs4UHx3EY1ilGd1AvfyOHy3LfwoXGFEyLVPs1t4sOwZiusTpnDFyVlIC4iCA8JQhnJf0Tomzu1/E9WiHYX/6+bHt8gkMLtiMX0FbhciNT+/yEBvqB4zh14L5wH2gbKsH+RptnQby+P9w+HDuemISf7hgOABjaMRpJidG4a1xndG4ZikHCexBgcQD7n70QXyuC+ZViW48x3WIxvnsrqYErNiq/nDUEN43ogAA/g8192dQgwazFyC4ic8lovOoRh792NIpfc9PJEsLAIC4LZicuGVq6xoVj5dyxGNYpBv0S2MdzkpCaT1mf1w5ph1/vHmmzvcFSi06xodj/zIU2olTrQx0WyK6TaLl2lrFkeKcYzJnYVWW50OPmEe2E/bL9hQf6Yeaw9vj6lqG4dXRHVs563AA2HwNBMCutpVdprCcr546RxNKNwzvApPgIaxG70mTBLH9uo0Lk3pJp/dpitM6HSeubKb6EO8SEYFy3lpJlQ4n2A/D5rCRpWvsRmtKntd2yA8DPGkv+l7OHSIMKXNRHbQHSszArL/+rXdNwJPBmBMO568aknvqpI0VRe4EiteTC6f0QExog3QfOEOuU59XX/4//2d77SrSNdfGdZDRwmNCjlc36oYFGTBJElvJai4gWzP8ld8bUvm0wS2gMdYwNVV0n8RlrobMPLVcNTpBG1AsJMOKe8V2k7D6P+P+Mx62f4pHJ3fH+9eqG4tvXDMAto2zrT3Rf0osd2fP0BbhtTCeVYBnfXa6H64e1x0c3DMJvd4+An0IYP39Zb8y/tDfuGtdZCjiMCvFHWKAfTA8nq+7pJ6f2xDe3DJUsqo4QhynX8sJlvfHhzEEICfBDjMKHX/m8GQyc6vsR6GdAUmI0xguCNS5CFmhKo1/Gwqk4teBiPH5RT9U9CQDf3TYMt43uiD//NwpfzErCX/eOkpaJ7jhto2x7F0RLY52Fx/vXD1KJfAC4Zkg76Z6oqrWoRGCLEH+b59/eKJUifgYDrEIPWESQUTjfQAT7G9EnPtJu48pR1hrts/LznSMQEeQvGVieuaQX2kQG486xndE6Qr+HRdxHj9bheOYSdU9mK4UYbRGqfi6mD2Lva2Uwqxj83kojYoP8jU5HBh7WKQb/PDBW9XysfSgZv/9vlGq9yGB/ya0CAAa0U/d4ai3TYmPx+qHtcc/4zpIraHRoAJ6/rA+OvXiRS70NjQkJZi2CYPbnzI0a9Ldy7lgsuWeUw3W07gbNBi9bmJV0iwvHkRem6KbIW3hlP5suKwDwhwXJ3Zll99D8yZKFEQD8NKMfRgTL1hGg/in+kru3xDvXDkCvNhG4fEBb2dIqnDvHcXjpir4Y162l4HvMxJkji+lzl/ZG9xYGlV+mzUufl10/RF5TWE96t41Aj9YRkvvHvIt6IDrMftdbkL8RD13QTXLJUIrKixRi1V7EfqC/ES9f0RftotmHJiYsEE9N7Ylvb2HW6B5tbP331j40TvWBUb50QwL8pICrqf3aOLRgfHzjYMSGBeJXhWju0jIMA4UUhz3byPXYMjwQnaJtLSptImUxdVHuIgRxdVgw2bk/nj3x2yEmBL/cNULVXT60YzRSnr5ANc8RkmAGj69nJWHGgFaYPigeCS1s03woeyCGdVTfW+LHP+d8Fb6YNQRXJ6kbVsr3pfJDCgA3DJd9RqNCAvD+zEF4eHJ3AMD9gl/vpJ6thP2w9wLHcbhvQhe75/XLXSPw8vS+ksVdbKzxGpvoPeO7YFKvOKmnIbl7S1w+MB7PTOuFH28fjpVzx+DhC1kZRLcVUTArY0j0Au0igv3wwKRuWHrvaLx8RV9M6dPGJsuPUmCL7w/RCp4YG4qVc+U8/ErRI57XTQrLr7JXRmwwX9ArTvVs3TgiUfLrdeRvvfZBOce++N4SraTKmBDxjSbeG6LgumNsJ/zxv5FYcf8YPH5RD3RuGYanLukFP6MBE3rEoV9ClM0x9QJ7RUt1ncWK0EA/lRV615OTMHdSV8lwUVlrwdvXDMB0wfUkMljtkhEV4o/bx+r3DgaiFvP8foC/pRJWXuydZcsu7NUaaS9MQVign2rES0BOPenYeKVeJlrb28eE4MgLU3CL8HwHBxjxxz36DdXBHVpg9qhEfHJjkrS+iNKdSvls3Tmuk3TtxHsnyN8gJQKI1rhJ6GWI0ZMP3eLC3dY//xvfGS9f0VeKPdD6r4t11D4mBI9M7mHTM9AcaNpyvjEQXDICUeeTtHL2iIsIUrXy9TBoAtqaDRbRb8xVC7NngWOuPPjKwKxArk6y7BkMnPSS+eiGwRjcoQWmD4yX0q5d2Ls1/AwcZgxmFuH6CuZ+8ZG4bEA8LhN97tYJkcM6/ttiA8lo4PDtrcNg5Xl0fZJlu0h7fgp6PsOS3NdZrHh8WDDGjRuDzzefwnC9LkpJMAO7n5qESiH11ryLemDhiiPSaHuvX9UfD1zQDaGBfrq5j0d0isHFgmCZM7Erft8TClTILhlxEYG4sFdraQhUe7UUGxqA64e1x5WD46Ucr7cpBuW5oFccPu60FYPbhyPJxLrDW4UHYfaoRDz/Nxv1L1TRCxDsb5R8LQONBnRrHY5YlCCKK8MJXi34JvdmokPpThAe5IcnLu6pcg0BgG3zJoArzgTeU5d/Ys9W6N02Ao/9dhBGowEwA1N6xgAb7JywgPIj6G/kJEvnI5O7Y0hitG5aQleCzwDZ2tSjdQQMv9+G14/8Dsxnqa9MDycj+XWTtK7ynfP0JT2x4U02uM+mR8dL3eFi16w2WEvZRR+lEcw3jUhUF6o4C2FR7VU9LYuuH4RzFbXg8g8DS+4Fbv4LD17YHRuOFWC/kKe5T3yEFLw5RLhOXVqF49Bzk53mrRaFj1IgjBAanF1bhWNUl1ipcSTeQ+FBfrpDEUeF+KO4sg5BfkYpbZkeIzTDnIvvEmXvkL3g8tdm9Mfba44hJpS9i24f01FlJRYbgp/elKS7PWDrx6xE+a4Se8ieuLgnEqx5qqDF16/qj/fWHbfpBeE4TtGY1A/K06JsdIh+7lEh/rh+WHtcrROvIApFpcXUYODw+lX9Mf+y3ipLPgDse+ZCu8e+wbgGd/n9DWx5W/pmihbmVuFKC65aZG54ZDwKy217iVpHBNnEqcRFBCKvtEb1HGm/P20ig7H03tGYtmgzLugVJ+W79zMa8Oy03jbH+fjGwapnTWyAXZ2UgMcvkn2C/QW9ouwFNRg4/HTHcJitPBs8SofOrZz75LtCbFigFPB7UZ/W8DMacOPwDrr5vZsrJJi1CEF/QZzZ5mFsaojxa83XwuxiC9YDC7OrKF0HWgSqPybihzY00Ah/owFvXjNAEsyBfgbcqBAD7mQsEQdTGdUlBhf00rgKiI0EHXeUwR1awGjgcPsYZl0wKuSnsmtwdNdYnD2SBY7jVKJT7ziBRiA8LBAQvpMTe7TCwhVHpCCM0EA/yRqvtVLcMbYTnlAEcwCQbk4jrDj8/GQYOA5B/kY8cXEPvLz8iCTcf7htmCqP9Csz+rHy+BkRGGZ7f/gbDZicuwjIBYAfAMDGUmE0cHjjqv74dFM6WoT6o6vw8R/TLRZtI4NgCnwAYVw1Eqt/wD8PjEWn2FC7GSZCA/3gbzSgY2yoNBAJwD5u2mvz3nUDkdy9JcIC/dA+OhSBf/izwc/qbLuIpw+Kx+975Hy8IQFGrHtoHNpEBmPgC/9IglnuTbC9r0RLaueWoTipyWP79jUDMPenfQBYL8HM4e1ZgM7C31XrKbO8TOjRSuUGIYqohBbBkuVx79MXSO4WIRqBqnTDiBAE8/juLfHJTUnqe+b4GuD7K4GrvwF6XSbNDvIXgth+eB7I3QOc2gT0uFhyCbitbwDmzhiBKW9vxNCOaiuuUixHBev3gIgB1Hq+lkaDLP7Ec3lgUjdM7dca58prbQIVl9wzCjtPFTlM6Zn63GSbZ0Vs5CjfL/b2MbhDC3x76zC8vYaNQKj1OXfFJcdRA14ZpCWuF+RvRLcW6ueuS6swvHNtw2QsefXKfljdMw8hgUb0i48CwIT3y1eofcE/umGwqmHeLjoE718/SEpfaTBwLmXXUCLFHJhrJJeMkZ2iETuwryqIT2uVbRsVbOM3DAB/3jMKwzW5yFfcPxZHzpQ6tZ72TYjErX0CcP+M/nhlxRF8vyMLxZX6aSyVjReACe6/7h1l0zvqL15D8dilrJE9rBMzZIzqIje2Zo9KxJq0PDx/WR+M6qzvs+0JonZ64fI+JJj/1Qhp5YKN3k2H1TDYWkyaBe66ZLjpw1wfVII5SP2REYWD3mhFNmJN8336695RuHTRFt1jLp0zGqsPn8W9E3QsVKJg1mksxIYF4uTLtmmA/AwcOI5TWe3O6gyIFeBnkC1PwnECNJdCFAjK7mA9Trx0kW7DkjOwV4uB41UWD6MmS0lnzcfAnUC0YFQjDPr+ilcOTsCVwkewf7so7HxyohQ4E8bJ24gfHXsvQknw1FUjMls9IIzW+q90kRjROQYQ7+9atWVn++MTERcRiLvGdcaMt5ajC5eL4ICJklVK73nWEz6i5XFSrzicFHKgXje0PbrFhakE5F3JnW27YnneJgjii1lDkF0kD5Ajil5lppIWOhZCEaWVXDwXs5W3PfaZfex/7l6VYJYQG9LCvSk2DBLC2DC8mx+bYLuNgmuGtMPHG08CmlS1SR1a4NUr+7mUsorjOMly3MXWXRsdYkLRIcaxZU7PH1OsC3f6oW4Z3RElVXWSlT4s0A/lNWangzgBjt0IIoP98diUHnhl5REbUeYtWoQG4OohzjPf6MUaeJpqjFdMiS4ZfpxtGkRXB3jRy/YSHRrAhpZ2gTEJ/ogI8kdy91b4fkcWuthJjap1bwKg6+4i3ltSsoI3BR/i+bYDqTw7rbeuNZtwDAlmLYIPc4ixaY40o0TSPI1bDPfxoQ+zqyizOUQHqK+9KC71XBG03eJ+nCaKW2Ht0vpAdm8drpv9AoCsmlx0R1n70DjbQKUNryLZ9BIw5hxglJftV3ZbSpZs9XHCg/wdBiZ2bRUmdbvpIX6op4ceUM0X/YAHdWgBpP2NoDg5yvpmJ+Jcy58hL6G79SSAmQDU3fValFHm9WL1MwjY+TEGcs9hLy80cBSC+clhOvsX7+86WYT2T4iUPrTd4sLxTcBCDDCko9T/fw4Pr1fNrSODsOnR8WgbFSwNGiBmbRAHmggTLOQ2WM1Sb9o71w6Q8tYqhXl0aAAOzr/QrqvD1H5t8N66EzAaOJRU1akEouiH6ii/s13ZKGW2Yc+SOG6Rq503RgOHG4d3ADQJQziOc0mseRM/F/xhtUQE+avEzdbHJ0iZIDzlrnGdcO2QdjZuCE2StKVA4mgg2Dad5p3jOmFgO9v5uvC8ZGFuCp3IF/SKw84nJqKVjgtmOy4P4YF2BPzWRazxeeVnAGSXDH+t1aYxsJiBXZ8CSbc0dkkalCYpmDmOmwZgWnx8PEwmk8+PPxYc/K01Xj32dwOOoGfubzCtD5Y/rG5yJpd1ER89egym6voN+9kYxJ3dj54ALBbepToOKzsB0UuvIa+Jcl/KoLfA6iLVsgtaWnGmwADrmTSYCtQm262bN6q6yzMz1NbEXTu3o0+sER0jDZiS6Ody+TtlZaI9gOLz57DPjXM+rJges/E1GAFsNK2F1ahvuU3IPoEuAKxWCza6cZwnBwHAGZhM+oOy1FaxemhXc8LmnF8bG4zYs9uAbbegLqo/gMcAAOMjC12qn2ThPxPL8nWc25uHpVeI032I2z8zIsjpuuLyvid2IwbAY/6LsST0aphMoQgrOyndl238q2z2NbymFkEADu/fBTEk8YE+ZtV6yQYmdHdvXg+DP/tgWhUjW4rrphaYMUEzT+Sk8L99uEFaViP0hpTXaI4n/N+0fg0sfqybORJAYTFwcNtOZATLwsyVa7FofCDmb61CSRWQdnAfqrOMquOPaVlrs5/2menoBCAzKwundI7R69x5tAKQeuggCvIjUVbOBpepqrStY3ucypC7txvjG2KPg2fNmGzYiZZ5kTCZbH1KXSlr6zOrURQ9GLWBzC3FYKlFeNlxlEQ5thi6Wg/l5eXO1+V59Ex7C2faXIDiFvqp9RqSwOoCjNh+G4paDMCB/s/ZLB8RDKAwDyaTTpeaQGSgAbAC2dnZCBZy7ZeeOaV7rjf0DEBMMOdyndXnHtPW82HN8se7nsad2Y/gxOJDyGl3qc32yaYn2bFjbgAAnD3PGpgFxRUwmUzSs65XtsDqQgTWFKI00jbHsjPic5aiPKwjSqL62F2nTe4qdD/2AU4dOQhgqt1yeBuX7mU3aJKCmef5pQCWJiUl3Z6cnOzz49eY/BHmz8Grx15wE1BTguThA3VbzK6wruQQkJ2Jrl27IlkTlNSk2ZMNHAEMfv6u1XFOOJDCJhvkmghDGEv7WrlM5ZKREBWAYZrjXKs1tgr7mDBenay+YMthIINN3zyiA66Y3BtXXlSPFn/NaiAbiAoPq/85b2LHHTtqOBBkJz/0lv3ASeaS0pD3+z8Hf4GYTU13v+czgG1ADC8Pyery8U3qn8ljRjML+voFwJm9wMyfXdr+lssm2l1lY99KlFbXyUn1cxYBRcBwQxqGVz0HJJcAp+X7MixM5zrtCwZqgF6dOwDCwIw26whlmTB6mPQeMKxZAVitmDmsPZKTmRjxO14IpNrZh1De6LAAhJmeBUJigOQHMS1/L6b2bY1kZTo84XhjRg4DQhR+wAVHgfdfQrce0wHMsHscPS6uPoIPTCcxdcIoZsk31wKV55Ax0U4X+oadwCmgQ4dEdNA7RuE3QAHQu0d3oF8yRhcdwI87s9EyMoSVqaYcMPgBQgMDObuBE2uA5HnSLk5vPSE9h43xDbFH5cEzePjIlUAl2D0kon0n2aM0F3jzMiBhKHCbMFz20vuBfV8B96YAsTpZRVzdt4DJZHK+bm0lsGED4gq3AM+cs79eTRnrIQyOcunYdik8AWwHormyel/Pkcb9wFqgXbt24MMswBFg1ICeQB/b/bl8BG3dVp0HzqUDCYPtbyPgrJ6TWxYD2UCXgHx00VvPBNWx+5TX4OUda1BaJ8zTLFfxQivAUqPrruGU+YIblaNttx4EjgEdW0fhm5FDUWO2IlmThlAFzwNrnwf6XQO0cl/E28Ole9kNmkCHRNPDDD8EG7zskiFF7NXfV1qUYc036K/xfJiHKjIhXNy3tcolI8LgIG/usVXA55PtDnfsrxik4rnL+jgMCnKI5JLRAOducXAvS64YDXsPdWjBLNpWYxBQVwWYtXUqdE03xL1bK+Sj3bAQOL7K9e0cuPq0jwlRjUCl6w/gzFVIvL8rC52XxWwb8DN7VKI07WyAyvYxIcx1YtsiYC2zwL133UBM6WNHtGqvh+A2Yiw6rr9+fhqQ+qfuoocu7I7tj8s+4vjrXuY/qXNOLiHWm3Bvzr+0N/6eMxoxwcL8BfHA+/LgIfhsImBaoHqXBnH2h2tuTIJL011bsaYcKDimPx8AquSGJgqE0Qsr8j0rnDtYhPvH2Sisb/QAXnHP1Uof4T3hgRuK5D7HK9xZ6jmKrF2+uxL4bIJH33UJ8d3s4ncyJjQAQztGY5ErQ8qL16+6BJgfCez6vJ6FtINUZh5ju7W0ydltQ+U5YPObwLdXNGw5GhgSzDrUwh9BDoZHbhCkwJb6CyLxoW9uetltn+QGfqkdfXEKfrhdzmf6/vWD8PbV/aTfIXyl3maMX28Bsrcj1E6wmR8aqqzCRW0I/22LA+Fix4e5XvA8UMsirbq3ZN39Bt4CvNQaeFczwqAweE2DHLe2wvk6ZXnsw7DnW3mejYh3hJ5gVlxrvYdQ/Gise9H57s2295MyQNIm+4qlDlj1JFDhwLrnCO09IbyPOHvvow+GA7/crLvIaODUAVCisLbYqV9eIX54njWolAgBo+K7MdDPqG68AEBxFvNprVA0Rmpki1cgX0+x3tCsexFI+Vr6OX61bbAuwEaB2/3UJHnGzzexRoH2+TcLdeWnqG8h7kbvHgKYj/rvTgapcYjVAnw4Ckj7W1EOF5+dWlu3k3ohvSc88c8Vt+XlZ9PRu9FFVD7+p4UupzoH3xCXEd8prp0zx3H4+c4RUg5ulyjNZf93fOxe0QBm9T93Un+ZptFrl8xtwIZX5XeCucrx+o0MCWYdLDAgwOBlFWoQBLMHgkgz6nPzwV2R1MBBf4F+RlWwGsdxMHByLQbwjkeKAoAkw1FkBF0PlJ1VzffnGqisDtLKuY3VgbWtIVtbn00C3hkgHNOiPnZpjnpd8UMlnOfk3k4sEI6o0XyU66qYy4eSYiG1UcqXtmVQkrUDWDzT1jqqFaz7FwNfXiT9TN5wue2+3IlNMNcwEbznW0SjBKMNB1mwqaUO2PEJ/HjNNTy2klmTVz3u+jGUaM9duE6cshFgrmUWnyPL1POytgPpJvY79Q8ge6d6X+I961RUccCeb1iDqjhLMduoX0YtP90A/HitXM/VsmDuf/hVJ8f2kHIXrbkbXwOW3ud0tTaRweoMMWL91miCWMV73U+xrjidu49dq6rzzBVC4LIB8RikSJnnNjVlQN4h4Pc75HluNTZdIHevqswS504Cx/6R7wV7FuYt7wBvO/GlVm0rTLsjmGsrgLMHVbP2P3Mhtj+h49rlSiPeGaf3sP+uWtVrK9jzVK93uovbKHsrFw0G3htkZ0V1Fia7fDkFWP+SfB0awjLvRUgw62CGseGEjz3El7wH1lNOSivXzCSzu24Avkgrp6jDQIvzl91dfoK15dQm1XwjGlgwe/QCEc7J4qJg9vQ+Or2bdQvzvPNrphDMx1+6CB/OVPj8HfwVKDqlth464oNh7IMr8uN1wDv91Q0tyQqn+NDrfSzXPgcc+Rs4tVGzQPPR2vKO7baVRUyo/3AtE29uCeZqJoD/uhfb/O7EdwELYOTrgK3vASseQctjP8jrKgWqKKB2fc6EvpKNrwGfJNs5Xo3+b+UHrjwPOLkOWHy9PK+qCPhiMvDNZewa/TIL+PwCxfJi+Z1mx+Kp6l5P+4tN56fJi0XLuiuirOiUbG2tKpZmt8v5W399Z1QUMp9oR5zaBLzeVW1xdYZCzNulqhjY+Sl7fkQRvP1D9TqiqNSzMK99jl2rVxLlhivA8oCXaBqsSo6ulHL26iJeh7oKWTApr02h4MZTlgf887RjFzA9aivZfboggZVFxGJmguyHq5wL29XPyI2udBPrTSqR85wj9U/5meWVFmY3XHd+vwP4aDR7zgUij/yIsHRFmcXeEVct6+Za1lMivnvL8uR3/rZF7H9VsWvfAdNC4K85wNEVrh0bkHt3lM99fpp9y7G9XiMtnOz+4hJiw7Ahehy9CAlmHZhg9rIIFa0ojqx/znYhNuKamV52WwD7OK1ccGWugzVZpfuLrhea1j/n6gvYamXuAfb8PF21MJ87aWvh02KpA/Z+J3/Y9I6jnXaV6hLggCbIzlLnvCEo1RPL0yv5evM88NutwLsDgNc6A4d+Y1az3V+wD/+Se/T3t/kteTp9Pfuv7BaVrJ4KEaf9CJ/PBDKFnNmFx5jFruS0vtgw6qTherUjsPYF4NgKZu2yJ5hz9wIfj1UJPJhr2MdSgb+5QurB8KtVWBq/uxIw+KvPYdmDTOgrWfciOxbPAxmb1ZZ47YdPEEAcb0E4KpmPvtZVAmC+hiKLFH7E8yOZ2FP6q4qi6uxBdm48D+z7QVGfnCz88tPYPnL3ye9G8fi1lcD8SLQ+s9q2PBwni0uFKK1uO9x2XUsdsOxh9fVc+QSw4xP59w/XMJ9oR2I9V7D8/XGX/vIdH7OGk9LKuOIx51bpFY8Cyx8GsrbJ99eGV9TriMIic4ssEJXWZhGl3/wvs4C3essfiqJTrK7P7GfvoR+vAT4ZZ7sPEWU3+TFBHCqfo0VCrpgVjwBb35Wt43qsX8CeESXK++zHa+TpbYphNKXBf5xYW821sjA+q0hp+cvNrAEIgLlkCPspVz9zAICT6217qAB2XQD2nIv8NQf4SdFQFe/dT8arxbi9j/T6l1hPydEV7F3zRjfmy6skfT2wi6WOkxoByjq2anp0zruRMUtsgCnL98Fw1lBRNjhEHD0XX14M/HY7m+ZctDCLVBS4t34jQYJZBzOM8Dc00IXL2qF/44lWFHdb48pdSC4ZzUwxCw+FywFfvniIhGOkWdsjuCKH+VY5IAD6wthidlEwp/7OgqOUQs9qYVbB6hKFhdnJ/fHeILWFT4/vZzChuSjJRpSp6tbRsXJSgKJ0tr3FzFwSvp3OXva/38782USqzju3cohCr7qUCYk/72EfBa1Iy0lhVrO/HwCytzPhL+IfopjWGUSitoJdx/mRcqPCkYU5L1WeXvU4ExFv9WJiQ/uMKT/GSs4JjZLqEsBPR1QfXcmsaWf2y8IeEIS6+hh+5gpJ2KpGxTTXKO4PO/fbTzfI04XHgK+mqj/02oadWC/mGmwJnINP/N/S98P8UOELqz326mf19/nRaCYEMrcAf94N7FX4kYuC+fAS9n/f97K7mijKBIHbPks9SiEA1igR91FdLM2WRjtTWmKzd7DcsO8lAccF8b39fSb0RMtekWBZEwPp9BDfW7Vltl3v5flM+L7TH3hZHsgGlUXAu06CscQelZoyKUc2ACBzqzytdNHY8y2QvYs1KvUw17KyHhOexeeiWO+N+Gzu/V6u4/I81qgqPYOAmvPq/ShHqhQtqFrhdGa/3Pi327MAFpi76XX1vCNL9ddVNmzyD8vlfLM3sNKOK1JdpSy+7KG0MG96Q31+hceBby9n7yMt4rkD7F2t/H4d+EVYR7h3a0rkcrzTX+79EZ87q4U9w6K4XXwdsP0DNn1kma0hJXcPexe+1Ys1Or9RDPgjvsfChBF2tI0AZTkLj6s1h9TIFOJPlD0Nb/WSt9/7HXtG9Hr9xG9K5hbg4M/sXEURz1vYtuVOrokkmL1vHPMEEsw6mHmDKtuBR3xxIfCeToqZBrAwzxrVEb3aROCKgQnOV25KuB3018AP0eKZzOIjcuh39N7JUlL9ahnLsnccW6m/rdBy7tlKfyAM3mGAHc8CtQqPyy8IpcUuYzOzCi6dK7/kPDl3cR8l2fI8ZXYBQP1ytXes/T+xyO93BzLhs+oJ4I87gZNrZdeFcoUv9593A2U6XbyiT17a30y8AEwQvt4V2PcdsOwhWXCKhMbYL5+/YrjaADuCWRQLR5ez/8q6cOanrETbpW6vEXf2kDztp3OP/KHwAz2naGSsedbGChWxZDaQ8hUAwChmAgFYnS2+Tpiu0/eXTFOIEPE4ynvTxiWDiQauLBcRXBUuMKZIx3aZOk05Co+yRpbISc1IiQVpsnVUfA9a6uTrLHZrVzEBZ/YLtTUwcAbZGqu02IsWVlGglOayRgPALKbfz1Dv541uzB86WMie8/EYuRyZ2+TgKEB97UVjCM8zVw17YvH4Kvvd9CufYIGB4nnUVjCrusiXF8kZM6oVgnnjq8DnikBBLS+2BBaqR7HD8kdkyzTHqRuo614E3uyBkdtmsXNJ/YM9q0rfYvH8tD0UH4+V3yXiMuX9rH12xd91VSwtnhKxcatsJC5/mP2vLmbxEKK41FJXJZ9TlUL4+yneFVpRtvdboFh4Lxz4SX0OSpSCueAo8L4cOC5ZtVUNW6GuzmcAR5exd/8LseyZeD4ayRuukBuKgOyCYfRXNf4AAGFxsrje/aV6mfhci++b8nx13VedZ4K1OJsZTdYoGrY/38j+8zzrzdD2NGx5hzW0ltzDnhHt90O5D5Ejf8v1l7uXbbviUXn52UNsv8oyikLcXA282QtNFRLMOjS4D7Ne5KfYEnXHh0pDfFQwlt8/Bi3DXR9OuEnQ2D7MR/4Gdnwk//51NmLyNgMAyhAMc1CMOm2TDn5W0QdXfQ5WpYVZvLZHVzLfvpJs9lL8/ip52aFfFTsVXniZWx27ZJw9aNvF56qvc3UJsOE1eXtlENzLbfS7jZUiT1tmEVGMAExI6/H3A+z/TzOl1Gc2fDxW/TtAMRLid9PVywwKK1xACGyoLZfX0ROV313JBMj5DGaxOZ+pXyZA3bBxhPJ6iY0CJUqRfkIjIDXX2pgvBxi1PmQnit1Sq+9PrUTpgyySvp75uYoBYnoZMFK+tJ3nDr/MAj5VDGOdsVm9/PASZlEGZIFYUyYfV2ykCI3LwJpzcre4hMKtQ9moET/AvAV4qy8Tis44vkq2MANMgK95jgUmrZynWFHx7IkNsHUvAF9f4l62gYpC1gDY/j4LDBStyr/Otm18fDUV+PN/9p8be2iDBquKgB0Kv2jlt0lZt19fwq7fTzOZVVi5/Yp5wB932x5LdFUpOsVcW95SDGyRd4gJcBHRevy5YtRRkc8vYO8zZzEAer7mdZWQ3DaqzrP83Dm71XmgS04DB3+Rfy9/GHi7D7OS7/6CzROPfewftp8z+4FSRU/xybWsQSid30FWZoNCMNdWqBskoiDOtz+4CgAmzLUNdHON/XeQ5FcuHKs8X60rXu0IvN5FbkQqRboEz9z7tNbp1c84LivAMoOc0fS4ie+5M/vZ/9Tf2f7nRwIfjWL7zVMYF5SW69LTHukib9IkBy5pbOp4A4I5L7sBSBbmpj8Ed4PTyFky5HLwNlZFHhyswdGqwA5dxAe6tpyJrqAIYb5CEFUVA2EtZb+8oYJ/V02ZbFGrPMderAGhcqu8tlyuo+Is9qKJ6cx+H13J9nfFx0D/a+Vj1ZbLZag6z7pe7fVerH8RiB8EdNGJ7j69B2jTD4hoy85R71q5Kh61GPzU3Z82cLBpRCmtRFqUVm090fjTjUC/q9l0rY57QWkOsFAxVLJNoJ+CQp2cuABzBdGKG0eoBMpW9TJ3gnVEcnaxP3cRXYHSlgJ2RoFsEJTXT68BISIKVWUPw+k9TGQJ3bmBtUVMyCkpywVEA6holbNa2HE5A7t/S7LYnxZnYqA8T/YnPbmePae/3qLuffpuOjDtXda1D7h3LV7rDAxT+EGLAZAiHUYJIuYsC6YVGxcNBsfErTNOrJGnxUavI9a9YDtP2xBe9hATnfa+BdXFavGpx2cTgSfPApsUPr91lXLDs6qYNYq1HLPznCnLmL0D+OcpFnTbZZK6DgD9Z/XoMiCqHXC2mP0uOgUEhuuv5whzte29UFvGxgAAbOtF/OaIVvLzGfoWePEdqOxlE+F5/V5BV7CaWY+MkvU6qTS1GTW+v0qe1rrRlGQD0Z3qVx4vQhZmDTzPow5G+NkZmKLBaAALc7PBYpbzUwKNb2EWqS236Za38gb415UxK7TYdfnH3cAXU4Q1BIEtdmn/PZeJLsFiG1ipeOlUF6vTzolisbJQ3aIWxblYFqtZbUF+b5BsFRCFmya9EfJSmXXr8F8sZ6rYhWmPI8vYulp+nQ282ZOV5eNxwIutHO/HHaqKbLvCVejcD6aX63+84kzmEw6w7n9nuNuQm3sQeNTFgSi0xOkMKytYsB4NW1C/ferhbBTRv+bY9iB4SmR75+vYQ7RIAcwC9css5mPsCtk7WbaQ0ykAeCBUce9yOuLLmWX+wxHydE0p80nWc9Var7hH9YLFHKHs6dISGA7EdnVvf24d+0O5ATJRp/Ew+kGgxyW28xuCE6sdP28rHpUtso5YOpe5poicOyFbZx01tgHnDcWtQtChnj+7GBys5Pg/7Hsu3nc/38jcMLQo4zD0KMtjo94pObFWdmnSGnNqyoDPJwN7hHzfRSfVbhfK8tmjOFPtduQLlAJd25ultVg3EUgwa6gxW2GGEX4N5cNsDymtnB3BnL3L+eg7PK/2mWyqbHiFdc2Kqb8Ei7HLQX8NYWFO3wAs7KD2AXytizoQCsAb1wyEoUx4cWx5l3Wz7f/BtitY6wOavRP4YAQmpD4hz1uUBLzRXf6dobBgKi0Ab/dhL0HRwmypUwsHgFmwsrbLmRC2LWJWGpEvp7CPzM83qrsO7XH2oOx7NnKOPF8M9HqxJZCfartdfYlIYL57GZucr+uMPgqrUdKtnu0rIEz9e6DCHy/MQW7osY8AUe3l4ZntMUhwdeAMQM9L2XSXSUC0cN/F9QFu/FNe3xiIx26+Ajw4YNjdwLU/SovO85qyukLnCc7X0XLB8/rz2w5Uu8jYY9id7h+zIcjYxLKFiEGwYQrB7M1gImU3tl7WBS0RLsac+AXpN6wcEdoKmFuPb0JLneGIY7sCI+51f19K9KyEYa2db6d0mRjjoPF/YLH69y+zZF92Z4LZUgNEd7adn3QL0F7RWNLk2tcNMAZYDuSCI+r7Tpu5xhW0OesBQVwKjcBCjYDf8zULiJbKp+OeBgBb3nZ83PpamL1BfXrbfAAJZg01ZissvLHh8unaw9nQnJ9PYi9/Rxz4mfkDHVnesGVraERfJSlARsyS4WIdN0SWDNMCZvFVZjcwV9sG4nAG4CbB8npyrXrQAWX6Nm1QyLdXyJHc9lAKXC0/3yT7mvIW5hOnpPAEy3+r7NYWUw3VB2VQiSNhKKIMmnEFg796vxFujD7ljMTRiuMovMouXSQHbUV1gEPuEixE0zRWxnGPAg8cBm5fB9y313Y7gLnDTHhK/q21wg26CbjxD9ZdLIpPYwDQIpFNh7cG2gxg09EdgYh4eduo9ohp2QbcU3nARQuBxFHSoo/M0+yfz1CNlVj8qMcPBhKG6m8zUWOFatkDeOa8XIdaZq9k7jp6tFIE6kTG66/jLeyJuvFPANf/Ite1kl6KLAMhscAoReBZuLv3qptZivQCVAHgf9uB7opYAP8Q4AKFz/L9LljdIuOZW4CWKz4BnioAHs9hLiTK8wdUPRFlYYKI5Iz2r3d8EtBzGjDuMWDKK+w/ADyQCjx8AogTBhFJfgK4dTV7JkTu3AhcLGTKaKvppk/UdO1zBvet7JJLhsYSG94W6KxxQ7vhVybI5yret616Ad0VIzJqjVpKF6yHjto2APpeBRtcaSRc+TnQdbLjdfSGP9da4juNl6cnzfe80eNOA0zpYuQJej0eTQASzBpqzBaYYfCBhVl0yfDAh7lACB5wJtQaG2lUQ+FcedHC7KIQdtfPe81zzHdNmatSjMZ3lPIIYAKs0zj24i5KV6fA+vwCefhd7X7c8WPVw5nl1dP9KwmMUGcUsPcBB5iVq+1A4KJXbJc9WwxMXgD0ng7MXgFco/CxfLpALUKcoZfX2B5KAaQse1R74A4Ts9jOPWD78VXSug8TD31nANcr8kiHxTHRET+Y7fvpQrWovuhVoO/V6n1d8x3SeswF2vRnv+uqmWXXP1gOSGs3DGghiHhzDdD7CvZh7nkp808fdBPrAr9RSJ0m3q+KbuMeVz6JsvuPAd2mAFd/I3+Ekx+XP7TRnYCn8oGHjrD6H3IbcNtqoL1maGSDPzDmQWCe4M8Y3AK4ZwdLd6kNkLz6W2Dyy8yabi/TQztFxgCtVVRprWs3jIlYl9FkLgmMZP+TbpHnDZ4NzNIxGrQfAXS7UPbtB4CWPdn/npcC/YUG6vgn1FZ1paVt1Fzb/WobGs644Tf1PSbeswlDgY6C3+z0z4BWPdXBaa37svsgtCX73aKDbQNPKXwnzQcueQs2zNkD9L+GpTkMDAcG3wxMWciElNg4MgYC1/4A3LYWlSFCOjyDkZX19vXsnhO5bx9w+1rgmu9Y3Q2/i92DT+QCkQksbmOAkMWl+xSg3VDg0vfYvXjBC0B4nCzQW/cBuijSYl77vdwTIxIYAacMvRPoqgkg1GZlMVepfYr9Q9nzMvFp9u4YLRioYroAITqNxuH/Y8+dyIh7WeP34aPA9E/l+cr7HWDf+nZ2Gq1K+s4ALnYyQuUMwXWhVW/NMRRSbrwi5d7oB5gvvEikojE1VuHqJK4jvluVgjWiLXC/psdTRCvGg6Lk6SfOAOOfBC55G4gVelrtWeeVTH3D941uFyHBrKGmzgoLjDB6Ox+gJCI98GEWrWtNPXBQW05JKLsqmN28FpvfZEEaylyVonBxNnqY2EWv7YZrSHo6sBQ2FB0UVti4vmqBEdNZtlT4hwADb1Jvq3z59r2KidDBN7MPiXL/HAeM+B9w1ZdAh5GyIATYMuV9qQy6u+Y7+YU8aT77f/mHstXJmd+k0poZ2lK+vwLDWRk6CxaWWX+zsl/3k3p7UVyKH89uk2XhoB0EwugPDJ4l/x52p5xDXYTjkNd6PDBS6I1Q+rH6BwG3CeJCtPz0ns6uwf+2saBEg5EJiknPsg+39vgCVwxqh/AWccD1P6mF0oCZcoOq7SB2DkERTASK59NS+GDN/BW4dzfwoNDIDooA5pcAjynKPOB6YOAN7EP3VD7Q61JghJCXVsw6cu9uZk0cPJv9vlAR6KW8T3peyq7t4zlAv2tYL0A3ncwIIo+eAh7LBK4S/DF7au6Fm5cw0TX1TWa5nPEFENtF7gZXWvJE8akUXEbhXgkIlVMWOhqFr/1wuSEkMuZB4O6twINpQK/L7W8LsIZRl0ns+RARBTNvlQWz+B2Y+CzQZwYT0KJry52bgP8JPUvKexFQC7jRD7DGrQpODhhWEtEWmPySLDJ5C9BjKpCQhPROs9i16iFYu+MHsXvu9vXMUi26E6kOw6kbryPuAZ4+pxaoU98ARgnPSPeLgXHzWEPsio9YPV77IxAUya79aCG4MKYLK6PSbeyC51mdKInuCMy00xC76FUm0CcvAAIVbk0Xv6Zeb9xjwnOaDIQI94bS9/3CF9lzd/lHwPinWP2JKK3K8YOA4ffIDQH/ELVgFoTq8S632QpRsRcKAO7Zyd5VymveZzp7XrX35COK7C6t+6qX9biY9Q71vQqYrWhYTniK9SjNywb6Cw2ci15lhhClu6TBKDfaxj7KehSU+3gsQ35/KoOaA0JYj13SbPl6Xq9wobk3hfXmKZmzhzWsmiiUJUNDjdmCOhhhgBtjzNcHycLsgWAWP6ZNPXBQFDRSqjR3XTIaoPEiCocaOxYyETE92aj7WEBUfYjpwgRiUITcC6Ck2xQ5T26fK1mKJbsZBHQyR7jCzUtZ6rDvprOXvDKfcVR72Z985q9MRMzZw/yqd33GLISi64rSsqwU0oN10pAprQuA+sU9+SWWlWDW3+yjCABjHmKNodhuchfooJuY/6LW969Nf2b17TCKidB7U1g0/sAbWNBVbZl+RLooIO7exuq86yTZyqjknp363Z0is1fqp4dU0vsKlhJwkKYBkiCMhBYUATxT5Dz6X4mjda/5Ftj2PhM/IdHsQzNeJ8gIAKYsYKKtyyTH+abFcl72vv6yKz9lg9bEdGH7uehVZl0MDGeirvQ0mz/6QSagxir8T6d/Yru/OzYwYRsQzjJeiJa93pcDCYeBnJ3qnNJtB8rXtN1QWYjEdmVd2u2HCwPNKGjdV76fxEfJP0QWRdqsL9M/ZSPWnT3IzuGGP1ggVUwX+R0WJxxDvD7xSaxRos1kMeFp9j8wnAnGZQ+xno+MTawwox5gLiGi4AqPA2ZoYlci2qhdmqI7q9Pf6TFqLvNZtSciRS55k90XCXJ+3ZqgWGCKzrWKH8T+XMXoQF4EhMiW0MBw4Oqv5WUGA2tIt+rFymb0Y2JVDMLT67kS74n4wSzoc9q7sjtdUJTcIBRT342cAwycqd6Hf5BszBANJ+2Gsm91zk75WovWcyWcEHOw9zv2XZ7yMrNwn1jN3k2i60lcH/aMtuqF3PxwdBUFcr9rbfcZ1gqYKfRMnDkglx2wTRcY3IJZe8VsE9M/VftSdxjB/rQYDOx5H3Qjq2uxcSW67IlGgIBQ5mLmFyRb7sc+ynrR/IOZMF45z34WpP7XsvdgbFfW2DT4s4YuwHpNdn7KXDf13uFNCBLMGqpFC7O3XTK0bgr2sFptLVo2+2gkwWy1MBHl7AOstTBbRcHsJQuzHqIPrrNAEDFgYtBNTFyvEl7qiWPYh1358bbHLavYx5jnged1shS0UFhoZnzBPsx/3G3rtwwwC+mer+X8oCLhbZnAAJi/brGQQ3jC00DHceye6TIRW0d8iZFjr2DLxJRQMYJPYPepso9sTGdm3QpvzbrNv57GXsJKq9Gl7zE/akA/sCQ0Vv1bGXDWYSRwl47bicEoW7IA1rAZMJOJk7MHWTCk6WXWAFF2N8d2kT+y/kHso6QcyERLXC/2Z4+wluzPHnofG71zueRN5+s0FErBGBDKBJk9/IPlFHueEN2JdcOL+AUwkQcArXqwP4BZy10htqt8jykbdQDrlg2+kFnZjq9yvq++QgaWoXeyhoHIiHtZDAMgN779Q1hDcs18OYg0KJJZm/tdLYsz/xBWLm3ZRC54gVnXJguZMhLHAH8Kfpz37FJbd4fcxiyp5zPYPc1bmRhMmu383JTcs5Pd7+J78aYlsHFdueA5tf+zPQJC9Ru/TQHt/fq/7bajcwLsvSUK/qu/ZetEd2QNhqJ09TUQXRL0/NqViIaTyATWQ+JKL+5FC9mfSGw3ebrtQPbenzSffS/7TAdvMrFlT57Vd0lTGiBu/Uf9HRxxD+tFnTSfNRI4Tm3xdvSsX/ujfmC4sp5GP8je/yMVjRPx/dplIovzUcaSSD24VczXXjnYDcDKJ/qix2katINnsV7OigK1yG+CkGDWwLJkGGDwtkuGqxZmax1gsJP+Ruwe9VaeYkfwPBsmN6qD3Aq2hzbntDeD/uxl3hAtzM5yCCsForK1O+NLliO2OBs4s8/+9vGDZeHIcawL8487gJm/sSGkq4psA+Ba9wXu3sySugPMAi2mr2o7gL14RcF8yyrmP/3PU7Jgju7EAmn8Am1EY21gtG2DZvAsllB/0I3q+UERrLtQTKOk9dVtP5x1/W1bpPZpFNETrN2nsryj7vgocxw7VvvhLP2e6WVbMa7koldYeqkQB+sQTRNnwaQBoez9UngCu7Zvgs44Y7Zo/UADw1jwWbuh8gAk/sHsuZmvcMf433Y53aPUm+LEGBAZD0xVDPU84DpmTas6r+8HGxrLXER6TmOW+fpg9FOnC+yUXL/9NDda6fQMGfyYi4yI0vf1svfZCJ/xg+V5I+5lBoEEJ3dS20Fs+56XMouxcqhyVwkXfMH9Q5kAv3+f/nr2GvrK97a2DB1GAk+5kJFFjx4XO18nJJr1ANqjk2ZEQPEc6qrUrnmuYjDIDe8mDAlmDTVmCywwel8wi1ZjZ9ZhS52tX6VIY7pkVBQwdwM9lwMtdoL+DK76XrvTIKjT6TavrZD3sfFV2+VKlJZTUTAHhMkWyDs3sC6pP+9hrfs/7pAtU4CcYUOk39VA+2HMN01shRv8WNCNjb+hwHWL2XCkIspR7OIHs+uuvOahsepgIWeEt2FdhvZo2Z25IOh9VEJjZb9jV7jqS2EQCSfCwx6hscynUekDqqXPlepUc/9GXMlk0pyY+CwbcMJe75mW2C6oCNNJt+UqyUIWB7HxbdD59EW0ZX8Asyye2ccs6O7CcfpiWcQvgPnKEp7xWIbj0QA7jLR9bxgM7H3sDI5j7l6eYDCwd7nS0uwK0z+VR0JsLnSbDLTupw4k/BfiM8HMcVwogA8A1AIw8Tzf0MMWNQg1daKF2cuBdKJ40hN4SvS6oEQkV4dGEMzK4Lmq844HSDBqLOHe9GHWDvtZW8EG4nAU2KNE18KsEXudJwAPCQNhtO7LRN3rQneTMqgEYC9eyU/tKjZYQkAYMFxnaFnlNgY//W5AqZEk3BfTP3McRKVk+P+Yn7Ij30IRV1wQ9Bg1l4kNEb9A5ubhCb0v92z75s69KY4FWHNkzINqy6CviIhng//YM0KIXPY+0P0i2wAqoungbFCepkD3i9zfpiFcp3xNcAt9l7t/GR5lyeA47guO4/I5jjukmT+F47ijHMed4DhO6APDdAC/8jx/O4BLbXbWRKgxW2DhfWBhFrswtCmctDiywjZmlgylSFcOBqKH1iVDGrikHhbmA06CWLQjbf14retiGdBYmIXoekcv5rhezO/qwSMsat4RE+cDj6TbFz9XfytHKz9yAnjIznDMgJx6qeskOYjOGVMWqLugvcEFz8lDgBMNQ6ydNFeE+1z5uf1MD0qCozy3MBIE8a/C07RyXwFQOTNyHGcE8D6AiwD0AnAdx3G9ACQAEAcxbwSnW9cQR/pz2fpZX0T/Y2eC2ZGFWezm9iSXc9lZFqHqLkoR68zHWBL2DWBhPuIk6E6bH/nURv31htwuB4A8eIRZXwGN5Unwh7YX8KMkoo3cnWsPg8HxvnpdylIsAUykK326gqLUQ7lOfIal4GoOVhaCaCqExrCcxARBEG7ikWDmeX4jAM1wOhgK4ATP8+k8z9cCWAzgMgA5YKLZ4+N6E+aSYXTd+llvBDHmVDA7cLcQBagnFuafbgCWP2xrmXWG8phOBbMmm4fkw+yiYFauV1EI/HUfYLbTkLDUMsuwsxGH4gcBDxxiFteINizK/RmNr23rfiy47bIP7O/HVzyYps6VazCS1ZEgCIIgfIQ3fJjjIVuSASaUhwF4F8AijuOmArBrJuQ47g4AdwBAXFwcTGLqFR9xILMOnWGApbYGmxrg2MnCf+159Mo7i1YAzmQex1Gd44jb7di+BVUhmbr7js85gq4A8s+exuF6lnXoudMIAVD0zc0IqC3B7iFvu7RdaPkpKWJ95/ZtqAzNtrtux5xcdACQfvI4sswmdD+TizYAwJtdur4dMk5C6kDN3AJkbsGBuvYIK89Ap1PfwjTuD4AzwGiuxJjtTNyezTgKR56zR9IO42yx82Oj7d1AWj77a4aUl5f7/Bn6L0L17H2ojn0D1bNvoHr2Pg1dxz4L+uN5vgKA04STPM9/AuATAEhKSuKTk5O9XDI1xzemw3zcCH8j0CDHNrF/NvvK+xwoANrERKCN3nGE7YYNHmibt1BkexpwAmgVG4NW9S3roXCgCog+v0+/nPbIjQR2s8mhQ5Lk/Kt6WLcAWUCnDu3RKTkZOL8YOAsYeItrx1u/FchQz+rXozOwhOXlTR7SF9j3HWCaLy1vffUbwHuKJPuDZwEpX0k/e3RJRI8hLhy7mWMymRrmPiYcQvXsfaiOfQPVs2+gevY+DV3H3nCNOA1AMWA5EoR5zQIxrZxHfsGuILoxeOSSoR1quh5o0/L8druci9QRKh9mJ64VWh9mKejPwXarn2WjzmmPJVJZJAfllZ9lAxAoienMRlUSmfA0MEmRyN+eSwdBEARBEIQGbwjmXQC6chzXkeO4AADXAvjLyTZNBinoz9uZJ8QBNuoqHa/32UR5IAktmiC6eqEdeezgz2yoYWcohbwzX2TRL1jyYRaC/sDrb2sxs1Galj3Ehho+/KccJClSUcAG2gDkEey05CmStwRFsWE+2wvp0iw1upsQBEEQBEFo8cglg+O4H8HcbWM5jssB8CzP859zHHcvgFUAjAC+4Hk+1c39TgMwLT4+3uc+PsfTa9CbMwC8Bab16+s/4IJAsvBfex59CvMRC6D4/Dnsc+DDDKsZBT/NQWqfJ2zWaZ95HJ0AFBYW4FA962lwRSW0o7efzs3FcSf7izp/EAOE6d27d6E8XB372f3IOzjfYiDy48Yi8dRJJALIysxEwV+fol3eGYgDYG5cvxZWzShwIRXZGCr++JLlsbQYAnCu5Wi0KtjM5otD3QJAzi6b8plMJqkOC2OG4tAmtl1HJKADgFMnjiLT7Pgc/w2Qn5xvoHr2PlTHvoHq2TdQPXufJuXDzPP8dXbmLwew3IP9LgWwNCkp6XZf+/isKzkEPpdZXZPHjnFtkAdHmNg/m/M4/QFwDogKD9X3sTHJky1btdZfZ8NO4BQQG91Cf/n5TAC8PHCGHscigXL1rPj4eMQ7q/eTPLCfTSYNGqAefhQATJehzdl16HXNM8yHORNoX3MU7ff8rlpt7IDO6jHsASB7F+unUGA0+qPV3X8xq3PKl47LBqG+TWw69u5lSBZH7ArPALJ+Qcdeg9FxqJNz/BdAfnK+gerZ+1Ad+waqZ99A9ex9moMPc7Omps5qO5RzfRHdLnSXWV0/ht4wrspt7e3jnX7AO/0d75szOl5uD6UrhdWJS4h4roU6A3F8foHtvNpy23kGI/ub9rbrA3WIKIe3HXgTMONLIOkW9/ZBEARBEMR/Fp9lyWgu9ImPQGCGH7O6WusABNV/Zy4JZhdyEdsTteK2jgIDnaH1YWYHdL6dozzMWgEtBvfpDeFdeU79++gKNjqflhrFaIJaf2aADXlbqoktvXsbUJylnmcwAH2m225PEARBEARhhyYpmBvTh7kdgJYtAJQDmzdugNk/rP474y12fZj7FZ1DNIDyshLs1jnHceBYUByAs/mFOKKzTqeMdLQHUFJUiL0O/KAd1eGA0jJEaebl5ObihJN6jy3YCzEHxd49u1GSXiUtM1hqMFZx7E6ZmWjvYF8b1q1BjyPvILPD1eh27COb8oiI5zHCzCNQs2xXt8cwZPd9NusCQcAZx+fyb4b85HwD1bP3oTr2DVTPvoHq2fs0KR9mb9GYPswAcOz0MgDA6JHDgdDY+u/IagE2sEmb88iMBM4DYcFB+j42G42SFbd123i01lundg2QDUSGBTv0g3ZYhxkxQIl6VkJ8PBKU26x9AYhqDwy+WZ6Xeh4QQjkH9u8HdBwjL6sqBjYpji2U0x7jukcDGzciji8Agv1sygMAaN1PPo99YUCtYJmObA9c9RWGJAwG+vcCMjYB7YcjucNI+wf8D0F+cr6B6tn7UB37Bqpn30D17H0auo6bpGBubHjRBcIXPsz2chEr8yOLPszmGpa3WRwSWXR90HN1cBVtHmY9Nr3O/isFsyoPs3guPLDuBaDbRertHdUDAPx8E/tfngfUVemvM0MR6KfMqtGiA5AgBBy2G8L+CIIgCIIgGhAK+tOhwQQzHAlm3vYYmVtlIaonmL+9Ani1ozxf3NYTH2ZXBLMeKh9mC7D7C+C5KGDTG8C3l8vLzDXO/bRLBPNzVRFg1hHMd5iA2C7yb6PCh3nATDcLThAEQRAE4R4kmHXwqYVZtBJnbGE5hzcK1lxloJ/BDygvADK3aPYhBv3Vc9Q6Sx2Qvt5O+YSyn96jv1xZN1arevAQZZaL1D+AHR/abp8w1HaeSO/pQExX+bc2yE9sQAyYCQzQzWxIEARBEATRYDRJl4zGDPoDgMgaZrHdsW0LqkIy6r0fzlqHccK09jwGFp9HJICaqgpsM5nQKs+EXgDyDm9CGoZhtNUqXZzs02dQ88dLEG2s4oAq3XKy0RZAdUUZttcj6K9F0T7oJZ2r3fszAnZ+gi0jv8aorbIbxrHvH0Vu/MUAgDa5h9FdmH/gwD70s1cJf9ypO7s27ygCdJcAu4LHge80HkPPzQEAbDqUCcsRebjupLIyhAFILzEgi4ImHEKBJb6B6tn7UB37Bqpn30D17H0o6M8HpP7MItaGJQ0GWvWo/47qqoGNbNLmPE6EAaVAoL+RLdt/FkgD4uLaIC45GdgeAFiYe0K7DolAdCfgJPPjTR7WH/APBkp+Bc4AQf4Gx0F/48axEQsrzrGguN6XswWZAcAB280C6ooBAKNiilXzux3/GN1mvsp+7DwOCGmV+/XpDRwOdGu46YC6EmQnXIp2Z1fLbhh3mIDwthgSHses3xVrgDEPYUwbjaw/6AdUAJ169ken/8DgI55AgSW+gerZ+1Ad+waqZ99A9ex9aOASH8BzQjvCqz7MmqA/8bfoU6z1YVbmIX61I/BaV0UeZicuGeLyX25mf+X5wn518hkrKTplf5lq4BIL4KdN9Oack11uBZ46K88IbwuEx7Fpoz9w9TeAViwDzC8aAAI8SPlHEARBEAThIk3SwtzY8KJY9eVIf6IAPbCYWY9VgtkIVGtyrdWWydkx6qodl8NcwwStOIhHTRkQ1sq5RfjI3/aXaYP+jPYcLOxw7Q+AqJUj27HAP/9g17Y1C+cbGO7eMQmCIAiCIOoBWZh1kIP+XBiFz/GeHCzSjPSnTC+X8qV63Q2vAKW5tvsQU7CZq4DaSjZ97iSwoB1QlC6vJ1pkRVGbdwg4s18WnvY4d0Kn3DxQnA3886T6XNwVzD2mytM3LwWmLASCIlzbVjyfQLIwEwRBEAThfZqkhbmxg/6CqpkLw56UnSg9UVbv/RjNVRCH89Cex+CyUoQDsJhrsclkQpvcI1IQHQDU1dZA6TBRkr4bkZr9n8vPRYwwfWDpRyiKGYTEU98jsaYUp/56FWICun2rf0Dfgy+D4y2shSTkPT7d9iLE2yk7rxhpUEneh5ehKHogeirmHTmQgh5lOoLeASaTSeOQ3xNw8Von1zBr+67DmajIcm2b/yoUWOIbqJ69D9Wxb6B69g1Uz96Hgv58wL4/WCTcoP59gcTR9d9RTRmwmU3anEdaKFAOGMGzZYogOgDwN5erVo8MMgKl6l3EhAUBRWy638HngCfzAMsmIBPo2KE9kMGWDajZCVhtrcnxuSvsFp0DD4S3AcrOqObH5W9A3LDpwBF5Xo/qvbY7mPIKsPIxu/tPTk6uv0N+3jQgbSmGTL2JBTMSdqHAEt9A9ex9qI59A9Wzb6B69j400p8PaJSR/sTf9qirtJ1XngcERcr+zVXn5WXKwUw0otcl4voCfgH62x74Wf1bb6TBmM7MTaO+OaIdcdXXbL8klgmCIAiC8AHkw6yDT0b6E4UkbwVy9wErHnW8q/MZtvPKzrCAOZHKc/K0UsSWKTJRuMrU15mFWcldm4GgKNsBVPT8qwMjvBeUZzC6HiBIEARBEAThISSYdWiwoD9HFmazwvKattT1fcYqPJ3rKoHIBPl3VZE8bVGIfaWgje7k2nGCooAIjYdzXB8gtqvtumVngZAYOfDvsveBdkPtC2a/INfKQBAEQRAE0QQglwwdJMFs0XE1aCiUrgp6Lg16BIQBrXoChUfleaGx8nRlkeymoNqnQrhHJgDVpUBlIRwS3AKIaCv/HiT4C0e1B3J2qde11gF+wcBta1n6OnE7rTC+cyMQHA0EhDo+NkEQBEEQRBOCLMw6NFgeZocuGYocyGYdP1//UBbEp4Qz2opQP4VrQnWJbNWurdA/rn8ocMNv9sslEhzF/kTE/Ya11l/f6A9Ed1SLbKNmYJQ2/YGodkBItPPjEwRBEARBNBGapIW5sdPKoYqJ2cOHDiC/IKreu/GrK4OYY0N7HmNqqmCAARysOJ2dYZPeLa3z7cjbsh3Jinlmcy3yC4qgkKTIOlsALuEytMtZAiy9D7ltLkRbAOeyj0kp55Tkny9Dxt6DGOqk7KbN2xBc6YehMKAquA32Bk9CncmE9nml0HPqqKipwy7NOQ6qqIYys7K2DiitjvehOvYNVM/eh+rYN1A9+waqZ+9DaeV8wI7lLDNErx7d0au/B8evLAKE+Dib89hoBgJCgNpyxIfbZnvo2bsvevZNBkzyPD+jEW3bdQQUiSvad+oOjJoLvLwEANDWwAL/Yvz1s1O0ik9Eq1HjANGrIigKqC5m09d8D6T+AYS3lst78Q0IATBK3EFKJnDqW5v9hka0sD3H9Fig7Lj0U7uc0up4H6pj30D17H2ojn0D1bNvoHr2PpRWzgd4fWhsq5Xtu1bItXx0ue06eiPn8TzzEVYSEKZ20zidwv6XazJjxHYDCo8xNwmlG8clbwFtBzB/7ZbdgZ6XODwllc+0krI823mVRbbzCIIgCIIgmhkkmHXwelo5V3ITa/1/xf1pfZgDwwGDjit6RYHtegDL++yv2Eef6c7LoqR1X6B1P+DsAcfHA+TjTHzW/aGzCYIgCIIgmggkmHXw+sAlYsDfqLnAnq/VA46IGHQEM2+1tTC7mutYzKlstaotzO4S1R64axNwahNg8AO+nCIWznbdq78FsrYD/a+p//EIgiAIgiAaGcqSoUOD5WG2Z2EWs2JEJgAXPK+/jp7VWM8lw5FgDhCWhbYEul/Mpq1mwNgA7aSOY5grhyNadCCxTBAEQRBEs4cEsw6yD7OHeZidWZiNAcCAmXY21hv2mbe1POsJ5mAhbVtEW+Dx08BDx5g1GJCH4gaAzhPtldw1jIEsaJAgCIIgCOJfDAlmHayiuPS2D7MxgA3zfMPvtutwOoKZ522tw7zV/nH9g4HAMGatNmis5o9lANctdnYCjjEYgDs3eLYPgiAIgiCIJk6T9GFu7DzMlRVVAID0E8eRVVf/4wfUnMNIYVp5HiEVWRgKIPXYCRQUmwAYVfmWAWDf/gMozoJqPm+14NjxdHQHUBzZB3X+YUg7WQFrhkm1nqWmAkYAB2MuwTnhuC2KctAfQHaJGScbsE4Das7rnqMrUB5K70N17Buonr0P1bFvoHr2DVTP3ofyMPsA0/q1AIBOie3RaZwHxy/NBbaxSdV55O4DdgG9+w0CegjzTepNBwwYAHQcCxifBfxDgJWPgeOA7j17AceAqMR+wBUfoqW4AT8P2LAQAGDkmWW878hJQNuBwvJxQOc2aNfrUrTz9yDoT0t1if45ugDlofQ+VMe+gerZ+1Ad+waqZ99A9ex9GrqOySVDFy/nYa6rZP/9Q5zvY8yDwLA72fSIe2QfZm3Zxj+uOK7gphGoGGeP41gAXkOKZcC1cyAIgiAIgmjGkGDWg+NYkJy3fJhrK9j/gDB53iPpwJWfy79DFAOEcBzwbDFw4YsKX2Sdst38NxutT0QpmL2Fbr5ogiAIgiCIfw9N0iWjSWDwY6PfeYI9C7MkmBXW2dAYoO8MoOc0NlpfXC/1NmIQoBSQqFO2jmPUv13N0dwQDJ7tu2MRBEEQBEH4ELIw28Pg1wB5mDVk7wSeawGcP8V+B4TaruMXCHQYaTtfRLToOipbaCt5X75gfgkw7W3fHIsgCIIgCMLHkIXZHt5wydi2iPkXH1/NfvvrCGZnuDIK4e1rgbzD+qnpCIIgCIIgCLcgwWyPhhDMWpcMcUCUzC3sv56F2RnRndj/xNH214lqz/4IgiAIgiAIjyHBbA+vBP1x6un6ZKxo2Q144DAbxY8gCIIgCILwOiSY7dEQPsw2FmaFYPYPrr/LRGR8/ctEEARBEARBuEWTFMyNPdJfeXk5qmrrUHImB0c8OH5Q1RkMF6ZNJhN65hcgTvhttnLY/B8f5YdGOvI+VMe+gerZ+1Ad+waqZ99A9ex9aKQ/H2AymRAcEobgljFo7cnxz50EdrDJ5ORk4Nz3QD777Wc0/OdH+aGRjrwP1bFvoHr2PlTHvoHq2TdQPXsfGunPVxj9G8CHWQHPy0F/gH4eZYIgCIIgCKLJQYLZHg3tw2y1qH2WPR0UhSAIgiAIgvAJJJjtYTA2bJYM3gJVlgy+gQdFIQiCIAiCILwCCWZ7NHQeZt6qdskgCIIgCIIgmgWk4OzR0HmYrRZ1GmaCIAiCIAiiWUCC2R4GP8DSkBZmcsEgCIIgCIJojpBgtkeD+zBbPRfgBEEQBEEQhM8hwWwPQwOnlbNaAUstYAxouH0SBEEQBEEQXocEsz0aPOjPwgRzUKRn+yQIgiAIgiB8CglmezREHmatS4bVTIKZIAiCIAiimUGC2R4N4cOsHbjEagYCwjzbJ0EQBEEQBOFTSDDbw+BXv+Grc1KAolPCD41LhtXChtwmCIIgCIIgmg0cr7SCNhE4jpsGYFp8fPzt3333nc+PX15ejiFZnyCi9Ch2DP/YrW2TTZcBAEzJSxBWlo6klAcAANuHfYLuRxeB482IKjksrfNfpry8HGFhZHH3JlTHvoHq2ftQHfsGqmffQPXsfdyt4/Hjx6fwPJ9kb7lfg5SqgeF5fimApUlJSbcnJyf7/PgmkwlxbROAmnS4fXwT+5ecnAycaQGksN/DhyYBZ8MBcMCYt4FWvZDcfliDlbk5YjKZ3K9fwi2ojn0D1bP3oTr2DVTPvoHq2fs0dB03ScHcJGhoH2beylwy/AKApNme7ZcgCIIgCILwGeTDbA9P08pZLbDJksFb2H4JgiAIgiCIZgMJZnt4KpgttWoLs6UOMFcDnNHzshEEQRAEQRA+g8yd9vA0D7OlFioL80ej2P9u8R4ViyAIgiAIgvAtZGG2h8HIrML1xVKn0svyfqmNQhAEQRAE0ZwgwWwPg7/7LhlaFww9xVxT6lGxCIIgCIIgCN9Cgtke9fFhVlqktT7MIuZaz8pFEARBEARB+BQSzPYw+AHgAavV9W2UIwPaszDzbuyPIAiCIAiCaHRIMNvDIGSzcGd4bK2FWQ8SzARBEARBEM0KEsz2MAaw/+4E/ildOKx1+i4ZJJgJgiAIgiCaFSSY7SEJZjd8ji3kkkEQBEEQBPFvg3Kc2cPoz/67ZWHWumRwtuuQYCYIgiAIgmhWkIXZHpKFucb1bVyyMOslZyYIgiAIgiCaKiSY7eGpD7OFfJgJgiAIgiD+DZBgtofkkmHHh3l+JLDkXvU8mywZeoLZg+G2CYIgCIIgCJ9DgtkefoHsv6Ogv73fqn9rfZhFC3O/a4EZX7BpsjATBEEQBEE0Kyjozx71ccmwaFwyRAvzwBuA4BZsmgQzQRAEQRBEs4IszPZw5JKx8XX9bZRimLfIFmaOk/dHgpkgCIIgCKJZQYLZHo7yMK97wc5GCp9l3qr4zQlDbYMEM0EQBEEQRDPDZ4KZ47hOHMd9znHcr746pkfUxyVDKYatGgszZ7BdhyAIgiAIgmjyuCSYOY77guO4fI7jDmnmT+E47ijHcSc4jpvnaB88z6fzPH+rJ4X1KaILhdmNPMxKMfzXvcCOj4UfHGAwCutQHmaCIAiCIIjmhKtBf18BWATgG3EGx3FGAO8DuABADoBdHMf9BcAIYIFm+1t4ns/3uLS+pD5DY2utx8dWsP9kYSYIgiAIgmi2uCSYeZ7fyHFcomb2UAAneJ5PBwCO4xYDuIzn+QUALmnQUjYG9XLJsGc95oDAcDbZebxHxSIIgiAIgiB8iydp5eIBZCt+5wAYZm9ljuNiALwEYCDHcY8LwlpvvTsA3AEAcXFxMJlMHhSxfpSXl2Pbrj0YAeDI4QM4ez5OtTxZMa0sX4uifeivs7/d+1NRHl6FoGGfoCYwGnwjnFNTpLy8vFGu738JqmPfQPXsfaiOfQPVs2+gevY+DV3HPsvDzPP8OQB3ubDeJwA+AYCkpCQ+OTnZyyWzxWQyYcSw0cB2oEeHNugxUlMGkzypKt8JC3DAdn9JyVOB8DjbBf9xTCYTGuP6/pegOvYNVM/eh+rYN1A9+waqZ+/T0HXsSZaM0wDaKX4nCPP+HQRGAOCA6hLXt9F1yeCAkJiGKhVBEARBEAThYzjexawNgg/z3zzP9xF++wE4BmAimFDeBeB6nudTPS4Ux00DMC0+Pv727777ztPduU15eTnCwsIwavNM5MWNw4mud6iWJ5suk6ZNyUuk6ehzKeh38HnVurX+kdg66hsQtoj1THgPqmPfQPXsfaiOfQPVs2+gevY+7tbx+PHjU3ieT7K33CWXDI7jfgRz3Y3lOC4HwLM8z3/Ocdy9AFaBZcb4oiHEMgDwPL8UwNKkpKTbG8slIzk5Gdgfi4ToUCRoy2CSJ6XyZW4FTGqxDAABLRKo28UO1CXlfaiOfQPVs/ehOvYNVM++gerZ+zR0HbuaJeM6O/OXA1jeYKVpagRFuu6Sceg3/flhLRuuPARBEARBEITPoaGxHREQDtRWeLaPMAr2IwiCIAiCaM647MPsS5qKD3O//c/AaKnB3kGvqJbr+TB3PfYR4nNX2OwrO+FynOwy27sFbqaQD5f3oTr2DVTP3ofq2DdQPfsGqmfv0yg+zL6myfgwn44DKgpsfWBM8qS0rGIpkGu7r3ZdeqId+SnpQj5c3ofq2DdQPXsfqmPfQPXsG6ievU9TSiv378fgD1jMHu7D2DBlIQiCIAiCIBoFEsyOMPoBVs3Q2O66sBiapBGfIAiCIAiCcBESzI4w+AOWWvl3xTnguSg390GCmSAIgiAIojlDQX86iI7iPdLeQVTxIWwf8SkAIKzsBJJSHlKt6yzo73iX23A6YZr3C90MoaAH70N17Buonr0P1bFvoHr2DVTP3oeC/nyA5Che+htQmSY7jedGAinqdZ0F/XXt1gNdhyZ7r7DNGAp68D5Ux76B6tn7UB37Bqpn30D17H0o6M+XaF0ywNVjHxT0RxAEQRAE0ZwhwewIY4AbWTLsiGnyYSYIgiAIgmjWkGB2hDZLRt4h9/dBgpkgCIIgCKJZQ4LZEUqXjKwdwJJ76rEPEswEQRAEQRDNGcqSoYMYWZl46gckZv6Ewz0fBMdb0PPIOzbrylkyPkZ87nKb5am9HkZBqzFeL3NzhKKEvQ/VsW+gevY+VMe+gerZN1A9ex/KkuEDpMhKwy4gE+iV9ibQ63LddeUsGX/rZsno3acf0CvZSyVt3lCUsPehOvYNVM/eh+rYN1A9+waqZ+9DWTJ8icFfnq48V899NMk2CUEQBEEQBOEiJJgdYVQIZquzbBl2XFtIMBMEQRAEQTRrSDA7wuCCYBZ9wO0tpzzMBEEQBEEQzRoSzI7wC5Sn7Qliq4X9t5evmSzMBEEQBEEQzRrKkqGDGFkZW7ANfVIXsnmhHRFWccpm3Q1jfwVv8EePtLfQOs9ks3zvgJdQEtXH20VullCUsPehOvYNVM/eh+rYN1A9+waqZ+9DWTJ8gBRZmeEPCII5LCQQqFCsFN0JKErHuDFjAP8goPAbIM92XwMHJQHth/uk3M0NihL2PlTHvoHq2ftQHfsGqmffQPXsfShLhi8JiZGntS4ZAUKrhbey/+Ya/X2QSwZBEARBEESzhgSzI0Ki5WmtYDYGsP+iYK6r0t8HBf0RBEEQBEE0a0gwOyIwQp621KmXSYJZCPozV+vvgyzMBEEQBEEQzRoSzI5QZsmoLdcsc9XCTIKZIAiCIAiiOUOC2REcJ09Xl6iXSRZmIcuIPR/mwPCGLxdBEARBEAThM0gw1xelD/P5TCD/sO06UxYCkQm+LRdBEARBEATRoFAeZh2UufuSTZfprpPfchRaFWzBlpFfY9TWm3XXMSUv8VoZ/w1QHkrvQ3XsG6ievQ/VsW+gevYNVM/eh/Iw+wBV7j6T/jqt2iQABcCo4cOArZqFd24C/IKQ3LKbF0vZ/KE8lN6H6tg3UD17H6pj30D17Buonr1PQ9dxkxTMzQJtWjklrfuq/Z8JgiAIgiCIZgv5MNcXR4KZxDJBEARBEMS/BhLM9cWRYCYIgiAIgiD+NZBgri9Gf/afBDNBEARBEMS/GhLM9YUszARBEARBEP8JSDA7Y8aXQFhr2/kkmAmCIAiCIP4TkGB2Rp/pwM1Lbedb69h/EswEQRAEQRD/aiitnCu07AbMLwGKs4A1zwHFmUBMF7aMBDNBEARBEMS/GhrpTwdXRoeJLdiKPqmvYFfSOxiy+37VMhrhzzVopCPvQ3XsG6ievQ/VsW+gevYNVM/eh0b68wEujQ6TVgakAkOSBgO71Yto9B7XoJGOvA/VsW+gevY+VMe+gerZN1A9e5+GrmPyYa4vnFB1VkvjloMgCIIgCILwKiSY6wtnZP+tZnmeoUka7AmCIAiCIAgPIIVXX0QLs7lGnve/HUBkfOOUhyAIgiAIgvAKJJjriySYq9n/MQ8BsV0arzwEQRAEQRCEVyCXjPrCcey/aGEObdV4ZSEIgiAIgiC8Bgnm+iJZmKvYf7/AxisLQRAEQRAE4TVIMNcXgxD0d2oT++8f3HhlIQiCIAiCILwGCWZPSfmS/ScLM0EQBEEQxL8SEsz1peS0+rcfWZgJgiAIgiD+jZBgri+dktW//YMapRgEQRAEQRCEdyHBXF8i2gDjn5J/+5FgJgiCIAiC+DdCgtkTjP7yNAlmgiAIgiCIfyUcz/ONXQYbOI6bBmBafHz87d99953Pj19eXo6wsDCn6yVkL0GXk18AAHYOWYTK0HbeLtq/Clfrmag/VMe+gerZ+1Ad+waqZ99A9ex93K3j8ePHp/A8n2RveZMc6Y/n+aUAliYlJd2enJzs8+ObTCa4dNwdx4CTbHLoyDFAi0RvFutfh8v1TNQbqmPfQPXsfaiOfQPVs2+gevY+DV3H5JLhCSqXDMqSQRAEQRAE8W+EBLMnqAQz5WEmCIIgCIL4N0KC2ROMAfK0oUl6txAEQRAEQRAeQirPE5QimQQzQRAEQTQL6urqkJOTg+rq6kY5fmRkJNLS0hrl2P8V7NVxUFAQEhIS4O/vr7OVfUjleYLKwmxsvHIQBEEQBOEyOTk5CA8PR2JiIjiO8/nxy8rKEB4e7vPj/pfQq2Oe53Hu3Dnk5OSgY8eObu2PXDI8QenDzJFgJgiCIIjmQHV1NWJiYhpFLBONB8dxiImJqVfPAglmT1AKZgNVJUEQBEE0F0gs/zep73UnlecJBvf8XwiCIAiCIAAgLy8P119/PTp16oTBgwdjxIgR+OOPPxqtPCaTCVu3bvV4H5dcckkDlahpQYLZE5Q+zARBEARBEC7A8zwuv/xyjB07Funp6UhJScHixYuRk5Pj1eOazWa7y+ojmB3t798GCWZPMFLMJEEQBEEQ7rFhwwYEBATgrrvukuZ16NABc+bMAQBYLBY88sgjGDJkCPr164ePP/4YgDx63YwZM9CjRw/MnDkTPM8DAFJSUjBu3DgMHjwYkydPxpkzZwAAycnJmDt3LpKSkvDOO+9g6dKlGDZsGAYOHIhJkyYhLy8PGRkZ+Oijj/DWW29hwIAB2LRpEzIyMjBhwgT069cPEydORFZWFgBg1qxZuOuuuzBs2DA8+uijLp3vjz/+iL59+6JPnz547LHHpHOcNWsW+vTpg759++Ktt94CALz77rvo1asX+vXrh2uvvbYBarthIMXnCWRhJgiCIIhmzXNLU3E4t7RB99mrbQSendbb7vK0tDQMGjTI7vLPP/8ckZGR2LVrF2pqajBq1ChceOGFAIC9e/ciNTUVbdu2xahRo7BlyxYMGzYMc+bMwZIlS9CyZUv89NNPePLJJ/HFF18AAGpra7F7924AwPnz57F9+3ZwHIfPPvsMr776Kt544w3cddddCAsLw8MPPwwAmDZtGm6++WbcfPPN+OKLL3Dffffhzz//BMCyjGzduhVGo/OEB7m5uXjssceQkpKCFi1a4MILL8Sff/6Jdu3a4fTp0zh06BAAoLi4GACwcOFCnDp1CoGBgdK8pgAJZk8gH2aCIAiCIDzknnvuwebNmxEQEIBdu3bhn3/+wYEDB/Drr78CAEpKSnD8+HEEBARg6NChSEhIAAAMGDAAGRkZiIqKwqFDh3DBBRcAYNbbNm3aSPu/5pprpOmcnBxcc801OHPmDGpra+2mV9u2bRt+//13AMCNN96osiZfddVVLollANi1axeSk5PRsmVLAMDMmTOxceNGPP3000hPT8ecOXMwdepUqUHQr18/zJw5E5dffjkuv/xyl47hC0gwe4KRBDNBEARBNGccWYK9Rc+ePbFs2TLp9/vvv4/CwkIkJSUBYD7O7733HiZPnqzazmQyITAwUPptNBphNpvB8zx69+6Nbdu26R4vNDRUmp4zZw4efPBBXHrppTCZTJg/f77b5Vfur760aNEC+/fvx6pVq/DRRx/h559/xhdffIFly5Zh48aNWLp0KV566SUcPHgQfn6NL1fJh9kTSDATBEEQBOEm48aNQ3V1NT788ENpXmVlpTQ9efJkfPjhh6irqwMAHDt2DBUVFXb31717dxQUFEiCua6uDqmpqbrrlpSUID4+HgDw9ddfS/PDw8NRVlYm/R45ciQWL14MAPj+++8xZswYd08TADB06FBs2LABhYWFsFgs+PHHHzFu3DgUFhbCarXiyiuvxIsvvog9e/bAarUiOzsb48ePxyuvvIKSkhKUl5fX67gNTeNL9uYM+TATBEEQBOEmHMfhzz//xAMPPIBXX30VLVu2RGhoKF555RUAwG233YaMjAwMGjQIPM+jZcuWkv+wHgEBAfj1119x3333oaSkBGazGXPnzkXv3rbW8/nz5+Oqq65CixYtMGHCBJw6dQoA81meMWMGlixZgvfeew/vvfceZs+ejddeew0tW7bEl19+6dK5rV27VnIZAYBffvkFCxcuxPjx48HzPKZOnYrLLrsM+/fvx+zZs2G1WgEACxYsgMViwQ033ICSkhLwPI/77rsPUVFRLtaqd+HE6MqmSFJSEi86qfsSMQrVKRXngNc6sen5JV4t078Rl+uZqDdUx76B6tn7UB37hv9KPaelpaFnz56NdnwaGtv7OKpjvevPcVwKz/NJ9vZHLhmeQC4ZBEEQBEEQ/3pIMHsCCWaCIAiCIIh/PSSYPYF8mAmCIAiCIP71+Czoj+O4ywFMBRAB4HOe5//x1bG9hsG1HIQEQRAEQRBE88UlCzPHcV9wHJfPcdwhzfwpHMcd5TjuBMdx8xztg+f5P3mevx3AXQCucbQuQRAEQRAEQTQVXLUwfwVgEYBvxBkcxxkBvA/gAgA5AHZxHPcXACOABZrtb+F5Pl+YfkrYjiAIgiAIgiCaPC5ZmHme3wigSDN7KIATPM+n8zxfC2AxgMt4nj/I8/wlmr98jvEKgBU8z+9p2NMgCIIgCIJoPhiNRgwYMAC9e/dG//798cYbb0g5iXfv3o377rvP42N89NFH+Oabb5yvqGDkyJH1Pt5XX32F3Nzcem8PsDzRr7/+ukf78Aae+DDHA8hW/M4BMMzB+nMATAIQyXFcF57nP9JbieO4OwDcAQBxcXEwmUweFLF+lJeXu3zcZOF/Y5SzueNOPRP1g+rYN1A9ex+qY9/wX6nnyMhI1ah2vsZisSA4OBibNm0CABQUFODWW29FQUEBnnzySXTv3h0vvfSSR2U0m82YOXMmALi1n1WrVtX7uJ9//jk6duzoVo5pi8UCo1GOCaupqYG/v7/H18disdjdR3V1tfv3Oc/zLv0BSARwSPF7BoDPFL9vBLDI1f258jd48GC+MVi/fr3rKz8bwf4It3Grnol6QXXsG6ievQ/VsW/4r9Tz4cOHG/X4paWlfGhoqGreyZMn+ejoaN5qtfLr16/np06dyvM8z5tMJr5///58//79+QEDBvClpaU8z/P8woUL+T59+vD9+vXjH3vsMZ7neX7cuHH8/fffzw8ePJh//fXX+WeffZZ/7bXXpGVz587lBw8ezPfo0YPfuXMnf8UVV/BdunThn3zySakcYrnWr1/Pjxs3jr/yyiv57t2789dffz1vtVp5nuf55557jk9KSuJ79+7N33777bzVauV/+eUXPjQ0lO/WrRvfv39/vrKykl+zZg0/YMAAvk+fPvzs2bP56upqnud5vkOHDvyjjz7KDxw4kP/xxx9V9aAss4jVauUffvhhvnfv3nyfPn34xYsX8zzP87m5ufyYMWP4/v3787179+Y3btzIm81m/uabb+Z79uzJ9+nTh3/zzTdt6l/v+gPYzTvQpJ5YmE8DaKf4nSDMIwiCIAiCaB6smAecPdiw+2zdF7hooVubdOrUCRaLBfn5+ar5r7/+Ot5//32MGjUK5eXlCAoKwooVK7BkyRLs2LEDISEhKCqSvWZra2shjpI8f/581b4CAgKwe/duvPPOO7jsssuQkpKC6OhodO7cGQ888ABiYmJU6+/duxepqalo27YtRo0ahS1btmD06NG499578cwzzwAAbrzxRvz999+YMWMGFi1ahNdffx1JSUmorq7GrFmzsHbtWnTr1g033XQTPvzwQ8ydOxcAEBMTgz17XPPQ/f3337Fv3z7s378fhYWFGDJkCMaOHYsffvgBkydPxpNPPgmLxYLKykrs27cPp0+fxo4dOxAeHo7i4mI3roJ9PMnDvAtAV47jOnIcFwDgWgB/NUipCIIgCIIgCIwaNQoPPvgg3n33XRQXF8PPzw9r1qzB7NmzERISAgCIjo6W1r/mGvuJyC699FIAQN++fdG7d2+0adMGgYGB6NSpE7Kzs23WHzp0KBISEmAwGDBgwABkZGQAANavX49hw4ahb9++WLduHVJTU222PXr0KDp27Ihu3boBAG6++WZs3LjRpXJq2bx5M6677joYjUbExcVh3Lhx2LVrF4YMGYIvv/wS8+fPx8GDBxEeHo5OnTohPT0dDz/8MFauXImIiAiXj+MIlyzMHMf9COauG8txXA6AZ3me/5zjuHsBrALLjPEFz/O2NVYPOI6bBmBafHw8+TD/i/mv+Mo1JlTHvoHq2ftQHfuG/0o9q3yYRz/pnYM48MG1WCzCKvI6p06dgsFgQHBwMCorK2E2m1FWVoZ77rkHycnJ+OeffzBy5Ej88ccfqK2tRXV1tY2Prna/Sn9gi8Ui7bO6uhpGo1Faj+d5lJSUSL/LyspQWVmpWsdisaC8vBwFBQW4++67sWHDBiQkJODll1+WtrVYLKioqEBZWRkqKipUfsTKcxLdHPR8jPV8mLXnW1dXh6qqKowfPx7Lly/HqlWrcNNNN+Gee+7B9ddfj82bN2P16tVYtGgRvv/+e3zwwQeqY9THh9klwczz/HV25i8HsNytI7p2vKUAliYlJd2enJzc0Lt3islkgsvHNQEIiXF9fULCrXom6gXVsW+gevY+VMe+4b9Sz2lpaW4FpjU0ovATy1BQUICHH34Yc+bMQUREBEJCQuDn54fw8HCcPHkSw4cPx/Dhw3HgwAFkZ2dj6tSpeP7553HrrbdKLhnR0dEwGo0IDQ2V9hsYGIjAwECEh4erlin3D8BmO711AgICEBQUBH9/f3Ach8TERFgsFixduhQzZsxAeHg4oqKiYLVaER4ejkGDBiE7Oxt5eXno0qULfvvtN0ycOBHh4eHgOA5hYWG610BZZpGJEyfi448/xp133omioiJs27YNb7/9NoqKitC5c2fMmTMHHMchLS0NNTU1CA0NxRX/b+9+Y+So6ziOvz/tXXuNB20JpCUU4RA0/ElozzvTRCEQFWhjQEwwECm0mupFSCSNMYCJEmyKtNE0PtFoANvw3yiRB/6hD1p9ckX+WIVSkANL2loOFVPa0OodfH2wv6N7R3e43duZue1+XsnkZn+7tzP7mW8mv535zezVV9Pb28v111//vuV0dXWxZMmSurZZYb/0d9y6/R8g/8K4mZmZTd7hw4dZvHgxIyMjdHR0sGLFCtasWfO+123cuJGtW7cyY8YMzj//fJYtW8bs2bPZsWMHfX19zJo1i+XLl7Nu3bpC1nvevHmsXr2aCy64gIULF9Lf3//ecytXrmRgYIA5c+YwODjIfffdxzXXXMPo6Cj9/f0MDAxMahlr165l48aN7z3es2cPg4ODXHjhhUhi/fr1LFy4kE2bNrFhwwY6Ozvp7u5m8+bN7Nu3j1WrVjE6OsqMGTO4666JPw3SGFUuDJye+vr6YmzgepHa5Rt22Zxz/pxxMZxz/pxxMdol5127dnHuueeWtvyDBw+WeoS7HWRlfKztL+mZiOir9X7TssNcNYZ59f3331/48g8dOkR3d3fhy203zjl/zrgYzjl/zrgY7ZLz3LlzOfvss0tb/sR7D1vzZWU8NDTEgQMHxrVdeumlrddhHuMjzMc355w/Z1wM55w/Z1yMdsnZR5iPf80+wuzBt2ZmZmZmGdxhNjMzs7Yznc+wW34a3e7TckiGxzC3B+ecP2dcDOecP2dcjHbJubu7mwULFjB37lwkFb58j2HO37EyHrvf9PDwMIcOHRr3nMcwN6BdxnCVzTnnzxkXwznnzxkXo11yHhkZYe/evRw5cqSU5R85coSurq5Slt0uamXc1dXFokWL6OzsHNf+QWOYfR9mMzMzayudnZ309PSUtvxt27bV/cMZVp9mZ+wxzGZmZmZmGdxhNjMzMzPL4A6zmZmZmVmGaX3Rn6R/Aq+VsOiTgX+VsNx245zz54yL4Zzz54yL4ZyL4ZzzV2/GZ0TEKbWenNYd5rJIejrrSklrDuecP2dcDOecP2dcDOdcDOecv2Zn7CEZZmZmZmYZ3GE2MzMzM8vgDvOx/bTsFWgTzjl/zrgYzjl/zrgYzrkYzjl/Tc3YY5jNzMzMzDL4CLOZmZmZWQZ3mCeQdIWklyQNSbq17PVpVZJOl7RV0guSdkr6Rmq/Q9I+STvStLzqf25Lub8k6fLy1r61SNot6bmU59Op7SRJWyS9nP7OT+2S9KOU818l9Za79tOfpI9V1esOSW9JusW1PHWS7pX0hqTnq9rqrl1JN6bXvyzpxjI+y3RVI+MNkl5MOT4maV5qP1PS4aqa/knV/3w87WeG0nZQCR9n2qqRc937CPdBstXI+ZGqjHdL2pHam1vPEeEpTcBM4BXgLGAW8BfgvLLXqxUn4FSgN82fAPwNOA+4A/jmMV5/Xsp7NtCTtsPMsj9HK0zAbuDkCW3rgVvT/K3A3Wl+OfBbQMBS4Mmy17+VprSPeB04w7XclDwvBnqB56va6qpd4CTg1fR3fpqfX/Znmy5TjYwvAzrS/N1VGZ9Z/boJ7/OnlLvSdlhW9mebTlONnOvaR7gP0ljOE57/AfCdNN/UevYR5vE+AQxFxKsR8T/gYeCqktepJUXE/oh4Ns0fBHYBp2X8y1XAwxHx34j4OzBEZXtYY64CNqX5TcDnq9o3R8V2YJ6kU0tYv1b1aeCViMj6QSXX8iRFxB+BNyc011u7lwNbIuLNiPgPsAW4IveVbxHHyjginoiI0fRwO7Ao6z1SzidGxPao9DY2c3S7GDVruZZa+wj3QT5AVs7pKPEXgYey3qPRenaHebzTgD1Vj/eS3cmzSZB0JrAEeDI13ZxOBd47droVZz8VATwh6RlJX01tCyJif5p/HViQ5p3z1FzL+J2xa7n56q1d5z01X6ZyhG1Mj6Q/S/qDpItS22lUch3jjCevnn2Ea3lqLgKGI+Llqram1bM7zJYrSd3AL4FbIuIt4MfAR4DFwH4qp09saj4VEb3AMuAmSRdXP5m+Qft2OFMkaRZwJfCL1ORazplrN1+Svg2MAg+kpv3AhyNiCbAGeFDSiWWt33HA+4hiXcf4AxpNrWd3mMfbB5xe9XhRarMGSOqk0ll+ICJ+BRARwxHxTkS8C/yMo6eqnX2DImJf+vsG8BiVTIfHhlqkv2+klzvnxi0Dno2IYXAt56je2nXeDZC0Evgc8KX0xYQ0RODfaf4ZKuNpP0olz+phG854EhrYR7iWGySpA/gC8MhYW7Pr2R3m8Z4CzpHUk44mXQs8XvI6taQ0lugeYFdE/LCqvXq87NXA2JWujwPXSpotqQc4h8qgfMsg6UOSThibp3Ixz/NU8hy7W8CNwK/T/OPADemOA0uBA1Wnvy3buKMXruXc1Fu7vwcukzQ/nfK+LLVZDZKuAL4FXBkRb1e1nyJpZpo/i0rtvppyfkvS0rRvv4Gj28VqaGAf4T5I4z4DvBgR7w21aHY9d+Sz3q0pIkYl3UxlZzsTuDcidpa8Wq3qk8AK4LmxW7wAtwPXSVpM5TTrbuBrABGxU9KjwAtUThHeFBHvFLzOrWgB8Fi6I04H8GBE/E7SU8Cjkr4CvEblQgiA31C528AQ8DawqvhVbj3py8hnSfWarHctT42kh4BLgJMl7QW+C3yfOmo3It6U9D0qnQ2AOyNishdfHfdqZHwblTs0bEn7ju0RMUDlDgR3ShoB3gUGqrL8OvBzYA6VMc/V457bXo2cL6l3H+E+SLZj5RwR9/D+60ugyfXsX/ozMzMzM8vgIRlmZmZmZhncYTYzMzMzy+AOs5mZmZlZBneYzczMzMwyuMNsZmZmZpbBHWYzMzMzswzuMJuZmZmZZXCH2czMzMwsw/8BEDI/MQWzH0cAAAAASUVORK5CYII=\n", - "image/svg+xml": [ - "\n", - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " 2020-08-05T18:23:17.519994\n", - " image/svg+xml\n", - " \n", - " \n", - " Matplotlib v3.3.0, https://matplotlib.org/\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n" - ], - "text/plain": [ - "
" - ] + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n 2020-08-05T18:23:17.519994\n image/svg+xml\n \n \n Matplotlib v3.3.0, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAswAAAEvCAYAAABR6ZerAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAACq4UlEQVR4nOyddXgUVxfG39mNO0kgQAIEdw9uQVpoKRVKlQrU+7W01KlThbpRd6deSrFii2vwEDTECEQIcd3d+f644ztr2ewmac/vefJkdvTOHXvvueecy/E8D4IgCIIgCIIg9DE0dgEIgiAIgiAIoilDgpkgCIIgCIIgHECCmSAIgiAIgiAcQIKZIAiCIAiCIBxAgpkgCIIgCIIgHECCmSAIgiAIgiAc4NfYBXBEbGwsn5iY6PPjVlRUIDQ01OfH/a9B9ex9qI59A9Wz96E69g1Uz76B6tn7uFvHKSkphTzPt7S3vEkL5sTEROzevdvnxzWZTEhOTvb5cf9rUD17H6pj30D17H2ojn0D1bNvoHr2Pu7WMcdxmY6Wk0sGQRAEQRAEQTiABDNBEARBEARBOIAEM0EQBEEQBEE4gAQzQRAEQRAEQTjAZ4KZ47hOHMd9znHcr746JkEQBEEQBEF4ikeCmeO4LziOy+c47pBm/hSO445yHHeC47h5AMDzfDrP87d6cjyCIAiCIAiC8DWeWpi/AjBFOYPjOCOA9wFcBKAXgOs4juvl4XEIgiAIgiAIolHwSDDzPL8RQJFm9lAAJwSLci2AxQAu8+Q4BEEQBEEQBNFYcDzPe7YDjksE8DfP832E3zMATOF5/jbh940AhgF4FsBLAC4A8BnP8wvs7O8OAHcAQFxc3ODFixd7VL76UF5ejrCwMJ8f978G1bP3oTr2DVTP3ofq2DdQPfsGqmfv424djx8/PoXn+SR7y3020h/P8+cA3OXCep8A+AQAkpKS+MYYCceTEXiOni1DZLA/WkcGNWyh/kXwPI/qOit2bN1EIx15GRpNyjdQPXsfqmPfQPXsG6ievU9D17E3BPNpAO0UvxOEef9qsosqcc8Pe3AgpwQAkLFwaiOXqOny4YaTeHXlUbw7IaSxi0IQBEEQBOEUb6SV2wWgK8dxHTmOCwBwLYC/vHCcJsWnm9IlsUw4ZsneXABASY1n7kAEQRAEQRC+wCMfZo7jfgSQDCAWQB6AZ3me/5zjuIsBvA3ACOALnudfcnO/0wBMi4+Pv/27776rd/nqS318i749XIO1WWbp91dTQhu6WP8antpciZxyHo8P5NE9jny4vAn5yfkGqmfvQ3XsG6iefQPVs/dpUj7MPM9fZ2f+cgDLPdjvUgBLk5KSbm8uPsym0lQgK0P6Tb5J9gnbtxEoL0NISAjVk5chPznfQPXsfaiOfQPVs2+gevY+DV3HNDR2A8FxjV2C5oenGVoIgiAIgiB8AQnmBsJAipkgCIIgCOJficd5mL1Bc/Jh5nkeHMdh8ZEarMwgH2ZXEH2Y5w3g0aM1+XB5E/KT8w1Uz96H6tg3UD37Bqpn79OkfJi9RXPxYc4vrcbQl9fi3esGokP7EiAjXVpGvkn2kX2Yg6mevAz5yfkGqmfvQ3XsG6iefQPVs/chH+YmRPb5SgDAs0sOAeSR4TZNr2+DIAiCIAjCFhLMHlBRYwEAnK+sQ6UwLVJdZ9HbhCAIgiAIgmhmkGD2gNLqOmn62+2ZqmVl1Wbt6gRBEARBEEQzhIL+dHDVUdyUXYevUmt1l93aJwDRQQb0jjU2dPGaPU9vqUJ2mRWPDuDRi4L+vAoFlvgGqmfvQ3XsG6iefQPVs/ehoD8fYM9RvNZsBccB/kZmmD+64SSQekR3H58fYkI6Y+FUr5WzuRK+fxNQVoqgYAr68zYUWOIbqJ69D9Wxb6B69g1Uz96Hgv4akT7zVyH5NRO+3ZaB7KJKLFjBxHLL8EC72xRX6lugCcDa9Do3/nvwPLD9I6CmvLFLQhAEQRBNFhLMblBrtuJ0cRWeXpKK+xbvBQDMGpmIXU9OwuoHxmJk5xibbQ6fKfV1MZsNTdAb6L/H8dXAyseAVU80dkkIgiAIoslCgrme7M0qBgDcOKIDAKBrXDjGdmtps971n+7wZbGaFWRhbgKYq9j/ynONWw6CIAiCaMI0SR9mRdAfTCaTz49fXl6uOu6RIgsW7qzWXffw3l3IDmBJmKMrrQCAQa2M2JMvp5UT95VVakHrUAMCjP/tpM0VFUykVVZVNcr1bQ7UmHlsyDFjUgc/j4Zd197LWmILDqMPgMKCAhyia1FvnNUz4TlUx76B6tk3UD17n4au4yYpmJtS0J/VymPWE8vtrnvxpGQYDbKgufpi4K/9udjz415pXpseg9EmKgiz5v+DS/q1waLrB3mt7M2BsAObgNJSBAZR0J89nl1yCD8cycTYpL6Y0qd1vffjLOghf1cRkApYA0LoWngABfB4H6pj30D17Buonr0PBf35mKUHcm3mvXplP2laKZZFLu3fFuseGif9nvz2Rikv88ZjBV4oZfOEXDLsU1zFcnxX1Xk3n3fGOWbtzyup8upxCIIgCKI50yQtzE2Jv/Yxwbz36QtQUlWH9tEhKK8149HfDjjcrmNsqOp31jk2jHaN2YpjeWWICQ1ATJj97Br/BZpiDvCmgq+cdqyCuwfH0bUgCIIgCHuQhdkBRRW1WHskH3eM7YQWoQFIjA2FwcAhPNB5O4PjOHx/2zDpd5qQLaPGbMWFb23EpDc3eK3cTR3RJdfqxjZnS/R9yP/teLtNwQvS3MC7czUIgiAI4r8FCWYHZJyrAAAM6xitms9xHOZP64W/7h3lcHtxgBMA+HjjSdWy85V1sPxHfRI4QaS5Kga3nijE8AVrsfzgGS+WqmnBce7VUX3hhVcAh//mvUgQBEEQrkCC2QEZhUwwd4gJsVk2a1RH9EuIcri9nyIbRl5pjc3y9UfyPSugm+SXVuPnXdlub3e+ohblNQ3vS+tqe0HMZZ2Seb7By9BUEe8cb8tYEswEQRCEK/A8j5TMov+sO2WT9GFuKmnl/jlSAz8DkHFoN3J0gvuckVFicbg8Zf9B+OWn1beYbvPc1iqcKrUioOg4ogJdbyvNWlmBqEAOb4+3bTjUh7IyFmBWVVXt0vU9lcEC4DKzsmEy+baR0ViUninCg35LcDTNCFPZiXrvx1landzsbIwCYK6toRRHHkAporwP1bFvoHr2Dc2xnrecrsOnB2txV/9ADG/TJOWjCkor5wPEVCQfH9uO3vEWTJrg2PXCHmlnSoFtmwAAb1zVH93iwnH1x9tQVceEdK9evZDcv22DldsZj21dA6AGQ4aNQHxUsOsbrlyG4hq+wdKzhB/cDJSWICAoyKV9Zm3LAI6konXbtkhO7tsgZdCl7Cxg8ANCY713DBcJ2H8jRvr9hR0RIzEs+c5678dZWp2NNYVADhAY4EcpjjyAUkR5H6pj30D17BuaYz2n/HMUwAmEtOqA5OSujV0cp1BaOR+Sea4CnTXZLtxB6cN85eAE9E2IxMD2UdI8q6JbI72gHEUVtarteZ7HH3tzUF3n2FLtKqLvcFVtw+zvZEE5TuSXu18OwVjvaq+OOHCHxQqsTctD4rxlyC/zQhDgG92B1zo3/H7rgZFnVnWD2bvBjqJLhoFcMggv8/aaY3jzn6ONXQyCIOqJ2M9u/Y+6ZJBgtkOt2YozpdVoF11/NwR/nRH93rl2IB6d0h0AVEF/E97YgMlvb1Stm5J5Hg/8tB/PLU2t1/GLKmolEb7hWAHOljLxVVnruj+yPbH+1J8HMfGNDR5l+3DVh9lPcIexWnl8vS0TAJCaW1rv4zYHrELnj4H3bh5m0ReN+4++AAn3Kamsg7UeActvrzmOd9fV372IIBqTf1LPYldGUWMXo3HxUTB6U4UEsx1OF1eB54H2HghmP6Nt9bYMD8QlfZkbhpUH9mSdR1k1syYWlNWgziKn9xIF9fG8cny2KR0n8suQW1yFxHnLsEEYAGXxzizsyy5WHWPFwTNInLcMg15YjUEvrEaN2YKbv9gpLa+stWDp/lyXrMPFlXWq32lnSpE4bxm+257lQg0Apwor8PLyNN0PrKuJzIwGDsMNh9GiKhNiG8TdDzbP880qK4mFY4KZs3pXMItvPs6tJH/Ef5Xiylr0f/4fvLGaLMXEf4s7vk3BVR9ta+xiNCoGqXe4+XxLGxISzHbIKmIDjbTXyZDhKnoWZgAwCLW+J+s8pn+wFZPfki3LXZ9cgQUr0pA4bxnWH2Wi+FxFLV5cloYrP9yGtWl5AICl+9mAKvN+P4jL39+CBcvTpJt47k/7VMe75atdqt+puaWY8+Ne3L+YDd+95UQhVh/O0y1rSZVaMK84dNZmnZ92ZUn7UmK18vjf93vwycZ0pAsZR5S4+tAZDRwWB7yIeSdvkEZWdFf8fr8jC52fWO4dVw4vYOVEC3OdkzU940Q+s9RTlgzCFcQG9NL9/50UjwRBMKSUsI1cjsaCBLMdRMHcroUHgtmgX72i6PthB7PS5moG5fh4QzoA4KMNLHfz6fMsq0RJVZ1Url9TcrDzlNw99PHGdLyy8ihOFVYgOjRAtb8tJ86pfi9cwTJznC5m+5352Q7c/s1uaXl5jRnrj+QjJbNIykUNANPe26x7Po/9dhBL9uWiuFLtg9372VWKAVssqLNY8f76E6gUfKjrY/AV8xPrbWu2WDHs5TVInLfMRlD/ticHAJBdVIn1R/Pr1aXsS6yShblh/M3tseEoayiRYK4fe7LO47wm9uDfTH0brETjklFYgVzhfU8Q9UUadMxLFuZ/Us/izdXHvLLvhqBJZsloCmnldh0/Cg7A4T3bcIRzP6UcAFSZ5ZtKeR7F1e51f9cq3DSOnZLzKN/6hbp76KMNJyWR7Yg6CytXcWUd3vp5jTR/3fr1MHAc3t1TjT35tkLt4OkShFrtu3EMemE1WodwmD8yGAFGTsoGAgBrtuzCXcfqkF0mn0tVtWupzFJz6jBdmC46V8jKcugQggqPqNbbcroOeaVMvKxZb0KgwsJfUsI+Fu8s3YWNOWbc2icAYxL8VdsnC/+bQqqfkkrWiDqXf8aj8jhLqyMKZXMdpZWrD7NWViAhjMO8Adb/RP3lV7Lnt6ratZSQetR3u+aYhsvXvL67Gr1iDLi4o9poMmslM3x8NcV5EHt96zmjxIK2YQYE2OlZ/bfQUPego3p+eUcVRsf7YazmG1VcbUVUUOPZOTMyaoX/WTCZbHubPeUO4T4d5J/bIPujtHI+wGQyIbJlLKLO5GLC+PH13k91nQVYsxIAVKlNCstrANMaO1s5ZkOO7NNa1gC99e/skQdUWV4YjRmDE1C48wCASt31t5+xb/G08kBuBY/Ht5rxyOTuAA5Ky95KsR24JSAw0KWUL7k7sgAhVqh1q1ZA3hn07NULyf3UKfmyt2cCBw8BAIaPGI3IEPll83bqFqCkGKVcGIBitOnQGcljOqkPZGL/mkKqn9WpfwBVQKvoKPTxoDzO0up89c8WAECgf8OklXv894OIjwrCvROafsohT7FaeWDlcuSU8wgLC7Nbf+fKa/D6P8fw7LReCPI3+raQDUx6QTmwcQP8/APcv19WLgNQ/+erOabh8iVWK49ZK5fjUKEFr86+UL3QjbqvTz2fLanGrAVrcXVSAl6d0d+tbX2B2WKFhecR6Of8+cs5X4kEvZ5lD+9fLSaTCQm9klBZa7YZBG3WymU4dr4Wz9xwgTRve/o5zP1kOz6YOQgX923jdP8pmUXgOA6D2rdokPICQCp/Ajh+FO3at0dyco8G26+EF+qY0sr5gOKqOkSFBDhf0QH+OkF/AGDUWKxnDmuP8d1benQsPf7430jcnSynSbuoT2vcOa6T3fV/TcnBtZ9sh9niWQDYuYpazPv9oNP1XO3VtVjl8og+yKcKbH2ic4pkkV9jYcL+2SWHsHR/ruRwIPpke3ptvY3FRz7MooW5obJk/LgzC6//03S71BqSOqtrz8nCFUfw484s/H2g+fv9moWH9r+aVqopc+vXu5yv5CUKy5lB5ODpppm96NJFW9D9qZVO1/v7QC5Gv7Iem48X+qBUwKQ3N+DSRVuk39V1Fmw5oX/sw0JmKKUrpiOu/HAbpn+w1fNCKpBSwjpx4eN5HpuPFzqNU6qoMSO7yNY456kG8RYkmO1QXFmLqBB/5ys6wGhndECDZv6Ll/dB5jl9i667JCqCFAe2b4G5k7qidUQQAKB32wjMm+K8Vaj1qVZyUZ/WePNqtQXhttEdpemObuStVgrmrScKkThvGRLnLcNZ4fg1ZgsS5y3DN0IqOQDYlcGGx35Dx8/p443p0rTodvL1tkzM+VEOSBTT7IUHNb3OFZ7n8fOubFTXWSQfZnjRh5nneRiE7BiUJcN9zBbXRKMoMhuqo7q6ztJoPsRiFh/yYXYdq5XHuXLbHraGRgwSF1m6Pxd5pfUPct55qkhXzOhRY2b3RaCfe5LiXHkNVqWqu/Yraswui0JXOXzGNSG/N6sYAKTYGz28mSHi2SWpmPnZDt1lop5ozMaqFPSnKcLWE4U4pQjsX3bwDG74fAe+3+E4m9bsL3dhzKvrbeq0soHGnmhoSDDbobiyDlHBnglme2iFNMdxuH5Ye4/3O6ZrLEyPMBeS6QPjAQCBfkbcOKIDAHaTcxyHkZ1jEBpgdPvlNqJTDD68YTCm9msjCfORnWPw5NSe0jpT+rR2eX+FVVbsyy7GV1tO4XrFS+LHnVnIPFeBo2fLAADH7aS/W7wzC5e8twnrj+ajRJP+rtZsVeeQFh5I0cIsPp+ni6tQY24aD+eq1LN49LcDeHvNcVg51nXIWb1nYa61WCURRwOXuI/ZRdEofuDsxAC7TY+nV+IBTSYcb3PkbCn+2p8rCWVXz10PTwTH3qzzOFPSvILX3l13HINfXOPTDD0VNWbM+XGvKp2oElcCVa/+eBvGvLrepeOJ71B3vym3fr0bd36bgtJq+T0358e9uPrjbTbvdGcs3Z+LbSfVAe48z7sU1yOvz/47Cluq1Vg/j+eV4davdjXIAGNH8srsLvNGwO2SfafR5YnlDst+8xc7sWA5SxQgvsu0z/D1n+3A+NdN0u/soirhv+MG104hr3V5jTp9amVN0/gmayHBbIey6jqEB3lHMOsZnm8b0wmnFlyM+ybq+34mtLAdyrpLqzDV7zcEy++pBRfjzWsGSPNnj0rErJGJmC1Ygr+/bRgOPTfZJWtwzzYRGJoYDQBoE8Us1YF+Rvw1ZzTCA/1w17jOUuYKAHj4wu7SwCxa7hjbCVcnJUi/V2aYcfn7WzB/6WHVeu+sPY5xr5lw93d7HJZt3u8Hceh0KWZ/uQsvLlPvo9ZsxTnFR2F/TolquZXnUWexYtTCdbjwrY1uvZyr65jl+wOTPAjDgZximxR87lJUwbYvrqxVWJi9KJjNVrIwe4CzbsPqOgtO5JdLPSkGzVf4660ZNjnUnSF+qP7a3zBBMa4y5e1NuO/HvVLPjSdZZl74O63e4uKKD7ZirIsibn92MeYu3utQYNRZrF63/oquOOcrGv5ZvvLDrXj01/0280UBomdhTskswsAXVmOlTopQV8kvrZZ6AgGgQhA4gW766IuW3AqFYNotiCity1NlrRn7sosx6IXVuhk/5vy4F9d9ul0172heGRaukIPDd2UUged5mI7m459U2/O352qgvIe0Yu7pJYew9kg+UjLP627rDo4ak+5YmO09XzVmi+oYr648CrOVx/G8crvidsOxAqn3VuxVUz5SGTopY6Uyutitlleqfga1ArqpQIJZy4m1aJP7DypqLQgN9E63vfbDKcJxHB6Y1BUTerSyWdYqPFCa7tkmArNGJiJY8XL6e85otAoPkvajJCTAD/Mv7Y0w4Xw4jgPHcfjmlqEOy2k0cFhx/xj8fNcIvHfdQDx/WR9pWUSQPw4+NxljuzHf62B/Iy7p1wZGA4cLe8Xp7q932wi3AkJOu5EGqaxa/YDVmq0oKrdvRTFbeSm9Xea5SvR//h+XjyX6630nuIoUVdTi0kVbcMUHWxxt5hSxu9vfaIBFsjDX78WRW1yF/32fglkrK+wKhr1ZxbIPs48tzBU1ZiTOW4Zvt2eq5tearQ1m8bdaeZe7lO2RX1ot5ETPt1nmzMr6yK8HMOnNDdLARNrn/tm/UnH5++7dM55YdhsC8V6yuGklVt6DX2w5hV92Z+uu54r1uc5FV5grP9yKP/flIr2gHE/9eRBVtbb31TNLDmHwi2vcuuf09uOIWsFdwZ6LniekZJ7Hz7tzbBowh04zA4E2jia/rBp/7mWNre3pamusM/ZmnZcaF0NfXovhC9ZKy8pr2D3uroVZdOUoV7y/q4V5Yr2JDHtpLS5/fwuKKmpVYnfIS2vw+eZTNvvOLqrEqkPq8QWu+mgbftyZjVlf7sId36bYbCPefqtSz2LloTPSAGHKAcW0Yk6sY63l2V1O5Je7lPrPbOHx5B8HMfOz7XbXKdLpQSgsr0H3p1biq60Z0jzxlTRt0WaXehPEeCLxeeZ5HskKy7IWe1pHi7Zh585oxL6EBLOW1N/RIXMxKmvMCAnwPKL99av64+85o1XzHL04OY7DF7OGoFucbD2+cXgHdG0VLv3+/rZhmH9pbwT5s8v3wKRu6BMf6XbZWkUEYVSXGNW8/gnyfpTlnNa/rSS49Uh7YQoWXT8IANAmUraGb3gkWZp2JUK5vhRorES1FgtyHXTdWq28/YfSid+w+MEMDjDiWF4ZPha6/NJ1AhHdQXwp+xk56cGsr0vG1Hc3YflB9lGx11q/6YudkisGx3tuYXanq11sdHys6S6d/PZGKTinus7CsjJo2HqyUBWUU2u24qTOeqvT8jDm1fX4c+9pl8ul5YDQMzH7y11InLcM+YoXe52TD6QYvCM2zFz9eDiixuz+dSqrrnPpA7T1ZCGSXlwtCXw9RBFjL97RYuXx6cZ0G1GpratXVx7FdEUDM7+sGhe8uQEdH1+Oae9txg87snSvvZbqOgsWrEiT3LeUiI2LR387gO+2Z2Hj8QKbdcSBmFztHdp0vAA9n1mJPVmuWxPFOjNrKu1MSZXufVsfOj2xXPX71q9ZXn2tYJ7w+gabRqoeymd5+gdbYLHyuOKDrZj+4Vbd3gXRYOGOYFbm273grY2os1jx2aZ0qb60grlM8R7zF45Ta7aioKwGL/wt9zBuOl6A31JycPn7W/DWGttYF0f+ySK7Ms7jru/2SC4tyoZqpebeDhDquE5T3vIaM15fddTl3pRJb25AoR0jz9dbM/C4EEhvsfL4fkcWtpw4h593Z0uNIyV6gvk5oSdX+T509510SAg8rLVYkV1Uicd+O6C7nnj/ONu7KDHySqvRd/4qaX4FuWQ0EwLCYLRUo7LOgtAGEMwzBifYiFltlgw9lA/oc5f2RqLCfaKFEIwoClA7yThcQmutWXT9ICy9lwl8v3paRJSW+Tgh4BCAJPCVfH/bMPw9ZzQ6tXQ9WFAPbXdYrZnHkTP2/cGUFmYbLI79+8TtQgL8cOFbG1XBhp4gXgt/o0Gy+PL1tCieV7iYVDjo3hKP48iHuaSqzqUPe32sn1qNrQwceeTXA5jwxgaV2Bvy0hpc/+kO3PC57PM+7/cDmPjGBhvRkyMM+LPsoOvZKarrLFI0OgBUayyPaQph5syXUHx6aoQPplYw1YcaN1wZiipqceRsKfrO/wfDXlrrdP23Vh9DYXktUnPtC4rj+ez87VmYRyxYi5eWp9m6SFlsxc+erGJJfP2x57QUq3DwdAme+OMgrv6YWdB+3pWNJfv0Gz1fbc3AxxvSMfntjbrLATmQSxRzPM9LgyyFBrB3VXFlHVYeOoM3/lEP+b3zVJHK91hsQC1xoxEmnvuGowX4ZluGNH/EgnWY+MYGl/dTH7QCVq/x/P76E+j9zEpkF1Vi1pc7sWhvteq7sCerWLIsZ56rRH6ZrQtLbjGro7BAP6cN539SzyJx3jK8u/a4av7inVl4cVma9NuRxVYUqXrvths/34mHftmvcslTUh93IKUYrqjVtzBXafb79dYMLFp/At9uy0RJZZ1HLnvP/pUqTSufvUd/PYBLhAHFrvxwKya+YQIA1bl/LViUxdGBjQYO+wVXMK0UEZ/HgrIam1iB08VVWHeE9bRV1pjx9JJD+Hl3jmodsadGzw3tmSWHsELxLj6eVyatl3O+StVL7Oib1ZiQYNYSEAqjpRo8zyPEWy4ZCiFqb/hs8WMcEeQHg4HD7WM6YuH0vljz4DjJ5UJ8GWpdMNxB+9FPaBGMYKGh4Iqwd4Yy72ywxr8tIoBDj9bh6BMfia9m6buHfHzjYLf8a+dP6wWAvWx/2GnfkmK18vYDC8zyB4HneZs6Eh9m7fm4i8XK47mlqfjQdBKfbz6FV1YyXzt/IyefcwNYfvU+kmIXmCyU7X/kpn+wxaUP+1kH2VW0aK1HeojR8/kK/7YCxcc6cd4ypBeUY5ngIypapMUPk3idNh0vwOKd6mjtGrMFzyw5ZGOJufeHvbj43U2SSNf61pUqPnrOXAPEx0dsYCnPWXtP5ZyvxCO/7LdbL0fOluLVlUfsWpi1FtySyjpc/M4mTHl7EwAmUPNKq3HkrFoM8zyPrSdZ+ifxWb32k+12syuIVip7jQVRTH2/IwsbjhUgcd4ynC6usnte5bUsI4KeABd7IR797QDuX7wPS0/aCiBlV774sc8uqsT760/YrCtavRfvysaA51fjRH45QgPZORdV1OKu7/bgvXUnJMHH8zyu/ngbrvxQTs0l1tGxPPsNyJ93ZePeH/ZIwkw89wUrjuCZJakora5D4rxldrdvSOylNlXyw44sVNRacCyvDKajBdidZ7FxUTmruB+UDQixzrOKWEN38a5sdNZYu0WeW5qKxHnLdF0hANvsTGK9rT6ch5RMddYMsfcz7axza7EWe89QRY0ZP2reEyJKf2rxvWK2WPHqyiOSgC6qqMUHphOorrPgdHGV9K56eUUa+j//D/o/J7v9Ld6ZJQ0m4y72svOkZJ7HSaGXs6hCfm99uildFW+xJ6sYl72/BYnzltlk5yoXzmXIS2swYsE6ySUFAEYtXCdNl1abEaTTY/zE74fwzJJDNsGTPM/jm22ZuPt7FpdksfK44C25kasV59pGSVOh6eXWamwCwmDgLQhEXYNYmJ1hz09afCiemdYbAOBnNODaoepMGgGCYPbEN058kOZP64VurcPBcZwkxI0ejNj0/W3DsEdj9dUO2vDuhBDEhDHf7GCdug70M2By79YwuiiY/3lgLGrq2LpnS6qQV1qD0AAjKnQsyRaet/9QWmRR9O32TDyzJBV7nr4AP+/OxpdbTuGe8V0AQDfqXezOthcwejCnBI/9dgBvXTMApdV1+HJLhs06fgaFhbkBBfOBnGK0Cg9C68ggbD3J3AVccck46aKricoHjueB8jwgnGVNsVqZr9v9E7viysEJqBauk70AFmVDJa+0WtXDoiQ1t1T6ANbUWTHhjQ3o1DIU6x5KRrFgZa+us2Le7wdVz8+yA2fwzbZM1NRZ8cqMftL8NWnM5zG9oALd4sJt7mHli91Vi7EomJUCWytwH/xpP3ZmFGHG4AQM66R2kwKAqz7chrIas24u59WH83D7N7uxcu4Y9GgdAauV1/XJH75gLXgeOPz8ZPA8sDvzPM6WVOGx3w7ivesGqlymtqefQ882EfhldzaeuLinzb5c4ZONzN1mb9Z5DGgXpbvO/L9S8fue07ikn/OBGH47bmuhUwrtWosV61PzpY+yFvE9sEFIv3Ysr0x6/4oWZ4C5d7UKD5LWzy6qwoTXTegQE4K+Qm/hCaHHpcbM8uZyHIftJ8/h8Yt74rmlqaioteDvA2eQ8tQkG0upNod8dZ3F7QFtCstr8PSfh5yuFxbk59SPX3Q9VDZG+85X3z/KxrCyAVtazcYrOH1efi60banbvt6FNWm2MQBaPjSp3bNE0X77N7tt1q0xW/HQz/vx254cm2XO0HPN+TUlBwtXOGqQyidVUcMC595dexwfKMr88YZ0nC2thsXCq9Ke6r3itOMUuBNEW6ZjAPljr7oeihQBpp1ahiFPp1dAj5LKOkQovl32sqysO5KPDooUtiLi9bhfSF5QY7ai77Or8NL0vurjaKztP+5UxzQ0VZeMJimYG3No7PicM+gKIATVyEo/DlNNhleP58ebdc+xooq9oE4eOwJTma21BAAKC4VBPNLTYeL1g2iccV4QAOb8dNTWGWHKBs4LQ3dbzXUe1X9fI2AynUarEA75lTz27EnB+ZNGdG9hQJAfpxq2stps+8K4ONEIk8nkUDDPHxGE+dtYPWSl7sbZCraf9SnMWhsfyuOYTs9c2pGjyAvSbxBs22xCTRALZvxqG6uf3/7ZhIU72HGeWcK6xzJ0cmdPeGU1Cqp4u0PQLkuvxeEzdXjl960Y0Ub/8Xtn7XE8G1UMAKgoL9O9Blaexx/H6zAmwQ+tQgwor+Uxd30lbusXiOGa/W7dmYLSdD/MWlmBAAPwyYWh+P0ge4GKlmyLzrU2W3nVx2/NuvUuu+mk/fQseh55BymDXkVZRHeU1/LIKqrEQ7/sR0zZCRw/z16IZ0qq8fPydWgVoraE/bhsvSSY1+/Yi6os/brKPC53/S/fwIaKTy+ogMlkwtFT6o+E8vwOZrMXdu6ZMzCZbHO+XvLeZoxoa8TRIvW9tz/tJExW9qxlllpwt/EvbLT2Q3l5B2n/56utKKnhUVvLjlFaye6h1CNHYapi7jtVivvdZDIhI5/dS2kH96EqiwmYc1VWrM0yY3pXf+kjmaUQP+LxvjrAzvOXNTswJsEfNXYsUOKHu9czqzCijRHbzljQryU71ta9qSgtlj9Sx46kYdUOK5afqsOAgDy93cFkMsFs5VFWyyOz1IoDBeqP3Ol81tjYtS8Vhaf0LZ0b01g3cfpp/WOsW68fiCSe+4cmWXz+75M1WJdt3zK1PzUNsWUncP4ce47v/3EPhHYbtu+VxeeSNVvQtYURBZXytU8vrEB6YQUMVeycispr8P3SdViXXYe1WfIxu3FnVA30t37baGNd37JTbWF95Ku16B1jRJARiA83wN/AMZexOiAiUP95++5wDdZkObfCpWSetxvMtf5QFpIjCmCuZvfnjgNHdNcDgE0pssDbnCL7rX60ZCOGt/HDWY0of/mHNYgJ4tAlyoA1afULvL3yw224tY/+AFOHDh/Fb0ecp8bTo1jhribeRw87sPaaTCZpSHgA2L73IL5euw/bzuhb4Y+etA1AFPn7n/VYlWHb8LvzY/2gc713/8ZjtoL/gZ/kTClXvrUSaefksvlVncfqDa4NYLJu8zZ0iNBvvLUM5lBQJb9bHI0dkZGRAQDYfSQTZTUWPPnrXmnZ7PdX2dlK5sDho2hb5bmrIw2N7W32ngZOAKFcDQb164NkF4agrBfCEJAto8KRnDzGZrHf5tVATS0G9e+LZDtZJ37J3QOcPYOuXXSGeXaR4L0bgbIyjBw2BL3aRgBgmQFgWotWUWFITh5Xr/0q+bp7KRasOIJrLxqM4AAjkpMBbHsf20paYkTyJdJ6//Qtw76sYjz62wE8NbUnbhPOybDyN9X+Xr+qPx7+ZT+uG9oesy7ri/nbWF1OmjCeBQpt2YCVwktpcNd4HNtp25go9o/FX0dsXzwAsKs8AiuPGrHsvtFIX8m6F1/a4Zq7gfhC0btveZ7HqqKDALKxLsuMK0f3A3boW8NOl1kAfyC33Irw1r1QLuRV/fSmJPRvF4nSqjosXbURWXWhWHLPKOzKKIJ53TZ8kVqHeddNku4vAOjcvTe7j1cuQ60VGDduHBbs3YSQgEpwwjfXz2hAcnIyzlfUYu5P+/DajH548s9DWH1YFjJDR45WWR+054aVclds10BmwR4cHwQMTmbXZR1z6+iTNAJ+Z8qAHcwP+VxIB1yd3Jl1Ya9kAX9PbJYtVq3bd0af/m0Fn3R1Uv8B/QcAu9m8hTvla5ScnIy3Dm0GIAfEjB4zFn5GA1JzS3D0eBqAc0iIb4vkZIX1Q1Fvh4o4gDcCkIVJTOu2iO6SgD5tI3HgdAlu3jMdj2ExTGFLpGve7ckVqLVY0TI8EKitQY3VgFUBD+Oc33UYmfwUACEoZ81qqazl61YCsKDvgIF4Z+0JjO0ai8Vp2TiRX4Xlp/R9H8Xj/Xl2L5Cbiz69eyJ5YALLsbt6te42IqVcKIBS1BpDAJShX6/u2LrhJAD2EUzo1A3HjuQDyMOQ4SOAtbY+0CNHj8XDv+y3m+KO9w8CUImvD9fiq9lDgG22I9EVCs+LX3A4lNdKJLBdX2ivOQCMGTuOCZSVcjexI7EMAPEdOiF5XGf8lb8POHtaEssAEBufCKQyq2Dbzr2Q3K8NDuaUABs3q/ZxtMwfgBkWHnhyi21Q8UMb1PMiW7cD0tSW07jE7sAuWeAsPVmHpSfZNb52SDssvLIf7v1hD/4+cAbDO0Vj8R0jbI7z25m9QJZ7qQU7xYYiXREjkFlqxfaq1jhVysoXFtsWOKF2Y7smqR1+2p2NiLh2wGG2XsuEjkAq8/U2RicgObkHrFvWAJAbqJ8caJhUfZ8f0hfFCYmdgCP2Bb6rfHYiWBhm2v7ItMnJyTiRXwZsZC4EX6U6FupdOiUC6cd1l927Tl9krs7Uv3eTk5OZpX2l81EKRVLymFiODQtEoJ8BUS2j0ad/e2DbNqfbdu3VHyO7xKregyJKsSwS5G9AWKCfTbDiOS4SQCFCI1sA+YWA0Q+oY+e43slzCgBt2iUiOVk/xa47NPTQ2E1SMDcqgSw7RSiqEOQDl4y3rtFPsyZaJfQC5UREh3qPXDKsYiozeR8twwPx+EU9XBqv3hV6tolQp7ArPQOsegJ9QzsAU66WZneLC0fXVmHo3CoUg9q3kOb/csdQ4Bs2ff2w9pgxOAEzBsv5nJVoXTs6xbLrGWA0qLpGHeWxXZKSiZN8PLZqkuC7w5J9pzG5d2upq7WwvAZJL65RrXPPD/bzTBskqzqP2V/tkgaKuf2b3YgK8cfnNycBYP50W08USkEhtWarjT9YWY1ZZeX6cWc2juaVoX+7KLw9qh/wJwv+qzVbcds3u5GSeR4LVxxRiWWA+YDaE8zagJefU3JxvR/wxO/7EXA6VfIVBWBTD8WVtTiWV4bfUvS7V+cvPYyFK49IbhxK7GWqKK6sxf6cEgT4GeSoe4sVfkYDbvp8pxQUo7zvtcFKgX4Gm8Chb7Zl4pttmXj/+kGIC9evC/E+E7u4a81WdA/KAY6/hgd/ugQPT+5uY3UU3Tau/WQ76iw8Nh4rcJiVBmAuBb/tyUGdYIkX3wfaQEU9xIBI0dpWVWtRWYwe//0gOguBuPb8j0uq6hw+R8ogHr2ofSUHcmzFMgC7o569s+YY3l2n3/Nmj8oa+5kclP6zoquVMkBPJOe866kuAeD99baDZmy2M/QxwNxknl96WHK92Z7ecCPe6bn/KQf10MueERXK7vGzJeo4ggCjASGBRukal1c7F0ENiRjvoYfymRe5dXRH3dRzm08UOrweAPNJ76rIWuUMV/zG3UF0gXn1yn548s+DLqdVLK6sRWJsKKpqLS7nNb75y53YOm+i3eWTesYhvbBcyghVXWdFoJ9tecQ63SRkM3J1VNSx3Vpi56lz5MPcbAhgH4lQVLudU7I+9GgdoTtfzEXpaPAUaZQ2D4LzokMDcLKgQuVDx3Ec7hzXud77dIqQKs3PbNva5jgOgztEq+b1aSO/rJ6a6tifskWIugsvTBgC+/KBbREbFogJPVphxkeOW9qBYOXbn1PscD1H3L94H2aNTMT8S5kP+nI3MjUAsm+x+F/p/lFcWScFoxk5TjVKIsCi75WUVtVJ0c0AsHAFi0Q/fb5SCiqsrq3DgKdWSOv8rpMFoKrWglqzFaaj+ThTUo2Zw9rDdLQASYktbPw0rUI8sQFWVd5PPX5NycHHG9MdNg71xDJgP4BHjBzvHheOg0LapcpaCzIKK1UimwMw8Pl/8My0XjZZVay8vv8hAJyvrEWs7VhCTjME/L73NNILK+wOWKL8GDr7yF33yXacq6jF8E7seREbzq5E44vriN3IxTrbiO4f9up+xAJbq7MSZYCkM8HsLu6KZQAoF/wi9QTND4ohfI/nl+PGz3dIH/v6EORvsFtvfzjIsGG18vhii1rYXfnhVnx2UxJ2ZRThnh/2YGKPuHrlKteLE3FGiD97fyqDQPNKqxEe5IeQQCOyiipRXWexaTC7Q6eWoR6n5FTtLzYUE3u2wvvrT+KBSd1w/yRmqdQTzK7w6G8HcMPw9vAzcAgP8lNlINJDL82bJ4gpDNtEBeGG4R104170MFt5hAQYUV5jxqwvbXt39Kiz8Bjy0hq7yx+/uAcig/1VRg9X3jeu3h/3T+yCO74pabJZMkgwa/ETRrPj6twOxGhIaiXBbP8SiTrZ4IGF+f3rB2F1Wh7aRds68HsNIc8x76rQVwRXhQTY1sfmx8YrLPLqayZWDc8Dj07p4dKgA/5CF/yrK486WRNoGxlkE90tcqqwAtV1Fjz0y34pk4OrcNJ//Y+uGGRz1MFQqiKvrDyiEmKlgjXo3WsHAqVMJLsyNPb1n25XneupwgpJDGvzeSsFszNEK649geGIbSf1RY1oCYwNkxtQs77ciUOn1VH1a9Lycb6yTuUDKOJI5JVVm3Hv9/shfoZmrazQ7cbUw93R/ewh1ptohRSz2oiZMdxBbyAR8Z5ZYaex5yyNoHJ5zvkqGDjbgDA9AowGXDagLZYdPGM/9WM9EIWHs3IrxXN9+XDmYMz+it0dgX4Gl/Nnp+uMmpaSeR4DX5BdbFamnkV0qL5vryPqM66A+P5U5i4+KwrmAD+YjhZg2MvOUxba47qh7TCqSyzu/WGv85Xt8NTUnqp0dG0igyQjkl5Q8aLrB7p9vO+2ZyE2LBCxYQFOBfMKD0ZQ1JKSeR73L94HgI1v8PTUXthwtED3PtEyolMMePBOLejDOkZjxynXejI6t2TGq/euG4g5P7I6/Gr2EGxLP4ePNzj3OR6S2AK7MthzOH1QPN68eoAqY0ygnxE3jlCPO9GUoLRyWowsa0MA9NOm+JpwB92ykkuGBxbmVhFBmDmsQ723rxeSYHaxfnnHH82EFiHo1FK/y0xMuSe+Ng0u3PEBcL11q5e9YRB3DO24PBw9W4YeT690WywDslDmwFxktLy0PM1mnj3sdeEN7xQDSCP9Of+gaxsGSsvxlhNq9xWL8GpxNcNJffl6m+NBGJTiSCuWAfdGk1TyysojqKp2zU/TWd2KHx5PcTb6nqN29RkHKQGXuDkM9/XD2tvM+3PfabSLDsH6h5OR1KGFzlYyy+4bjdeu6o/3rhvo1nGdsS+7GO+vP+FQEPdo7fxDHeBCl3uXVvL7SNmIf2BSN6fbukJRRS1GdIrBlnkTpHn3TezqsAfOkWC215vaPiYEPVqHq1yT8ktrEB7kj0ChR8iRhXGcMBKsPZK7t7Lr5qWkT7x+T+ynNyXhIo3rYGSwvyTsEmNtDUEjO8fiuqG29ygAzJ1k32+2sLxG911sj4k9WmHR9Z7dw2JKw9iwAHRuGQqDgZNijZTER6m7u24f0xHf3zYMIQF+ql6yTY+Ox6q5Y1Xrhgf549SCi90ql7IMyd1b4fGLerqUVUx5r0QGs+uudCkN8jdg7qRumOpC1pzGgASzFiO7iP4wO+wi9hWuuWT4piwNhjTcs4v1W8/hoUMDjFIdiZYGPxcUsz9n/3jPCnmeRVpHsh6Jcd1aYu6krpjUsxV+D5yPTYEPqHKXuotBMWT1mgfG4Ze7bAN/BjsRHk6PYeAklwxXLMzuwAs17+5+tf741yS186gcVwyM92h7R7jaGPBzst5SFwVpB+4sOnD2rVdHz5bppjoUcedjr+SEMKDIWCfiR6RvfKTNx7O4sg5nS6rRMTZUembsIboOxIa5Vt673HAfe22V416jRyZ3x9vXDHC4jiuDLCktwEpfdH+/hntZBwcYVULpwQu6qe53bUYbjuPw8IXdsHLuGNUIrAA772n920q/75vYFZ/elIRL+7e1Edqni6tw+EypS7nUn5raExf1aY1LFftWcmGvOLupVZWM6cruvcm91QHwLUL8bRowYUF+uGxAW/x0x3BcPsD2+TcaOLSoysQn/m8gEOpepPioYNydLN9PGQunStPPXNILr1/VH7eN7mgTQ7P4juHY9Oh41bxLB9jWnSOmOogZevqSXpLxp3uculE3f1ovbH5svJTKDQCuHJwAg4FDN826gf4Gm3RwBo7dGyM7xyAuQn7mkru3xK93jcC8i3rYlKe90COtTBcZFeK41+Ozm5LwuCJFpfhcKAd2q8/gV76k8RVhU8NPtDDXIbARXTJEHIl28QFqiCF3fYowkh7PuSqY3euWXf3AWPRoHY4vZg2RB3WRRh5Srxuh4/ISYrTgznH6WUe0LfkY4cPob+Qwd1I39G4bqbeZxOI7huOhC5xbmUSheUHPVogM8Ud3HctXfbpYP5g5SD2DFy3ZDfOieuMqFsRqceKSEeRvwHe3DrOZH6Ppar55ZKI0/fUtQ3H5AP0Pr5JebWTrR4eYEHx842Dp98jOtjmOlXTS6TEY2D4KgK2Vyw+O70vxXjM6Wc9VNgQ+iA2BD9oVbO+tO4GhOiP6iXWqdVdyVZCKtBIE94N27t9bRnXEZzcl4doh7ZCUGG2z/HXh3mireYYMHHDkhSnSb3FAIFfdxMRrOqJTDB6Z3F3KlXyP8U/cGcJSqrkaj8JxwOUD4/HznbYNVIAJwC9mDZF+L9DklxVRHq9nmwjMGpmIeRf1UIm7Q89Nttlu1shEjO3WEt/eqj+QkxK9gYJiFNf0wPwLsf7hZOn3dUPa494JXdGjdQTatVDXbWigH24eIfc0tgwLwAW94sBx+m+G28Z0tBm4qY3QEFI+J13jwvHhDYPxyOTu6Bgbio6a54vjOMntMC4iEMndbRtl0aEBGJLIjANaF52okABpPAIRs4UHx3EY1ilGd1AvfyOHy3LfwoXGFEyLVPs1t4sOwZiusTpnDFyVlIC4iCA8JQhnJf0Tomzu1/E9WiHYX/6+bHt8gkMLtiMX0FbhciNT+/yEBvqB4zh14L5wH2gbKsH+RptnQby+P9w+HDuemISf7hgOABjaMRpJidG4a1xndG4ZikHCexBgcQD7n70QXyuC+ZViW48x3WIxvnsrqYErNiq/nDUEN43ogAA/g8192dQgwazFyC4ic8lovOoRh792NIpfc9PJEsLAIC4LZicuGVq6xoVj5dyxGNYpBv0S2MdzkpCaT1mf1w5ph1/vHmmzvcFSi06xodj/zIU2olTrQx0WyK6TaLl2lrFkeKcYzJnYVWW50OPmEe2E/bL9hQf6Yeaw9vj6lqG4dXRHVs563AA2HwNBMCutpVdprCcr546RxNKNwzvApPgIaxG70mTBLH9uo0Lk3pJp/dpitM6HSeubKb6EO8SEYFy3lpJlQ4n2A/D5rCRpWvsRmtKntd2yA8DPGkv+l7OHSIMKXNRHbQHSszArL/+rXdNwJPBmBMO568aknvqpI0VRe4EiteTC6f0QExog3QfOEOuU59XX/4//2d77SrSNdfGdZDRwmNCjlc36oYFGTBJElvJai4gWzP8ld8bUvm0wS2gMdYwNVV0n8RlrobMPLVcNTpBG1AsJMOKe8V2k7D6P+P+Mx62f4pHJ3fH+9eqG4tvXDMAto2zrT3Rf0osd2fP0BbhtTCeVYBnfXa6H64e1x0c3DMJvd4+An0IYP39Zb8y/tDfuGtdZCjiMCvFHWKAfTA8nq+7pJ6f2xDe3DJUsqo4QhynX8sJlvfHhzEEICfBDjMKHX/m8GQyc6vsR6GdAUmI0xguCNS5CFmhKo1/Gwqk4teBiPH5RT9U9CQDf3TYMt43uiD//NwpfzErCX/eOkpaJ7jhto2x7F0RLY52Fx/vXD1KJfAC4Zkg76Z6oqrWoRGCLEH+b59/eKJUifgYDrEIPWESQUTjfQAT7G9EnPtJu48pR1hrts/LznSMQEeQvGVieuaQX2kQG486xndE6Qr+HRdxHj9bheOYSdU9mK4UYbRGqfi6mD2Lva2Uwqxj83kojYoP8jU5HBh7WKQb/PDBW9XysfSgZv/9vlGq9yGB/ya0CAAa0U/d4ai3TYmPx+qHtcc/4zpIraHRoAJ6/rA+OvXiRS70NjQkJZi2CYPbnzI0a9Ldy7lgsuWeUw3W07gbNBi9bmJV0iwvHkRem6KbIW3hlP5suKwDwhwXJ3Zll99D8yZKFEQD8NKMfRgTL1hGg/in+kru3xDvXDkCvNhG4fEBb2dIqnDvHcXjpir4Y162l4HvMxJkji+lzl/ZG9xYGlV+mzUufl10/RF5TWE96t41Aj9YRkvvHvIt6IDrMftdbkL8RD13QTXLJUIrKixRi1V7EfqC/ES9f0RftotmHJiYsEE9N7Ylvb2HW6B5tbP331j40TvWBUb50QwL8pICrqf3aOLRgfHzjYMSGBeJXhWju0jIMA4UUhz3byPXYMjwQnaJtLSptImUxdVHuIgRxdVgw2bk/nj3x2yEmBL/cNULVXT60YzRSnr5ANc8RkmAGj69nJWHGgFaYPigeCS1s03woeyCGdVTfW+LHP+d8Fb6YNQRXJ6kbVsr3pfJDCgA3DJd9RqNCAvD+zEF4eHJ3AMD9gl/vpJ6thP2w9wLHcbhvQhe75/XLXSPw8vS+ksVdbKzxGpvoPeO7YFKvOKmnIbl7S1w+MB7PTOuFH28fjpVzx+DhC1kZRLcVUTArY0j0Au0igv3wwKRuWHrvaLx8RV9M6dPGJsuPUmCL7w/RCp4YG4qVc+U8/ErRI57XTQrLr7JXRmwwX9ArTvVs3TgiUfLrdeRvvfZBOce++N4SraTKmBDxjSbeG6LgumNsJ/zxv5FYcf8YPH5RD3RuGYanLukFP6MBE3rEoV9ClM0x9QJ7RUt1ncWK0EA/lRV615OTMHdSV8lwUVlrwdvXDMB0wfUkMljtkhEV4o/bx+r3DgaiFvP8foC/pRJWXuydZcsu7NUaaS9MQVign2rES0BOPenYeKVeJlrb28eE4MgLU3CL8HwHBxjxxz36DdXBHVpg9qhEfHJjkrS+iNKdSvls3Tmuk3TtxHsnyN8gJQKI1rhJ6GWI0ZMP3eLC3dY//xvfGS9f0VeKPdD6r4t11D4mBI9M7mHTM9AcaNpyvjEQXDICUeeTtHL2iIsIUrXy9TBoAtqaDRbRb8xVC7NngWOuPPjKwKxArk6y7BkMnPSS+eiGwRjcoQWmD4yX0q5d2Ls1/AwcZgxmFuH6CuZ+8ZG4bEA8LhN97tYJkcM6/ttiA8lo4PDtrcNg5Xl0fZJlu0h7fgp6PsOS3NdZrHh8WDDGjRuDzzefwnC9LkpJMAO7n5qESiH11ryLemDhiiPSaHuvX9UfD1zQDaGBfrq5j0d0isHFgmCZM7Erft8TClTILhlxEYG4sFdraQhUe7UUGxqA64e1x5WD46Ucr7cpBuW5oFccPu60FYPbhyPJxLrDW4UHYfaoRDz/Nxv1L1TRCxDsb5R8LQONBnRrHY5YlCCKK8MJXi34JvdmokPpThAe5IcnLu6pcg0BgG3zJoArzgTeU5d/Ys9W6N02Ao/9dhBGowEwA1N6xgAb7JywgPIj6G/kJEvnI5O7Y0hitG5aQleCzwDZ2tSjdQQMv9+G14/8Dsxnqa9MDycj+XWTtK7ynfP0JT2x4U02uM+mR8dL3eFi16w2WEvZRR+lEcw3jUhUF6o4C2FR7VU9LYuuH4RzFbXg8g8DS+4Fbv4LD17YHRuOFWC/kKe5T3yEFLw5RLhOXVqF49Bzk53mrRaFj1IgjBAanF1bhWNUl1ipcSTeQ+FBfrpDEUeF+KO4sg5BfkYpbZkeIzTDnIvvEmXvkL3g8tdm9Mfba44hJpS9i24f01FlJRYbgp/elKS7PWDrx6xE+a4Se8ieuLgnEqx5qqDF16/qj/fWHbfpBeE4TtGY1A/K06JsdIh+7lEh/rh+WHtcrROvIApFpcXUYODw+lX9Mf+y3ipLPgDse+ZCu8e+wbgGd/n9DWx5W/pmihbmVuFKC65aZG54ZDwKy217iVpHBNnEqcRFBCKvtEb1HGm/P20ig7H03tGYtmgzLugVJ+W79zMa8Oy03jbH+fjGwapnTWyAXZ2UgMcvkn2C/QW9ouwFNRg4/HTHcJitPBs8SofOrZz75LtCbFigFPB7UZ/W8DMacOPwDrr5vZsrJJi1CEF/QZzZ5mFsaojxa83XwuxiC9YDC7OrKF0HWgSqPybihzY00Ah/owFvXjNAEsyBfgbcqBAD7mQsEQdTGdUlBhf00rgKiI0EHXeUwR1awGjgcPsYZl0wKuSnsmtwdNdYnD2SBY7jVKJT7ziBRiA8LBAQvpMTe7TCwhVHpCCM0EA/yRqvtVLcMbYTnlAEcwCQbk4jrDj8/GQYOA5B/kY8cXEPvLz8iCTcf7htmCqP9Csz+rHy+BkRGGZ7f/gbDZicuwjIBYAfAMDGUmE0cHjjqv74dFM6WoT6o6vw8R/TLRZtI4NgCnwAYVw1Eqt/wD8PjEWn2FC7GSZCA/3gbzSgY2yoNBAJwD5u2mvz3nUDkdy9JcIC/dA+OhSBf/izwc/qbLuIpw+Kx+975Hy8IQFGrHtoHNpEBmPgC/9IglnuTbC9r0RLaueWoTipyWP79jUDMPenfQBYL8HM4e1ZgM7C31XrKbO8TOjRSuUGIYqohBbBkuVx79MXSO4WIRqBqnTDiBAE8/juLfHJTUnqe+b4GuD7K4GrvwF6XSbNDvIXgth+eB7I3QOc2gT0uFhyCbitbwDmzhiBKW9vxNCOaiuuUixHBev3gIgB1Hq+lkaDLP7Ec3lgUjdM7dca58prbQIVl9wzCjtPFTlM6Zn63GSbZ0Vs5CjfL/b2MbhDC3x76zC8vYaNQKj1OXfFJcdRA14ZpCWuF+RvRLcW6ueuS6swvHNtw2QsefXKfljdMw8hgUb0i48CwIT3y1eofcE/umGwqmHeLjoE718/SEpfaTBwLmXXUCLFHJhrJJeMkZ2iETuwryqIT2uVbRsVbOM3DAB/3jMKwzW5yFfcPxZHzpQ6tZ72TYjErX0CcP+M/nhlxRF8vyMLxZX6aSyVjReACe6/7h1l0zvqL15D8dilrJE9rBMzZIzqIje2Zo9KxJq0PDx/WR+M6qzvs+0JonZ64fI+JJj/1Qhp5YKN3k2H1TDYWkyaBe66ZLjpw1wfVII5SP2REYWD3mhFNmJN8336695RuHTRFt1jLp0zGqsPn8W9E3QsVKJg1mksxIYF4uTLtmmA/AwcOI5TWe3O6gyIFeBnkC1PwnECNJdCFAjK7mA9Trx0kW7DkjOwV4uB41UWD6MmS0lnzcfAnUC0YFQjDPr+ilcOTsCVwkewf7so7HxyohQ4E8bJ24gfHXsvQknw1FUjMls9IIzW+q90kRjROQYQ7+9atWVn++MTERcRiLvGdcaMt5ajC5eL4ICJklVK73nWEz6i5XFSrzicFHKgXje0PbrFhakE5F3JnW27YnneJgjii1lDkF0kD5Ajil5lppIWOhZCEaWVXDwXs5W3PfaZfex/7l6VYJYQG9LCvSk2DBLC2DC8mx+bYLuNgmuGtMPHG08CmlS1SR1a4NUr+7mUsorjOMly3MXWXRsdYkLRIcaxZU7PH1OsC3f6oW4Z3RElVXWSlT4s0A/lNWangzgBjt0IIoP98diUHnhl5REbUeYtWoQG4OohzjPf6MUaeJpqjFdMiS4ZfpxtGkRXB3jRy/YSHRrAhpZ2gTEJ/ogI8kdy91b4fkcWuthJjap1bwKg6+4i3ltSsoI3BR/i+bYDqTw7rbeuNZtwDAlmLYIPc4ixaY40o0TSPI1bDPfxoQ+zqyizOUQHqK+9KC71XBG03eJ+nCaKW2Ht0vpAdm8drpv9AoCsmlx0R1n70DjbQKUNryLZ9BIw5hxglJftV3ZbSpZs9XHCg/wdBiZ2bRUmdbvpIX6op4ceUM0X/YAHdWgBpP2NoDg5yvpmJ+Jcy58hL6G79SSAmQDU3fValFHm9WL1MwjY+TEGcs9hLy80cBSC+clhOvsX7+86WYT2T4iUPrTd4sLxTcBCDDCko9T/fw4Pr1fNrSODsOnR8WgbFSwNGiBmbRAHmggTLOQ2WM1Sb9o71w6Q8tYqhXl0aAAOzr/QrqvD1H5t8N66EzAaOJRU1akEouiH6ii/s13ZKGW2Yc+SOG6Rq503RgOHG4d3ADQJQziOc0mseRM/F/xhtUQE+avEzdbHJ0iZIDzlrnGdcO2QdjZuCE2StKVA4mgg2Dad5p3jOmFgO9v5uvC8ZGFuCp3IF/SKw84nJqKVjgtmOy4P4YF2BPzWRazxeeVnAGSXDH+t1aYxsJiBXZ8CSbc0dkkalCYpmDmOmwZgWnx8PEwmk8+PPxYc/K01Xj32dwOOoGfubzCtD5Y/rG5yJpd1ER89egym6voN+9kYxJ3dj54ALBbepToOKzsB0UuvIa+Jcl/KoLfA6iLVsgtaWnGmwADrmTSYCtQm262bN6q6yzMz1NbEXTu3o0+sER0jDZiS6Ody+TtlZaI9gOLz57DPjXM+rJges/E1GAFsNK2F1ahvuU3IPoEuAKxWCza6cZwnBwHAGZhM+oOy1FaxemhXc8LmnF8bG4zYs9uAbbegLqo/gMcAAOMjC12qn2ThPxPL8nWc25uHpVeI032I2z8zIsjpuuLyvid2IwbAY/6LsST0aphMoQgrOyndl238q2z2NbymFkEADu/fBTEk8YE+ZtV6yQYmdHdvXg+DP/tgWhUjW4rrphaYMUEzT+Sk8L99uEFaViP0hpTXaI4n/N+0fg0sfqybORJAYTFwcNtOZATLwsyVa7FofCDmb61CSRWQdnAfqrOMquOPaVlrs5/2menoBCAzKwundI7R69x5tAKQeuggCvIjUVbOBpepqrStY3ucypC7txvjG2KPg2fNmGzYiZZ5kTCZbH1KXSlr6zOrURQ9GLWBzC3FYKlFeNlxlEQ5thi6Wg/l5eXO1+V59Ex7C2faXIDiFvqp9RqSwOoCjNh+G4paDMCB/s/ZLB8RDKAwDyaTTpeaQGSgAbAC2dnZCBZy7ZeeOaV7rjf0DEBMMOdyndXnHtPW82HN8se7nsad2Y/gxOJDyGl3qc32yaYn2bFjbgAAnD3PGpgFxRUwmUzSs65XtsDqQgTWFKI00jbHsjPic5aiPKwjSqL62F2nTe4qdD/2AU4dOQhgqt1yeBuX7mU3aJKCmef5pQCWJiUl3Z6cnOzz49eY/BHmz8Grx15wE1BTguThA3VbzK6wruQQkJ2Jrl27IlkTlNSk2ZMNHAEMfv6u1XFOOJDCJhvkmghDGEv7WrlM5ZKREBWAYZrjXKs1tgr7mDBenay+YMthIINN3zyiA66Y3BtXXlSPFn/NaiAbiAoPq/85b2LHHTtqOBBkJz/0lv3ASeaS0pD3+z8Hf4GYTU13v+czgG1ADC8Pyery8U3qn8ljRjML+voFwJm9wMyfXdr+lssm2l1lY99KlFbXyUn1cxYBRcBwQxqGVz0HJJcAp+X7MixM5zrtCwZqgF6dOwDCwIw26whlmTB6mPQeMKxZAVitmDmsPZKTmRjxO14IpNrZh1De6LAAhJmeBUJigOQHMS1/L6b2bY1kZTo84XhjRg4DQhR+wAVHgfdfQrce0wHMsHscPS6uPoIPTCcxdcIoZsk31wKV55Ax0U4X+oadwCmgQ4dEdNA7RuE3QAHQu0d3oF8yRhcdwI87s9EyMoSVqaYcMPgBQgMDObuBE2uA5HnSLk5vPSE9h43xDbFH5cEzePjIlUAl2D0kon0n2aM0F3jzMiBhKHCbMFz20vuBfV8B96YAsTpZRVzdt4DJZHK+bm0lsGED4gq3AM+cs79eTRnrIQyOcunYdik8AWwHormyel/Pkcb9wFqgXbt24MMswBFg1ICeQB/b/bl8BG3dVp0HzqUDCYPtbyPgrJ6TWxYD2UCXgHx00VvPBNWx+5TX4OUda1BaJ8zTLFfxQivAUqPrruGU+YIblaNttx4EjgEdW0fhm5FDUWO2IlmThlAFzwNrnwf6XQO0cl/E28Ole9kNmkCHRNPDDD8EG7zskiFF7NXfV1qUYc036K/xfJiHKjIhXNy3tcolI8LgIG/usVXA55PtDnfsrxik4rnL+jgMCnKI5JLRAOducXAvS64YDXsPdWjBLNpWYxBQVwWYtXUqdE03xL1bK+Sj3bAQOL7K9e0cuPq0jwlRjUCl6w/gzFVIvL8rC52XxWwb8DN7VKI07WyAyvYxIcx1YtsiYC2zwL133UBM6WNHtGqvh+A2Yiw6rr9+fhqQ+qfuoocu7I7tj8s+4vjrXuY/qXNOLiHWm3Bvzr+0N/6eMxoxwcL8BfHA+/LgIfhsImBaoHqXBnH2h2tuTIJL011bsaYcKDimPx8AquSGJgqE0Qsr8j0rnDtYhPvH2Sisb/QAXnHP1Uof4T3hgRuK5D7HK9xZ6jmKrF2+uxL4bIJH33UJ8d3s4ncyJjQAQztGY5ErQ8qL16+6BJgfCez6vJ6FtINUZh5ju7W0ydltQ+U5YPObwLdXNGw5GhgSzDrUwh9BDoZHbhCkwJb6CyLxoW9uetltn+QGfqkdfXEKfrhdzmf6/vWD8PbV/aTfIXyl3maMX28Bsrcj1E6wmR8aqqzCRW0I/22LA+Fix4e5XvA8UMsirbq3ZN39Bt4CvNQaeFczwqAweE2DHLe2wvk6ZXnsw7DnW3mejYh3hJ5gVlxrvYdQ/Gise9H57s2295MyQNIm+4qlDlj1JFDhwLrnCO09IbyPOHvvow+GA7/crLvIaODUAVCisLbYqV9eIX54njWolAgBo+K7MdDPqG68AEBxFvNprVA0Rmpki1cgX0+x3tCsexFI+Vr6OX61bbAuwEaB2/3UJHnGzzexRoH2+TcLdeWnqG8h7kbvHgKYj/rvTgapcYjVAnw4Ckj7W1EOF5+dWlu3k3ohvSc88c8Vt+XlZ9PRu9FFVD7+p4UupzoH3xCXEd8prp0zx3H4+c4RUg5ulyjNZf93fOxe0QBm9T93Un+ZptFrl8xtwIZX5XeCucrx+o0MCWYdLDAgwOBlFWoQBLMHgkgz6nPzwV2R1MBBf4F+RlWwGsdxMHByLQbwjkeKAoAkw1FkBF0PlJ1VzffnGqisDtLKuY3VgbWtIVtbn00C3hkgHNOiPnZpjnpd8UMlnOfk3k4sEI6o0XyU66qYy4eSYiG1UcqXtmVQkrUDWDzT1jqqFaz7FwNfXiT9TN5wue2+3IlNMNcwEbznW0SjBKMNB1mwqaUO2PEJ/HjNNTy2klmTVz3u+jGUaM9duE6cshFgrmUWnyPL1POytgPpJvY79Q8ge6d6X+I961RUccCeb1iDqjhLMduoX0YtP90A/HitXM/VsmDuf/hVJ8f2kHIXrbkbXwOW3ud0tTaRweoMMWL91miCWMV73U+xrjidu49dq6rzzBVC4LIB8RikSJnnNjVlQN4h4Pc75HluNTZdIHevqswS504Cx/6R7wV7FuYt7wBvO/GlVm0rTLsjmGsrgLMHVbP2P3Mhtj+h49rlSiPeGaf3sP+uWtVrK9jzVK93uovbKHsrFw0G3htkZ0V1Fia7fDkFWP+SfB0awjLvRUgw62CGseGEjz3El7wH1lNOSivXzCSzu24Avkgrp6jDQIvzl91dfoK15dQm1XwjGlgwe/QCEc7J4qJg9vQ+Or2bdQvzvPNrphDMx1+6CB/OVPj8HfwVKDqlth464oNh7IMr8uN1wDv91Q0tyQqn+NDrfSzXPgcc+Rs4tVGzQPPR2vKO7baVRUyo/3AtE29uCeZqJoD/uhfb/O7EdwELYOTrgK3vASseQctjP8jrKgWqKKB2fc6EvpKNrwGfJNs5Xo3+b+UHrjwPOLkOWHy9PK+qCPhiMvDNZewa/TIL+PwCxfJi+Z1mx+Kp6l5P+4tN56fJi0XLuiuirOiUbG2tKpZmt8v5W399Z1QUMp9oR5zaBLzeVW1xdYZCzNulqhjY+Sl7fkQRvP1D9TqiqNSzMK99jl2rVxLlhivA8oCXaBqsSo6ulHL26iJeh7oKWTApr02h4MZTlgf887RjFzA9aivZfboggZVFxGJmguyHq5wL29XPyI2udBPrTSqR85wj9U/5meWVFmY3XHd+vwP4aDR7zgUij/yIsHRFmcXeEVct6+Za1lMivnvL8uR3/rZF7H9VsWvfAdNC4K85wNEVrh0bkHt3lM99fpp9y7G9XiMtnOz+4hJiw7Ahehy9CAlmHZhg9rIIFa0ojqx/znYhNuKamV52WwD7OK1ccGWugzVZpfuLrhea1j/n6gvYamXuAfb8PF21MJ87aWvh02KpA/Z+J3/Y9I6jnXaV6hLggCbIzlLnvCEo1RPL0yv5evM88NutwLsDgNc6A4d+Y1az3V+wD/+Se/T3t/kteTp9Pfuv7BaVrJ4KEaf9CJ/PBDKFnNmFx5jFruS0vtgw6qTherUjsPYF4NgKZu2yJ5hz9wIfj1UJPJhr2MdSgb+5QurB8KtVWBq/uxIw+KvPYdmDTOgrWfciOxbPAxmb1ZZ47YdPEEAcb0E4KpmPvtZVAmC+hiKLFH7E8yOZ2FP6q4qi6uxBdm48D+z7QVGfnCz88tPYPnL3ye9G8fi1lcD8SLQ+s9q2PBwni0uFKK1uO9x2XUsdsOxh9fVc+QSw4xP59w/XMJ9oR2I9V7D8/XGX/vIdH7OGk9LKuOIx51bpFY8Cyx8GsrbJ99eGV9TriMIic4ssEJXWZhGl3/wvs4C3essfiqJTrK7P7GfvoR+vAT4ZZ7sPEWU3+TFBHCqfo0VCrpgVjwBb35Wt43qsX8CeESXK++zHa+TpbYphNKXBf5xYW821sjA+q0hp+cvNrAEIgLlkCPspVz9zAICT6217qAB2XQD2nIv8NQf4SdFQFe/dT8arxbi9j/T6l1hPydEV7F3zRjfmy6skfT2wi6WOkxoByjq2anp0zruRMUtsgCnL98Fw1lBRNjhEHD0XX14M/HY7m+ZctDCLVBS4t34jQYJZBzOM8Dc00IXL2qF/44lWFHdb48pdSC4ZzUwxCw+FywFfvniIhGOkWdsjuCKH+VY5IAD6wthidlEwp/7OgqOUQs9qYVbB6hKFhdnJ/fHeILWFT4/vZzChuSjJRpSp6tbRsXJSgKJ0tr3FzFwSvp3OXva/38782USqzju3cohCr7qUCYk/72EfBa1Iy0lhVrO/HwCytzPhL+IfopjWGUSitoJdx/mRcqPCkYU5L1WeXvU4ExFv9WJiQ/uMKT/GSs4JjZLqEsBPR1QfXcmsaWf2y8IeEIS6+hh+5gpJ2KpGxTTXKO4PO/fbTzfI04XHgK+mqj/02oadWC/mGmwJnINP/N/S98P8UOELqz326mf19/nRaCYEMrcAf94N7FX4kYuC+fAS9n/f97K7mijKBIHbPks9SiEA1igR91FdLM2WRjtTWmKzd7DcsO8lAccF8b39fSb0RMtekWBZEwPp9BDfW7Vltl3v5flM+L7TH3hZHsgGlUXAu06CscQelZoyKUc2ACBzqzytdNHY8y2QvYs1KvUw17KyHhOexeeiWO+N+Gzu/V6u4/I81qgqPYOAmvPq/ShHqhQtqFrhdGa/3Pi327MAFpi76XX1vCNL9ddVNmzyD8vlfLM3sNKOK1JdpSy+7KG0MG96Q31+hceBby9n7yMt4rkD7F2t/H4d+EVYR7h3a0rkcrzTX+79EZ87q4U9w6K4XXwdsP0DNn1kma0hJXcPexe+1Ys1Or9RDPgjvsfChBF2tI0AZTkLj6s1h9TIFOJPlD0Nb/WSt9/7HXtG9Hr9xG9K5hbg4M/sXEURz1vYtuVOrokkmL1vHPMEEsw6mHmDKtuBR3xxIfCeToqZBrAwzxrVEb3aROCKgQnOV25KuB3018AP0eKZzOIjcuh39N7JUlL9ahnLsnccW6m/rdBy7tlKfyAM3mGAHc8CtQqPyy8IpcUuYzOzCi6dK7/kPDl3cR8l2fI8ZXYBQP1ytXes/T+xyO93BzLhs+oJ4I87gZNrZdeFcoUv9593A2U6XbyiT17a30y8AEwQvt4V2PcdsOwhWXCKhMbYL5+/YrjaADuCWRQLR5ez/8q6cOanrETbpW6vEXf2kDztp3OP/KHwAz2naGSsedbGChWxZDaQ8hUAwChmAgFYnS2+Tpiu0/eXTFOIEPE4ynvTxiWDiQauLBcRXBUuMKZIx3aZOk05Co+yRpbISc1IiQVpsnVUfA9a6uTrLHZrVzEBZ/YLtTUwcAbZGqu02IsWVlGglOayRgPALKbfz1Dv541uzB86WMie8/EYuRyZ2+TgKEB97UVjCM8zVw17YvH4Kvvd9CufYIGB4nnUVjCrusiXF8kZM6oVgnnjq8DnikBBLS+2BBaqR7HD8kdkyzTHqRuo614E3uyBkdtmsXNJ/YM9q0rfYvH8tD0UH4+V3yXiMuX9rH12xd91VSwtnhKxcatsJC5/mP2vLmbxEKK41FJXJZ9TlUL4+yneFVpRtvdboFh4Lxz4SX0OSpSCueAo8L4cOC5ZtVUNW6GuzmcAR5exd/8LseyZeD4ayRuukBuKgOyCYfRXNf4AAGFxsrje/aV6mfhci++b8nx13VedZ4K1OJsZTdYoGrY/38j+8zzrzdD2NGx5hzW0ltzDnhHt90O5D5Ejf8v1l7uXbbviUXn52UNsv8oyikLcXA282QtNFRLMOjS4D7Ne5KfYEnXHh0pDfFQwlt8/Bi3DXR9OuEnQ2D7MR/4Gdnwk//51NmLyNgMAyhAMc1CMOm2TDn5W0QdXfQ5WpYVZvLZHVzLfvpJs9lL8/ip52aFfFTsVXniZWx27ZJw9aNvF56qvc3UJsOE1eXtlENzLbfS7jZUiT1tmEVGMAExI6/H3A+z/TzOl1Gc2fDxW/TtAMRLid9PVywwKK1xACGyoLZfX0ROV313JBMj5DGaxOZ+pXyZA3bBxhPJ6iY0CJUqRfkIjIDXX2pgvBxi1PmQnit1Sq+9PrUTpgyySvp75uYoBYnoZMFK+tJ3nDr/MAj5VDGOdsVm9/PASZlEGZIFYUyYfV2ykCI3LwJpzcre4hMKtQ9moET/AvAV4qy8Tis44vkq2MANMgK95jgUmrZynWFHx7IkNsHUvAF9f4l62gYpC1gDY/j4LDBStyr/Otm18fDUV+PN/9p8be2iDBquKgB0Kv2jlt0lZt19fwq7fTzOZVVi5/Yp5wB932x5LdFUpOsVcW95SDGyRd4gJcBHRevy5YtRRkc8vYO8zZzEAer7mdZWQ3DaqzrP83Dm71XmgS04DB3+Rfy9/GHi7D7OS7/6CzROPfewftp8z+4FSRU/xybWsQSid30FWZoNCMNdWqBskoiDOtz+4CgAmzLUNdHON/XeQ5FcuHKs8X60rXu0IvN5FbkQqRboEz9z7tNbp1c84LivAMoOc0fS4ie+5M/vZ/9Tf2f7nRwIfjWL7zVMYF5SW69LTHukib9IkBy5pbOp4A4I5L7sBSBbmpj8Ed4PTyFky5HLwNlZFHhyswdGqwA5dxAe6tpyJrqAIYb5CEFUVA2EtZb+8oYJ/V02ZbFGrPMderAGhcqu8tlyuo+Is9qKJ6cx+H13J9nfFx0D/a+Vj1ZbLZag6z7pe7fVerH8RiB8EdNGJ7j69B2jTD4hoy85R71q5Kh61GPzU3Z82cLBpRCmtRFqUVm090fjTjUC/q9l0rY57QWkOsFAxVLJNoJ+CQp2cuABzBdGKG0eoBMpW9TJ3gnVEcnaxP3cRXYHSlgJ2RoFsEJTXT68BISIKVWUPw+k9TGQJ3bmBtUVMyCkpywVEA6holbNa2HE5A7t/S7LYnxZnYqA8T/YnPbmePae/3qLuffpuOjDtXda1D7h3LV7rDAxT+EGLAZAiHUYJIuYsC6YVGxcNBsfErTNOrJGnxUavI9a9YDtP2xBe9hATnfa+BdXFavGpx2cTgSfPApsUPr91lXLDs6qYNYq1HLPznCnLmL0D+OcpFnTbZZK6DgD9Z/XoMiCqHXC2mP0uOgUEhuuv5whzte29UFvGxgAAbOtF/OaIVvLzGfoWePEdqOxlE+F5/V5BV7CaWY+MkvU6qTS1GTW+v0qe1rrRlGQD0Z3qVx4vQhZmDTzPow5G+NkZmKLBaAALc7PBYpbzUwKNb2EWqS236Za38gb415UxK7TYdfnH3cAXU4Q1BIEtdmn/PZeJLsFiG1ipeOlUF6vTzolisbJQ3aIWxblYFqtZbUF+b5BsFRCFmya9EfJSmXXr8F8sZ6rYhWmPI8vYulp+nQ282ZOV5eNxwIutHO/HHaqKbLvCVejcD6aX63+84kzmEw6w7n9nuNuQm3sQeNTFgSi0xOkMKytYsB4NW1C/ferhbBTRv+bY9iB4SmR75+vYQ7RIAcwC9css5mPsCtk7WbaQ0ykAeCBUce9yOuLLmWX+wxHydE0p80nWc9Var7hH9YLFHKHs6dISGA7EdnVvf24d+0O5ATJRp/Ew+kGgxyW28xuCE6sdP28rHpUtso5YOpe5poicOyFbZx01tgHnDcWtQtChnj+7GBys5Pg/7Hsu3nc/38jcMLQo4zD0KMtjo94pObFWdmnSGnNqyoDPJwN7hHzfRSfVbhfK8tmjOFPtduQLlAJd25ultVg3EUgwa6gxW2GGEX4N5cNsDymtnB3BnL3L+eg7PK/2mWyqbHiFdc2Kqb8Ei7HLQX8NYWFO3wAs7KD2AXytizoQCsAb1wyEoUx4cWx5l3Wz7f/BtitY6wOavRP4YAQmpD4hz1uUBLzRXf6dobBgKi0Ab/dhL0HRwmypUwsHgFmwsrbLmRC2LWJWGpEvp7CPzM83qrsO7XH2oOx7NnKOPF8M9HqxJZCfartdfYlIYL57GZucr+uMPgqrUdKtnu0rIEz9e6DCHy/MQW7osY8AUe3l4ZntMUhwdeAMQM9L2XSXSUC0cN/F9QFu/FNe3xiIx26+Ajw4YNjdwLU/SovO85qyukLnCc7X0XLB8/rz2w5Uu8jYY9id7h+zIcjYxLKFiEGwYQrB7M1gImU3tl7WBS0RLsac+AXpN6wcEdoKmFuPb0JLneGIY7sCI+51f19K9KyEYa2db6d0mRjjoPF/YLH69y+zZF92Z4LZUgNEd7adn3QL0F7RWNLk2tcNMAZYDuSCI+r7Tpu5xhW0OesBQVwKjcBCjYDf8zULiJbKp+OeBgBb3nZ83PpamL1BfXrbfAAJZg01ZissvLHh8unaw9nQnJ9PYi9/Rxz4mfkDHVnesGVraERfJSlARsyS4WIdN0SWDNMCZvFVZjcwV9sG4nAG4CbB8npyrXrQAWX6Nm1QyLdXyJHc9lAKXC0/3yT7mvIW5hOnpPAEy3+r7NYWUw3VB2VQiSNhKKIMmnEFg796vxFujD7ljMTRiuMovMouXSQHbUV1gEPuEixE0zRWxnGPAg8cBm5fB9y313Y7gLnDTHhK/q21wg26CbjxD9ZdLIpPYwDQIpFNh7cG2gxg09EdgYh4eduo9ohp2QbcU3nARQuBxFHSoo/M0+yfz1CNlVj8qMcPBhKG6m8zUWOFatkDeOa8XIdaZq9k7jp6tFIE6kTG66/jLeyJuvFPANf/Ite1kl6KLAMhscAoReBZuLv3qptZivQCVAHgf9uB7opYAP8Q4AKFz/L9LljdIuOZW4CWKz4BnioAHs9hLiTK8wdUPRFlYYKI5Iz2r3d8EtBzGjDuMWDKK+w/ADyQCjx8AogTBhFJfgK4dTV7JkTu3AhcLGTKaKvppk/UdO1zBvet7JJLhsYSG94W6KxxQ7vhVybI5yret616Ad0VIzJqjVpKF6yHjto2APpeBRtcaSRc+TnQdbLjdfSGP9da4juNl6cnzfe80eNOA0zpYuQJej0eTQASzBpqzBaYYfCBhVl0yfDAh7lACB5wJtQaG2lUQ+FcedHC7KIQdtfPe81zzHdNmatSjMZ3lPIIYAKs0zj24i5KV6fA+vwCefhd7X7c8WPVw5nl1dP9KwmMUGcUsPcBB5iVq+1A4KJXbJc9WwxMXgD0ng7MXgFco/CxfLpALUKcoZfX2B5KAaQse1R74A4Ts9jOPWD78VXSug8TD31nANcr8kiHxTHRET+Y7fvpQrWovuhVoO/V6n1d8x3SeswF2vRnv+uqmWXXP1gOSGs3DGghiHhzDdD7CvZh7nkp808fdBPrAr9RSJ0m3q+KbuMeVz6JsvuPAd2mAFd/I3+Ekx+XP7TRnYCn8oGHjrD6H3IbcNtqoL1maGSDPzDmQWCe4M8Y3AK4ZwdLd6kNkLz6W2Dyy8yabi/TQztFxgCtVVRprWs3jIlYl9FkLgmMZP+TbpHnDZ4NzNIxGrQfAXS7UPbtB4CWPdn/npcC/YUG6vgn1FZ1paVt1Fzb/WobGs644Tf1PSbeswlDgY6C3+z0z4BWPdXBaa37svsgtCX73aKDbQNPKXwnzQcueQs2zNkD9L+GpTkMDAcG3wxMWciElNg4MgYC1/4A3LYWlSFCOjyDkZX19vXsnhO5bx9w+1rgmu9Y3Q2/i92DT+QCkQksbmOAkMWl+xSg3VDg0vfYvXjBC0B4nCzQW/cBuijSYl77vdwTIxIYAacMvRPoqgkg1GZlMVepfYr9Q9nzMvFp9u4YLRioYroAITqNxuH/Y8+dyIh7WeP34aPA9E/l+cr7HWDf+nZ2Gq1K+s4ALnYyQuUMwXWhVW/NMRRSbrwi5d7oB5gvvEikojE1VuHqJK4jvluVgjWiLXC/psdTRCvGg6Lk6SfOAOOfBC55G4gVelrtWeeVTH3D941uFyHBrKGmzgoLjDB6Ox+gJCI98GEWrWtNPXBQW05JKLsqmN28FpvfZEEaylyVonBxNnqY2EWv7YZrSHo6sBQ2FB0UVti4vmqBEdNZtlT4hwADb1Jvq3z59r2KidDBN7MPiXL/HAeM+B9w1ZdAh5GyIATYMuV9qQy6u+Y7+YU8aT77f/mHstXJmd+k0poZ2lK+vwLDWRk6CxaWWX+zsl/3k3p7UVyKH89uk2XhoB0EwugPDJ4l/x52p5xDXYTjkNd6PDBS6I1Q+rH6BwG3CeJCtPz0ns6uwf+2saBEg5EJiknPsg+39vgCVwxqh/AWccD1P6mF0oCZcoOq7SB2DkERTASK59NS+GDN/BW4dzfwoNDIDooA5pcAjynKPOB6YOAN7EP3VD7Q61JghJCXVsw6cu9uZk0cPJv9vlAR6KW8T3peyq7t4zlAv2tYL0A3ncwIIo+eAh7LBK4S/DF7au6Fm5cw0TX1TWa5nPEFENtF7gZXWvJE8akUXEbhXgkIlVMWOhqFr/1wuSEkMuZB4O6twINpQK/L7W8LsIZRl0ns+RARBTNvlQWz+B2Y+CzQZwYT0KJry52bgP8JPUvKexFQC7jRD7DGrQpODhhWEtEWmPySLDJ5C9BjKpCQhPROs9i16iFYu+MHsXvu9vXMUi26E6kOw6kbryPuAZ4+pxaoU98ARgnPSPeLgXHzWEPsio9YPV77IxAUya79aCG4MKYLK6PSbeyC51mdKInuCMy00xC76FUm0CcvAAIVbk0Xv6Zeb9xjwnOaDIQI94bS9/3CF9lzd/lHwPinWP2JKK3K8YOA4ffIDQH/ELVgFoTq8S632QpRsRcKAO7Zyd5VymveZzp7XrX35COK7C6t+6qX9biY9Q71vQqYrWhYTniK9SjNywb6Cw2ci15lhhClu6TBKDfaxj7KehSU+3gsQ35/KoOaA0JYj13SbPl6Xq9wobk3hfXmKZmzhzWsmiiUJUNDjdmCOhhhgBtjzNcHycLsgWAWP6ZNPXBQFDRSqjR3XTIaoPEiCocaOxYyETE92aj7WEBUfYjpwgRiUITcC6Ck2xQ5T26fK1mKJbsZBHQyR7jCzUtZ6rDvprOXvDKfcVR72Z985q9MRMzZw/yqd33GLISi64rSsqwU0oN10pAprQuA+sU9+SWWlWDW3+yjCABjHmKNodhuchfooJuY/6LW969Nf2b17TCKidB7U1g0/sAbWNBVbZl+RLooIO7exuq86yTZyqjknp363Z0is1fqp4dU0vsKlhJwkKYBkiCMhBYUATxT5Dz6X4mjda/5Ftj2PhM/IdHsQzNeJ8gIAKYsYKKtyyTH+abFcl72vv6yKz9lg9bEdGH7uehVZl0MDGeirvQ0mz/6QSagxir8T6d/Yru/OzYwYRsQzjJeiJa93pcDCYeBnJ3qnNJtB8rXtN1QWYjEdmVd2u2HCwPNKGjdV76fxEfJP0QWRdqsL9M/ZSPWnT3IzuGGP1ggVUwX+R0WJxxDvD7xSaxRos1kMeFp9j8wnAnGZQ+xno+MTawwox5gLiGi4AqPA2ZoYlci2qhdmqI7q9Pf6TFqLvNZtSciRS55k90XCXJ+3ZqgWGCKzrWKH8T+XMXoQF4EhMiW0MBw4Oqv5WUGA2tIt+rFymb0Y2JVDMLT67kS74n4wSzoc9q7sjtdUJTcIBRT342cAwycqd6Hf5BszBANJ+2Gsm91zk75WovWcyWcEHOw9zv2XZ7yMrNwn1jN3k2i60lcH/aMtuqF3PxwdBUFcr9rbfcZ1gqYKfRMnDkglx2wTRcY3IJZe8VsE9M/VftSdxjB/rQYDOx5H3Qjq2uxcSW67IlGgIBQ5mLmFyRb7sc+ynrR/IOZMF45z34WpP7XsvdgbFfW2DT4s4YuwHpNdn7KXDf13uFNCBLMGqpFC7O3XTK0bgr2sFptLVo2+2gkwWy1MBHl7AOstTBbRcHsJQuzHqIPrrNAEDFgYtBNTFyvEl7qiWPYh1358bbHLavYx5jnged1shS0UFhoZnzBPsx/3G3rtwwwC+mer+X8oCLhbZnAAJi/brGQQ3jC00DHceye6TIRW0d8iZFjr2DLxJRQMYJPYPepso9sTGdm3QpvzbrNv57GXsJKq9Gl7zE/akA/sCQ0Vv1bGXDWYSRwl47bicEoW7IA1rAZMJOJk7MHWTCk6WXWAFF2N8d2kT+y/kHso6QcyERLXC/2Z4+wluzPHnofG71zueRN5+s0FErBGBDKBJk9/IPlFHueEN2JdcOL+AUwkQcArXqwP4BZy10htqt8jykbdQDrlg2+kFnZjq9yvq++QgaWoXeyhoHIiHtZDAMgN779Q1hDcs18OYg0KJJZm/tdLYsz/xBWLm3ZRC54gVnXJguZMhLHAH8Kfpz37FJbd4fcxiyp5zPYPc1bmRhMmu383JTcs5Pd7+J78aYlsHFdueA5tf+zPQJC9Ru/TQHt/fq/7bajcwLsvSUK/qu/ZetEd2QNhqJ09TUQXRL0/NqViIaTyATWQ+JKL+5FC9mfSGw3ebrtQPbenzSffS/7TAdvMrFlT57Vd0lTGiBu/Uf9HRxxD+tFnTSfNRI4Tm3xdvSsX/ujfmC4sp5GP8je/yMVjRPx/dplIovzUcaSSD24VczXXjnYDcDKJ/qix2katINnsV7OigK1yG+CkGDWwLJkGGDwtkuGqxZmax1gsJP+Ruwe9VaeYkfwPBsmN6qD3Aq2hzbntDeD/uxl3hAtzM5yCCsForK1O+NLliO2OBs4s8/+9vGDZeHIcawL8487gJm/sSGkq4psA+Ba9wXu3sySugPMAi2mr2o7gL14RcF8yyrmP/3PU7Jgju7EAmn8Am1EY21gtG2DZvAsllB/0I3q+UERrLtQTKOk9dVtP5x1/W1bpPZpFNETrN2nsryj7vgocxw7VvvhLP2e6WVbMa7koldYeqkQB+sQTRNnwaQBoez9UngCu7Zvgs44Y7Zo/UADw1jwWbuh8gAk/sHsuZmvcMf433Y53aPUm+LEGBAZD0xVDPU84DpmTas6r+8HGxrLXER6TmOW+fpg9FOnC+yUXL/9NDda6fQMGfyYi4yI0vf1svfZCJ/xg+V5I+5lBoEEJ3dS20Fs+56XMouxcqhyVwkXfMH9Q5kAv3+f/nr2GvrK97a2DB1GAk+5kJFFjx4XO18nJJr1ANqjk2ZEQPEc6qrUrnmuYjDIDe8mDAlmDTVmCywwel8wi1ZjZ9ZhS52tX6VIY7pkVBQwdwM9lwMtdoL+DK76XrvTIKjT6TavrZD3sfFV2+VKlJZTUTAHhMkWyDs3sC6pP+9hrfs/7pAtU4CcYUOk39VA+2HMN01shRv8WNCNjb+hwHWL2XCkIspR7OIHs+uuvOahsepgIWeEt2FdhvZo2Z25IOh9VEJjZb9jV7jqS2EQCSfCwx6hscynUekDqqXPlepUc/9GXMlk0pyY+CwbcMJe75mW2C6oCNNJt+UqyUIWB7HxbdD59EW0ZX8Asyye2ccs6O7CcfpiWcQvgPnKEp7xWIbj0QA7jLR9bxgM7H3sDI5j7l6eYDCwd7nS0uwK0z+VR0JsLnSbDLTupw4k/BfiM8HMcVwogA8A1AIw8Tzf0MMWNQg1daKF2cuBdKJ40hN4SvS6oEQkV4dGEMzK4Lmq844HSDBqLOHe9GHWDvtZW8EG4nAU2KNE18KsEXudJwAPCQNhtO7LRN3rQneTMqgEYC9eyU/tKjZYQkAYMFxnaFnlNgY//W5AqZEk3BfTP3McRKVk+P+Yn7Ij30IRV1wQ9Bg1l4kNEb9A5ubhCb0v92z75s69KY4FWHNkzINqy6CviIhng//YM0KIXPY+0P0i2wAqoungbFCepkD3i9zfpiFcp3xNcAt9l7t/GR5lyeA47guO4/I5jjukmT+F47ijHMed4DhO6APDdAC/8jx/O4BLbXbWRKgxW2DhfWBhFrswtCmctDiywjZmlgylSFcOBqKH1iVDGrikHhbmA06CWLQjbf14retiGdBYmIXoekcv5rhezO/qwSMsat4RE+cDj6TbFz9XfytHKz9yAnjIznDMgJx6qeskOYjOGVMWqLugvcEFz8lDgBMNQ6ydNFeE+1z5uf1MD0qCozy3MBIE8a/C07RyXwFQOTNyHGcE8D6AiwD0AnAdx3G9ACQAEAcxbwSnW9cQR/pz2fpZX0T/Y2eC2ZGFWezm9iSXc9lZFqHqLkoR68zHWBL2DWBhPuIk6E6bH/nURv31htwuB4A8eIRZXwGN5Unwh7YX8KMkoo3cnWsPg8HxvnpdylIsAUykK326gqLUQ7lOfIal4GoOVhaCaCqExrCcxARBEG7ikWDmeX4jAM1wOhgK4ATP8+k8z9cCWAzgMgA5YKLZ4+N6E+aSYXTd+llvBDHmVDA7cLcQBagnFuafbgCWP2xrmXWG8phOBbMmm4fkw+yiYFauV1EI/HUfYLbTkLDUMsuwsxGH4gcBDxxiFteINizK/RmNr23rfiy47bIP7O/HVzyYps6VazCS1ZEgCIIgfIQ3fJjjIVuSASaUhwF4F8AijuOmArBrJuQ47g4AdwBAXFwcTGLqFR9xILMOnWGApbYGmxrg2MnCf+159Mo7i1YAzmQex1Gd44jb7di+BVUhmbr7js85gq4A8s+exuF6lnXoudMIAVD0zc0IqC3B7iFvu7RdaPkpKWJ95/ZtqAzNtrtux5xcdACQfvI4sswmdD+TizYAwJtdur4dMk5C6kDN3AJkbsGBuvYIK89Ap1PfwjTuD4AzwGiuxJjtTNyezTgKR56zR9IO42yx82Oj7d1AWj77a4aUl5f7/Bn6L0L17H2ojn0D1bNvoHr2Pg1dxz4L+uN5vgKA04STPM9/AuATAEhKSuKTk5O9XDI1xzemw3zcCH8j0CDHNrF/NvvK+xwoANrERKCN3nGE7YYNHmibt1BkexpwAmgVG4NW9S3roXCgCog+v0+/nPbIjQR2s8mhQ5Lk/Kt6WLcAWUCnDu3RKTkZOL8YOAsYeItrx1u/FchQz+rXozOwhOXlTR7SF9j3HWCaLy1vffUbwHuKJPuDZwEpX0k/e3RJRI8hLhy7mWMymRrmPiYcQvXsfaiOfQPVs2+gevY+DV3H3nCNOA1AMWA5EoR5zQIxrZxHfsGuILoxeOSSoR1quh5o0/L8druci9QRKh9mJ64VWh9mKejPwXarn2WjzmmPJVJZJAfllZ9lAxAoienMRlUSmfA0MEmRyN+eSwdBEARBEIQGbwjmXQC6chzXkeO4AADXAvjLyTZNBinoz9uZJ8QBNuoqHa/32UR5IAktmiC6eqEdeezgz2yoYWcohbwzX2TRL1jyYRaC/sDrb2sxs1Galj3Ehho+/KccJClSUcAG2gDkEey05CmStwRFsWE+2wvp0iw1upsQBEEQBEFo8cglg+O4H8HcbWM5jssB8CzP859zHHcvgFUAjAC+4Hk+1c39TgMwLT4+3uc+PsfTa9CbMwC8Bab16+s/4IJAsvBfex59CvMRC6D4/Dnsc+DDDKsZBT/NQWqfJ2zWaZ95HJ0AFBYW4FA962lwRSW0o7efzs3FcSf7izp/EAOE6d27d6E8XB372f3IOzjfYiDy48Yi8dRJJALIysxEwV+fol3eGYgDYG5cvxZWzShwIRXZGCr++JLlsbQYAnCu5Wi0KtjM5otD3QJAzi6b8plMJqkOC2OG4tAmtl1HJKADgFMnjiLT7Pgc/w2Qn5xvoHr2PlTHvoHq2TdQPXufJuXDzPP8dXbmLwew3IP9LgWwNCkp6XZf+/isKzkEPpdZXZPHjnFtkAdHmNg/m/M4/QFwDogKD9X3sTHJky1btdZfZ8NO4BQQG91Cf/n5TAC8PHCGHscigXL1rPj4eMQ7q/eTPLCfTSYNGqAefhQATJehzdl16HXNM8yHORNoX3MU7ff8rlpt7IDO6jHsASB7F+unUGA0+qPV3X8xq3PKl47LBqG+TWw69u5lSBZH7ArPALJ+Qcdeg9FxqJNz/BdAfnK+gerZ+1Ad+waqZ99A9ex9moMPc7Omps5qO5RzfRHdLnSXWV0/ht4wrspt7e3jnX7AO/0d75szOl5uD6UrhdWJS4h4roU6A3F8foHtvNpy23kGI/ub9rbrA3WIKIe3HXgTMONLIOkW9/ZBEARBEMR/Fp9lyWgu9ImPQGCGH7O6WusABNV/Zy4JZhdyEdsTteK2jgIDnaH1YWYHdL6dozzMWgEtBvfpDeFdeU79++gKNjqflhrFaIJaf2aADXlbqoktvXsbUJylnmcwAH2m225PEARBEARhhyYpmBvTh7kdgJYtAJQDmzdugNk/rP474y12fZj7FZ1DNIDyshLs1jnHceBYUByAs/mFOKKzTqeMdLQHUFJUiL0O/KAd1eGA0jJEaebl5ObihJN6jy3YCzEHxd49u1GSXiUtM1hqMFZx7E6ZmWjvYF8b1q1BjyPvILPD1eh27COb8oiI5zHCzCNQs2xXt8cwZPd9NusCQcAZx+fyb4b85HwD1bP3oTr2DVTPvoHq2fs0KR9mb9GYPswAcOz0MgDA6JHDgdDY+u/IagE2sEmb88iMBM4DYcFB+j42G42SFbd123i01lundg2QDUSGBTv0g3ZYhxkxQIl6VkJ8PBKU26x9AYhqDwy+WZ6Xeh4QQjkH9u8HdBwjL6sqBjYpji2U0x7jukcDGzciji8Agv1sygMAaN1PPo99YUCtYJmObA9c9RWGJAwG+vcCMjYB7YcjucNI+wf8D0F+cr6B6tn7UB37Bqpn30D17H0auo6bpGBubHjRBcIXPsz2chEr8yOLPszmGpa3WRwSWXR90HN1cBVtHmY9Nr3O/isFsyoPs3guPLDuBaDbRertHdUDAPx8E/tfngfUVemvM0MR6KfMqtGiA5AgBBy2G8L+CIIgCIIgGhAK+tOhwQQzHAlm3vYYmVtlIaonmL+9Ani1ozxf3NYTH2ZXBLMeKh9mC7D7C+C5KGDTG8C3l8vLzDXO/bRLBPNzVRFg1hHMd5iA2C7yb6PCh3nATDcLThAEQRAE4R4kmHXwqYVZtBJnbGE5hzcK1lxloJ/BDygvADK3aPYhBv3Vc9Q6Sx2Qvt5O+YSyn96jv1xZN1arevAQZZaL1D+AHR/abp8w1HaeSO/pQExX+bc2yE9sQAyYCQzQzWxIEARBEATRYDRJl4zGDPoDgMgaZrHdsW0LqkIy6r0fzlqHccK09jwGFp9HJICaqgpsM5nQKs+EXgDyDm9CGoZhtNUqXZzs02dQ88dLEG2s4oAq3XKy0RZAdUUZttcj6K9F0T7oJZ2r3fszAnZ+gi0jv8aorbIbxrHvH0Vu/MUAgDa5h9FdmH/gwD70s1cJf9ypO7s27ygCdJcAu4LHge80HkPPzQEAbDqUCcsRebjupLIyhAFILzEgi4ImHEKBJb6B6tn7UB37Bqpn30D17H0o6M8HpP7MItaGJQ0GWvWo/47qqoGNbNLmPE6EAaVAoL+RLdt/FkgD4uLaIC45GdgeAFiYe0K7DolAdCfgJPPjTR7WH/APBkp+Bc4AQf4Gx0F/48axEQsrzrGguN6XswWZAcAB280C6ooBAKNiilXzux3/GN1mvsp+7DwOCGmV+/XpDRwOdGu46YC6EmQnXIp2Z1fLbhh3mIDwthgSHses3xVrgDEPYUwbjaw/6AdUAJ169ken/8DgI55AgSW+gerZ+1Ad+waqZ99A9ex9aOASH8BzQjvCqz7MmqA/8bfoU6z1YVbmIX61I/BaV0UeZicuGeLyX25mf+X5wn518hkrKTplf5lq4BIL4KdN9Oack11uBZ46K88IbwuEx7Fpoz9w9TeAViwDzC8aAAI8SPlHEARBEAThIk3SwtzY8KJY9eVIf6IAPbCYWY9VgtkIVGtyrdWWydkx6qodl8NcwwStOIhHTRkQ1sq5RfjI3/aXaYP+jPYcLOxw7Q+AqJUj27HAP/9g17Y1C+cbGO7eMQmCIAiCIOoBWZh1kIP+XBiFz/GeHCzSjPSnTC+X8qV63Q2vAKW5tvsQU7CZq4DaSjZ97iSwoB1QlC6vJ1pkRVGbdwg4s18WnvY4d0Kn3DxQnA3886T6XNwVzD2mytM3LwWmLASCIlzbVjyfQLIwEwRBEAThfZqkhbmxg/6CqpkLw56UnSg9UVbv/RjNVRCH89Cex+CyUoQDsJhrsclkQpvcI1IQHQDU1dZA6TBRkr4bkZr9n8vPRYwwfWDpRyiKGYTEU98jsaYUp/56FWICun2rf0Dfgy+D4y2shSTkPT7d9iLE2yk7rxhpUEneh5ehKHogeirmHTmQgh5lOoLeASaTSeOQ3xNw8Von1zBr+67DmajIcm2b/yoUWOIbqJ69D9Wxb6B69g1Uz96Hgv58wL4/WCTcoP59gcTR9d9RTRmwmU3anEdaKFAOGMGzZYogOgDwN5erVo8MMgKl6l3EhAUBRWy638HngCfzAMsmIBPo2KE9kMGWDajZCVhtrcnxuSvsFp0DD4S3AcrOqObH5W9A3LDpwBF5Xo/qvbY7mPIKsPIxu/tPTk6uv0N+3jQgbSmGTL2JBTMSdqHAEt9A9ex9qI59A9Wzb6B69j400p8PaJSR/sTf9qirtJ1XngcERcr+zVXn5WXKwUw0otcl4voCfgH62x74Wf1bb6TBmM7MTaO+OaIdcdXXbL8klgmCIAiC8AHkw6yDT0b6E4UkbwVy9wErHnW8q/MZtvPKzrCAOZHKc/K0UsSWKTJRuMrU15mFWcldm4GgKNsBVPT8qwMjvBeUZzC6HiBIEARBEAThISSYdWiwoD9HFmazwvKattT1fcYqPJ3rKoHIBPl3VZE8bVGIfaWgje7k2nGCooAIjYdzXB8gtqvtumVngZAYOfDvsveBdkPtC2a/INfKQBAEQRAE0QQglwwdJMFs0XE1aCiUrgp6Lg16BIQBrXoChUfleaGx8nRlkeymoNqnQrhHJgDVpUBlIRwS3AKIaCv/HiT4C0e1B3J2qde11gF+wcBta1n6OnE7rTC+cyMQHA0EhDo+NkEQBEEQRBOCLMw6NFgeZocuGYocyGYdP1//UBbEp4Qz2opQP4VrQnWJbNWurdA/rn8ocMNv9sslEhzF/kTE/Ya11l/f6A9Ed1SLbKNmYJQ2/YGodkBItPPjEwRBEARBNBGapIW5sdPKoYqJ2cOHDiC/IKreu/GrK4OYY0N7HmNqqmCAARysOJ2dYZPeLa3z7cjbsh3Jinlmcy3yC4qgkKTIOlsALuEytMtZAiy9D7ltLkRbAOeyj0kp55Tkny9Dxt6DGOqk7KbN2xBc6YehMKAquA32Bk9CncmE9nml0HPqqKipwy7NOQ6qqIYys7K2DiitjvehOvYNVM/eh+rYN1A9+waqZ+9DaeV8wI7lLDNErx7d0au/B8evLAKE+Dib89hoBgJCgNpyxIfbZnvo2bsvevZNBkzyPD+jEW3bdQQUiSvad+oOjJoLvLwEANDWwAL/Yvz1s1O0ik9Eq1HjANGrIigKqC5m09d8D6T+AYS3lst78Q0IATBK3EFKJnDqW5v9hka0sD3H9Fig7Lj0U7uc0up4H6pj30D17H2ojn0D1bNvoHr2PpRWzgd4fWhsq5Xtu1bItXx0ue06eiPn8TzzEVYSEKZ20zidwv6XazJjxHYDCo8xNwmlG8clbwFtBzB/7ZbdgZ6XODwllc+0krI823mVRbbzCIIgCIIgmhkkmHXwelo5V3ITa/1/xf1pfZgDwwGDjit6RYHtegDL++yv2Eef6c7LoqR1X6B1P+DsAcfHA+TjTHzW/aGzCYIgCIIgmggkmHXw+sAlYsDfqLnAnq/VA46IGHQEM2+1tTC7mutYzKlstaotzO4S1R64axNwahNg8AO+nCIWznbdq78FsrYD/a+p//EIgiAIgiAaGcqSoUOD5WG2Z2EWs2JEJgAXPK+/jp7VWM8lw5FgDhCWhbYEul/Mpq1mwNgA7aSOY5grhyNadCCxTBAEQRBEs4cEsw6yD7OHeZidWZiNAcCAmXY21hv2mbe1POsJ5mAhbVtEW+Dx08BDx5g1GJCH4gaAzhPtldw1jIEsaJAgCIIgCOJfDAlmHayiuPS2D7MxgA3zfMPvtutwOoKZ522tw7zV/nH9g4HAMGatNmis5o9lANctdnYCjjEYgDs3eLYPgiAIgiCIJk6T9GFu7DzMlRVVAID0E8eRVVf/4wfUnMNIYVp5HiEVWRgKIPXYCRQUmwAYVfmWAWDf/gMozoJqPm+14NjxdHQHUBzZB3X+YUg7WQFrhkm1nqWmAkYAB2MuwTnhuC2KctAfQHaJGScbsE4Das7rnqMrUB5K70N17Buonr0P1bFvoHr2DVTP3ofyMPsA0/q1AIBOie3RaZwHxy/NBbaxSdV55O4DdgG9+w0CegjzTepNBwwYAHQcCxifBfxDgJWPgeOA7j17AceAqMR+wBUfoqW4AT8P2LAQAGDkmWW878hJQNuBwvJxQOc2aNfrUrTz9yDoT0t1if45ugDlofQ+VMe+gerZ+1Ad+waqZ99A9ex9GrqOySVDFy/nYa6rZP/9Q5zvY8yDwLA72fSIe2QfZm3Zxj+uOK7gphGoGGeP41gAXkOKZcC1cyAIgiAIgmjGkGDWg+NYkJy3fJhrK9j/gDB53iPpwJWfy79DFAOEcBzwbDFw4YsKX2Sdst38NxutT0QpmL2Fbr5ogiAIgiCIfw9N0iWjSWDwY6PfeYI9C7MkmBXW2dAYoO8MoOc0NlpfXC/1NmIQoBSQqFO2jmPUv13N0dwQDJ7tu2MRBEEQBEH4ELIw28Pg1wB5mDVk7wSeawGcP8V+B4TaruMXCHQYaTtfRLToOipbaCt5X75gfgkw7W3fHIsgCIIgCMLHkIXZHt5wydi2iPkXH1/NfvvrCGZnuDIK4e1rgbzD+qnpCIIgCIIgCLcgwWyPhhDMWpcMcUCUzC3sv56F2RnRndj/xNH214lqz/4IgiAIgiAIjyHBbA+vBP1x6un6ZKxo2Q144DAbxY8gCIIgCILwOiSY7dEQPsw2FmaFYPYPrr/LRGR8/ctEEARBEARBuEWTFMyNPdJfeXk5qmrrUHImB0c8OH5Q1RkMF6ZNJhN65hcgTvhttnLY/B8f5YdGOvI+VMe+gerZ+1Ad+waqZ99A9ex9aKQ/H2AymRAcEobgljFo7cnxz50EdrDJ5ORk4Nz3QD777Wc0/OdH+aGRjrwP1bFvoHr2PlTHvoHq2TdQPXsfGunPVxj9G8CHWQHPy0F/gH4eZYIgCIIgCKLJQYLZHg3tw2y1qH2WPR0UhSAIgiAIgvAJJJjtYTA2bJYM3gJVlgy+gQdFIQiCIAiCILwCCWZ7NHQeZt6qdskgCIIgCIIgmgWk4OzR0HmYrRZ1GmaCIAiCIAiiWUCC2R4GP8DSkBZmcsEgCIIgCIJojpBgtkeD+zBbPRfgBEEQBEEQhM8hwWwPQwOnlbNaAUstYAxouH0SBEEQBEEQXocEsz0aPOjPwgRzUKRn+yQIgiAIgiB8CglmezREHmatS4bVTIKZIAiCIAiimUGC2R4N4cOsHbjEagYCwjzbJ0EQBEEQBOFTSDDbw+BXv+Grc1KAolPCD41LhtXChtwmCIIgCIIgmg0cr7SCNhE4jpsGYFp8fPzt3333nc+PX15ejiFZnyCi9Ch2DP/YrW2TTZcBAEzJSxBWlo6klAcAANuHfYLuRxeB482IKjksrfNfpry8HGFhZHH3JlTHvoHq2ftQHfsGqmffQPXsfdyt4/Hjx6fwPJ9kb7lfg5SqgeF5fimApUlJSbcnJyf7/PgmkwlxbROAmnS4fXwT+5ecnAycaQGksN/DhyYBZ8MBcMCYt4FWvZDcfliDlbk5YjKZ3K9fwi2ojn0D1bP3oTr2DVTPvoHq2fs0dB03ScHcJGhoH2beylwy/AKApNme7ZcgCIIgCILwGeTDbA9P08pZLbDJksFb2H4JgiAIgiCIZgMJZnt4KpgttWoLs6UOMFcDnNHzshEEQRAEQRA+g8yd9vA0D7OlFioL80ej2P9u8R4ViyAIgiAIgvAtZGG2h8HIrML1xVKn0svyfqmNQhAEQRAE0ZwgwWwPg7/7LhlaFww9xVxT6lGxCIIgCIIgCN9Cgtke9fFhVlqktT7MIuZaz8pFEARBEARB+BQSzPYw+AHgAavV9W2UIwPaszDzbuyPIAiCIAiCaHRIMNvDIGSzcGd4bK2FWQ8SzARBEARBEM0KEsz2MAaw/+4E/ildOKx1+i4ZJJgJgiAIgiCaFSSY7SEJZjd8ji3kkkEQBEEQBPFvg3Kc2cPoz/67ZWHWumRwtuuQYCYIgiAIgmhWkIXZHpKFucb1bVyyMOslZyYIgiAIgiCaKiSY7eGpD7OFfJgJgiAIgiD+DZBgtofkkmHHh3l+JLDkXvU8mywZeoLZg+G2CYIgCIIgCJ9DgtkefoHsv6Ogv73fqn9rfZhFC3O/a4EZX7BpsjATBEEQBEE0Kyjozx71ccmwaFwyRAvzwBuA4BZsmgQzQRAEQRBEs4IszPZw5JKx8XX9bZRimLfIFmaOk/dHgpkgCIIgCKJZQYLZHo7yMK97wc5GCp9l3qr4zQlDbYMEM0EQBEEQRDPDZ4KZ47hOHMd9znHcr746pkfUxyVDKYatGgszZ7BdhyAIgiAIgmjyuCSYOY77guO4fI7jDmnmT+E47ijHcSc4jpvnaB88z6fzPH+rJ4X1KaILhdmNPMxKMfzXvcCOj4UfHGAwCutQHmaCIAiCIIjmhKtBf18BWATgG3EGx3FGAO8DuABADoBdHMf9BcAIYIFm+1t4ns/3uLS+pD5DY2utx8dWsP9kYSYIgiAIgmi2uCSYeZ7fyHFcomb2UAAneJ5PBwCO4xYDuIzn+QUALmnQUjYG9XLJsGc95oDAcDbZebxHxSIIgiAIgiB8iydp5eIBZCt+5wAYZm9ljuNiALwEYCDHcY8LwlpvvTsA3AEAcXFxMJlMHhSxfpSXl2Pbrj0YAeDI4QM4ez5OtTxZMa0sX4uifeivs7/d+1NRHl6FoGGfoCYwGnwjnFNTpLy8vFGu738JqmPfQPXsfaiOfQPVs2+gevY+DV3HPsvDzPP8OQB3ubDeJwA+AYCkpCQ+OTnZyyWzxWQyYcSw0cB2oEeHNugxUlMGkzypKt8JC3DAdn9JyVOB8DjbBf9xTCYTGuP6/pegOvYNVM/eh+rYN1A9+waqZ+/T0HXsSZaM0wDaKX4nCPP+HQRGAOCA6hLXt9F1yeCAkJiGKhVBEARBEAThYzjexawNgg/z3zzP9xF++wE4BmAimFDeBeB6nudTPS4Ux00DMC0+Pv727777ztPduU15eTnCwsIwavNM5MWNw4mud6iWJ5suk6ZNyUuk6ehzKeh38HnVurX+kdg66hsQtoj1THgPqmPfQPXsfaiOfQPVs2+gevY+7tbx+PHjU3ieT7K33CWXDI7jfgRz3Y3lOC4HwLM8z3/Ocdy9AFaBZcb4oiHEMgDwPL8UwNKkpKTbG8slIzk5Gdgfi4ToUCRoy2CSJ6XyZW4FTGqxDAABLRKo28UO1CXlfaiOfQPVs/ehOvYNVM++gerZ+zR0HbuaJeM6O/OXA1jeYKVpagRFuu6Sceg3/flhLRuuPARBEARBEITPoaGxHREQDtRWeLaPMAr2IwiCIAiCaM647MPsS5qKD3O//c/AaKnB3kGvqJbr+TB3PfYR4nNX2OwrO+FynOwy27sFbqaQD5f3oTr2DVTP3ofq2DdQPfsGqmfv0yg+zL6myfgwn44DKgpsfWBM8qS0rGIpkGu7r3ZdeqId+SnpQj5c3ofq2DdQPXsfqmPfQPXsG6ievU9TSiv378fgD1jMHu7D2DBlIQiCIAiCIBoFEsyOMPoBVs3Q2O66sBiapBGfIAiCIAiCcBESzI4w+AOWWvl3xTnguSg390GCmSAIgiAIojlDQX86iI7iPdLeQVTxIWwf8SkAIKzsBJJSHlKt6yzo73iX23A6YZr3C90MoaAH70N17Buonr0P1bFvoHr2DVTP3oeC/nyA5Che+htQmSY7jedGAinqdZ0F/XXt1gNdhyZ7r7DNGAp68D5Ux76B6tn7UB37Bqpn30D17H0o6M+XaF0ywNVjHxT0RxAEQRAE0ZwhwewIY4AbWTLsiGnyYSYIgiAIgmjWkGB2hDZLRt4h9/dBgpkgCIIgCKJZQ4LZEUqXjKwdwJJ76rEPEswEQRAEQRDNGcqSoYMYWZl46gckZv6Ewz0fBMdb0PPIOzbrylkyPkZ87nKb5am9HkZBqzFeL3NzhKKEvQ/VsW+gevY+VMe+gerZN1A9ex/KkuEDpMhKwy4gE+iV9ibQ63LddeUsGX/rZsno3acf0CvZSyVt3lCUsPehOvYNVM/eh+rYN1A9+waqZ+9DWTJ8icFfnq48V899NMk2CUEQBEEQBOEiJJgdYVQIZquzbBl2XFtIMBMEQRAEQTRrSDA7wuCCYBZ9wO0tpzzMBEEQBEEQzRoSzI7wC5Sn7Qliq4X9t5evmSzMBEEQBEEQzRrKkqGDGFkZW7ANfVIXsnmhHRFWccpm3Q1jfwVv8EePtLfQOs9ks3zvgJdQEtXH20VullCUsPehOvYNVM/eh+rYN1A9+waqZ+9DWTJ8gBRZmeEPCII5LCQQqFCsFN0JKErHuDFjAP8goPAbIM92XwMHJQHth/uk3M0NihL2PlTHvoHq2ftQHfsGqmffQPXsfShLhi8JiZGntS4ZAUKrhbey/+Ya/X2QSwZBEARBEESzhgSzI0Ki5WmtYDYGsP+iYK6r0t8HBf0RBEEQBEE0a0gwOyIwQp621KmXSYJZCPozV+vvgyzMBEEQBEEQzRoSzI5QZsmoLdcsc9XCTIKZIAiCIAiiOUOC2REcJ09Xl6iXSRZmIcuIPR/mwPCGLxdBEARBEAThM0gw1xelD/P5TCD/sO06UxYCkQm+LRdBEARBEATRoFAeZh2UufuSTZfprpPfchRaFWzBlpFfY9TWm3XXMSUv8VoZ/w1QHkrvQ3XsG6ievQ/VsW+gevYNVM/eh/Iw+wBV7j6T/jqt2iQABcCo4cOArZqFd24C/IKQ3LKbF0vZ/KE8lN6H6tg3UD17H6pj30D17Buonr1PQ9dxkxTMzQJtWjklrfuq/Z8JgiAIgiCIZgv5MNcXR4KZxDJBEARBEMS/BhLM9cWRYCYIgiAIgiD+NZBgri9Gf/afBDNBEARBEMS/GhLM9YUszARBEARBEP8JSDA7Y8aXQFhr2/kkmAmCIAiCIP4TkGB2Rp/pwM1Lbedb69h/EswEQRAEQRD/aiitnCu07AbMLwGKs4A1zwHFmUBMF7aMBDNBEARBEMS/GhrpTwdXRoeJLdiKPqmvYFfSOxiy+37VMhrhzzVopCPvQ3XsG6ievQ/VsW+gevYNVM/eh0b68wEujQ6TVgakAkOSBgO71Yto9B7XoJGOvA/VsW+gevY+VMe+gerZN1A9e5+GrmPyYa4vnFB1VkvjloMgCIIgCILwKiSY6wtnZP+tZnmeoUka7AmCIAiCIAgPIIVXX0QLs7lGnve/HUBkfOOUhyAIgiAIgvAKJJjriySYq9n/MQ8BsV0arzwEQRAEQRCEVyCXjPrCcey/aGEObdV4ZSEIgiAIgiC8Bgnm+iJZmKvYf7/AxisLQRAEQRAE4TVIMNcXgxD0d2oT++8f3HhlIQiCIAiCILwGCWZPSfmS/ScLM0EQBEEQxL8SEsz1peS0+rcfWZgJgiAIgiD+jZBgri+dktW//YMapRgEQRAEQRCEdyHBXF8i2gDjn5J/+5FgJgiCIAiC+DdCgtkTjP7yNAlmgiAIgiCIfyUcz/ONXQYbOI6bBmBafHz87d99953Pj19eXo6wsDCn6yVkL0GXk18AAHYOWYTK0HbeLtq/Clfrmag/VMe+gerZ+1Ad+waqZ99A9ex93K3j8ePHp/A8n2RveZMc6Y/n+aUAliYlJd2enJzs8+ObTCa4dNwdx4CTbHLoyDFAi0RvFutfh8v1TNQbqmPfQPXsfaiOfQPVs2+gevY+DV3H5JLhCSqXDMqSQRAEQRAE8W+EBLMnqAQz5WEmCIIgCIL4N0KC2ROMAfK0oUl6txAEQRAEQRAeQirPE5QimQQzQRAEQTQL6urqkJOTg+rq6kY5fmRkJNLS0hrl2P8V7NVxUFAQEhIS4O/vr7OVfUjleYLKwmxsvHIQBEEQBOEyOTk5CA8PR2JiIjiO8/nxy8rKEB4e7vPj/pfQq2Oe53Hu3Dnk5OSgY8eObu2PXDI8QenDzJFgJgiCIIjmQHV1NWJiYhpFLBONB8dxiImJqVfPAglmT1AKZgNVJUEQBEE0F0gs/zep73UnlecJBvf8XwiCIAiCIAAgLy8P119/PTp16oTBgwdjxIgR+OOPPxqtPCaTCVu3bvV4H5dcckkDlahpQYLZE5Q+zARBEARBEC7A8zwuv/xyjB07Funp6UhJScHixYuRk5Pj1eOazWa7y+ojmB3t798GCWZPMFLMJEEQBEEQ7rFhwwYEBATgrrvukuZ16NABc+bMAQBYLBY88sgjGDJkCPr164ePP/4YgDx63YwZM9CjRw/MnDkTPM8DAFJSUjBu3DgMHjwYkydPxpkzZwAAycnJmDt3LpKSkvDOO+9g6dKlGDZsGAYOHIhJkyYhLy8PGRkZ+Oijj/DWW29hwIAB2LRpEzIyMjBhwgT069cPEydORFZWFgBg1qxZuOuuuzBs2DA8+uijLp3vjz/+iL59+6JPnz547LHHpHOcNWsW+vTpg759++Ktt94CALz77rvo1asX+vXrh2uvvbYBarthIMXnCWRhJgiCIIhmzXNLU3E4t7RB99mrbQSendbb7vK0tDQMGjTI7vLPP/8ckZGR2LVrF2pqajBq1ChceOGFAIC9e/ciNTUVbdu2xahRo7BlyxYMGzYMc+bMwZIlS9CyZUv89NNPePLJJ/HFF18AAGpra7F7924AwPnz57F9+3ZwHIfPPvsMr776Kt544w3cddddCAsLw8MPPwwAmDZtGm6++WbcfPPN+OKLL3Dffffhzz//BMCyjGzduhVGo/OEB7m5uXjssceQkpKCFi1a4MILL8Sff/6Jdu3a4fTp0zh06BAAoLi4GACwcOFCnDp1CoGBgdK8pgAJZk8gH2aCIAiCIDzknnvuwebNmxEQEIBdu3bhn3/+wYEDB/Drr78CAEpKSnD8+HEEBARg6NChSEhIAAAMGDAAGRkZiIqKwqFDh3DBBRcAYNbbNm3aSPu/5pprpOmcnBxcc801OHPmDGpra+2mV9u2bRt+//13AMCNN96osiZfddVVLollANi1axeSk5PRsmVLAMDMmTOxceNGPP3000hPT8ecOXMwdepUqUHQr18/zJw5E5dffjkuv/xyl47hC0gwe4KRBDNBEARBNGccWYK9Rc+ePbFs2TLp9/vvv4/CwkIkJSUBYD7O7733HiZPnqzazmQyITAwUPptNBphNpvB8zx69+6Nbdu26R4vNDRUmp4zZw4efPBBXHrppTCZTJg/f77b5Vfur760aNEC+/fvx6pVq/DRRx/h559/xhdffIFly5Zh48aNWLp0KV566SUcPHgQfn6NL1fJh9kTSDATBEEQBOEm48aNQ3V1NT788ENpXmVlpTQ9efJkfPjhh6irqwMAHDt2DBUVFXb31717dxQUFEiCua6uDqmpqbrrlpSUID4+HgDw9ddfS/PDw8NRVlYm/R45ciQWL14MAPj+++8xZswYd08TADB06FBs2LABhYWFsFgs+PHHHzFu3DgUFhbCarXiyiuvxIsvvog9e/bAarUiOzsb48ePxyuvvIKSkhKUl5fX67gNTeNL9uYM+TATBEEQBOEmHMfhzz//xAMPPIBXX30VLVu2RGhoKF555RUAwG233YaMjAwMGjQIPM+jZcuWkv+wHgEBAfj1119x3333oaSkBGazGXPnzkXv3rbW8/nz5+Oqq65CixYtMGHCBJw6dQoA81meMWMGlixZgvfeew/vvfceZs+ejddeew0tW7bEl19+6dK5rV27VnIZAYBffvkFCxcuxPjx48HzPKZOnYrLLrsM+/fvx+zZs2G1WgEACxYsgMViwQ033ICSkhLwPI/77rsPUVFRLtaqd+HE6MqmSFJSEi86qfsSMQrVKRXngNc6sen5JV4t078Rl+uZqDdUx76B6tn7UB37hv9KPaelpaFnz56NdnwaGtv7OKpjvevPcVwKz/NJ9vZHLhmeQC4ZBEEQBEEQ/3pIMHsCCWaCIAiCIIh/PSSYPYF8mAmCIAiCIP71+Czoj+O4ywFMBRAB4HOe5//x1bG9hsG1HIQEQRAEQRBE88UlCzPHcV9wHJfPcdwhzfwpHMcd5TjuBMdx8xztg+f5P3mevx3AXQCucbQuQRAEQRAEQTQVXLUwfwVgEYBvxBkcxxkBvA/gAgA5AHZxHPcXACOABZrtb+F5Pl+YfkrYjiAIgiAIgiCaPC5ZmHme3wigSDN7KIATPM+n8zxfC2AxgMt4nj/I8/wlmr98jvEKgBU8z+9p2NMgCIIgCIJoPhiNRgwYMAC9e/dG//798cYbb0g5iXfv3o377rvP42N89NFH+Oabb5yvqGDkyJH1Pt5XX32F3Nzcem8PsDzRr7/+ukf78Aae+DDHA8hW/M4BMMzB+nMATAIQyXFcF57nP9JbieO4OwDcAQBxcXEwmUweFLF+lJeXu3zcZOF/Y5SzueNOPRP1g+rYN1A9ex+qY9/wX6nnyMhI1ah2vsZisSA4OBibNm0CABQUFODWW29FQUEBnnzySXTv3h0vvfSSR2U0m82YOXMmALi1n1WrVtX7uJ9//jk6duzoVo5pi8UCo1GOCaupqYG/v7/H18disdjdR3V1tfv3Oc/zLv0BSARwSPF7BoDPFL9vBLDI1f258jd48GC+MVi/fr3rKz8bwf4It3Grnol6QXXsG6ievQ/VsW/4r9Tz4cOHG/X4paWlfGhoqGreyZMn+ejoaN5qtfLr16/np06dyvM8z5tMJr5///58//79+QEDBvClpaU8z/P8woUL+T59+vD9+vXjH3vsMZ7neX7cuHH8/fffzw8ePJh//fXX+WeffZZ/7bXXpGVz587lBw8ezPfo0YPfuXMnf8UVV/BdunThn3zySakcYrnWr1/Pjxs3jr/yyiv57t2789dffz1vtVp5nuf55557jk9KSuJ79+7N33777bzVauV/+eUXPjQ0lO/WrRvfv39/vrKykl+zZg0/YMAAvk+fPvzs2bP56upqnud5vkOHDvyjjz7KDxw4kP/xxx9V9aAss4jVauUffvhhvnfv3nyfPn34xYsX8zzP87m5ufyYMWP4/v3787179+Y3btzIm81m/uabb+Z79uzJ9+nTh3/zzTdt6l/v+gPYzTvQpJ5YmE8DaKf4nSDMIwiCIAiCaB6smAecPdiw+2zdF7hooVubdOrUCRaLBfn5+ar5r7/+Ot5//32MGjUK5eXlCAoKwooVK7BkyRLs2LEDISEhKCqSvWZra2shjpI8f/581b4CAgKwe/duvPPOO7jsssuQkpKC6OhodO7cGQ888ABiYmJU6+/duxepqalo27YtRo0ahS1btmD06NG499578cwzzwAAbrzxRvz999+YMWMGFi1ahNdffx1JSUmorq7GrFmzsHbtWnTr1g033XQTPvzwQ8ydOxcAEBMTgz17XPPQ/f3337Fv3z7s378fhYWFGDJkCMaOHYsffvgBkydPxpNPPgmLxYLKykrs27cPp0+fxo4dOxAeHo7i4mI3roJ9PMnDvAtAV47jOnIcFwDgWgB/NUipCIIgCIIgCIwaNQoPPvgg3n33XRQXF8PPzw9r1qzB7NmzERISAgCIjo6W1r/mGvuJyC699FIAQN++fdG7d2+0adMGgYGB6NSpE7Kzs23WHzp0KBISEmAwGDBgwABkZGQAANavX49hw4ahb9++WLduHVJTU222PXr0KDp27Ihu3boBAG6++WZs3LjRpXJq2bx5M6677joYjUbExcVh3Lhx2LVrF4YMGYIvv/wS8+fPx8GDBxEeHo5OnTohPT0dDz/8MFauXImIiAiXj+MIlyzMHMf9COauG8txXA6AZ3me/5zjuHsBrALLjPEFz/O2NVYPOI6bBmBafHw8+TD/i/mv+Mo1JlTHvoHq2ftQHfuG/0o9q3yYRz/pnYM48MG1WCzCKvI6p06dgsFgQHBwMCorK2E2m1FWVoZ77rkHycnJ+OeffzBy5Ej88ccfqK2tRXV1tY2Prna/Sn9gi8Ui7bO6uhpGo1Faj+d5lJSUSL/LyspQWVmpWsdisaC8vBwFBQW4++67sWHDBiQkJODll1+WtrVYLKioqEBZWRkqKipUfsTKcxLdHPR8jPV8mLXnW1dXh6qqKowfPx7Lly/HqlWrcNNNN+Gee+7B9ddfj82bN2P16tVYtGgRvv/+e3zwwQeqY9THh9klwczz/HV25i8HsNytI7p2vKUAliYlJd2enJzc0Lt3islkgsvHNQEIiXF9fULCrXom6gXVsW+gevY+VMe+4b9Sz2lpaW4FpjU0ovATy1BQUICHH34Yc+bMQUREBEJCQuDn54fw8HCcPHkSw4cPx/Dhw3HgwAFkZ2dj6tSpeP7553HrrbdKLhnR0dEwGo0IDQ2V9hsYGIjAwECEh4erlin3D8BmO711AgICEBQUBH9/f3Ach8TERFgsFixduhQzZsxAeHg4oqKiYLVaER4ejkGDBiE7Oxt5eXno0qULfvvtN0ycOBHh4eHgOA5hYWG610BZZpGJEyfi448/xp133omioiJs27YNb7/9NoqKitC5c2fMmTMHHMchLS0NNTU1CA0NxRX/b+9+Y+So6ziOvz/tXXuNB20JpCUU4RA0/ElozzvTRCEQFWhjQEwwECm0mupFSCSNMYCJEmyKtNE0PtFoANvw3yiRB/6hD1p9ckX+WIVSkANL2loOFVPa0OodfH2wv6N7R3e43duZue1+XsnkZn+7tzP7mW8mv535zezVV9Pb28v111//vuV0dXWxZMmSurZZYb/0d9y6/R8g/8K4mZmZTd7hw4dZvHgxIyMjdHR0sGLFCtasWfO+123cuJGtW7cyY8YMzj//fJYtW8bs2bPZsWMHfX19zJo1i+XLl7Nu3bpC1nvevHmsXr2aCy64gIULF9Lf3//ecytXrmRgYIA5c+YwODjIfffdxzXXXMPo6Cj9/f0MDAxMahlr165l48aN7z3es2cPg4ODXHjhhUhi/fr1LFy4kE2bNrFhwwY6Ozvp7u5m8+bN7Nu3j1WrVjE6OsqMGTO4666JPw3SGFUuDJye+vr6YmzgepHa5Rt22Zxz/pxxMZxz/pxxMdol5127dnHuueeWtvyDBw+WeoS7HWRlfKztL+mZiOir9X7TssNcNYZ59f3331/48g8dOkR3d3fhy203zjl/zrgYzjl/zrgY7ZLz3LlzOfvss0tb/sR7D1vzZWU8NDTEgQMHxrVdeumlrddhHuMjzMc355w/Z1wM55w/Z1yMdsnZR5iPf80+wuzBt2ZmZmZmGdxhNjMzs7Yznc+wW34a3e7TckiGxzC3B+ecP2dcDOecP2dcjHbJubu7mwULFjB37lwkFb58j2HO37EyHrvf9PDwMIcOHRr3nMcwN6BdxnCVzTnnzxkXwznnzxkXo11yHhkZYe/evRw5cqSU5R85coSurq5Slt0uamXc1dXFokWL6OzsHNf+QWOYfR9mMzMzayudnZ309PSUtvxt27bV/cMZVp9mZ+wxzGZmZmZmGdxhNjMzMzPL4A6zmZmZmVmGaX3Rn6R/Aq+VsOiTgX+VsNx245zz54yL4Zzz54yL4ZyL4ZzzV2/GZ0TEKbWenNYd5rJIejrrSklrDuecP2dcDOecP2dcDOdcDOecv2Zn7CEZZmZmZmYZ3GE2MzMzM8vgDvOx/bTsFWgTzjl/zrgYzjl/zrgYzrkYzjl/Tc3YY5jNzMzMzDL4CLOZmZmZWQZ3mCeQdIWklyQNSbq17PVpVZJOl7RV0guSdkr6Rmq/Q9I+STvStLzqf25Lub8k6fLy1r61SNot6bmU59Op7SRJWyS9nP7OT+2S9KOU818l9Za79tOfpI9V1esOSW9JusW1PHWS7pX0hqTnq9rqrl1JN6bXvyzpxjI+y3RVI+MNkl5MOT4maV5qP1PS4aqa/knV/3w87WeG0nZQCR9n2qqRc937CPdBstXI+ZGqjHdL2pHam1vPEeEpTcBM4BXgLGAW8BfgvLLXqxUn4FSgN82fAPwNOA+4A/jmMV5/Xsp7NtCTtsPMsj9HK0zAbuDkCW3rgVvT/K3A3Wl+OfBbQMBS4Mmy17+VprSPeB04w7XclDwvBnqB56va6qpd4CTg1fR3fpqfX/Znmy5TjYwvAzrS/N1VGZ9Z/boJ7/OnlLvSdlhW9mebTlONnOvaR7gP0ljOE57/AfCdNN/UevYR5vE+AQxFxKsR8T/gYeCqktepJUXE/oh4Ns0fBHYBp2X8y1XAwxHx34j4OzBEZXtYY64CNqX5TcDnq9o3R8V2YJ6kU0tYv1b1aeCViMj6QSXX8iRFxB+BNyc011u7lwNbIuLNiPgPsAW4IveVbxHHyjginoiI0fRwO7Ao6z1SzidGxPao9DY2c3S7GDVruZZa+wj3QT5AVs7pKPEXgYey3qPRenaHebzTgD1Vj/eS3cmzSZB0JrAEeDI13ZxOBd47droVZz8VATwh6RlJX01tCyJif5p/HViQ5p3z1FzL+J2xa7n56q1d5z01X6ZyhG1Mj6Q/S/qDpItS22lUch3jjCevnn2Ea3lqLgKGI+Llqram1bM7zJYrSd3AL4FbIuIt4MfAR4DFwH4qp09saj4VEb3AMuAmSRdXP5m+Qft2OFMkaRZwJfCL1ORazplrN1+Svg2MAg+kpv3AhyNiCbAGeFDSiWWt33HA+4hiXcf4AxpNrWd3mMfbB5xe9XhRarMGSOqk0ll+ICJ+BRARwxHxTkS8C/yMo6eqnX2DImJf+vsG8BiVTIfHhlqkv2+klzvnxi0Dno2IYXAt56je2nXeDZC0Evgc8KX0xYQ0RODfaf4ZKuNpP0olz+phG854EhrYR7iWGySpA/gC8MhYW7Pr2R3m8Z4CzpHUk44mXQs8XvI6taQ0lugeYFdE/LCqvXq87NXA2JWujwPXSpotqQc4h8qgfMsg6UOSThibp3Ixz/NU8hy7W8CNwK/T/OPADemOA0uBA1Wnvy3buKMXruXc1Fu7vwcukzQ/nfK+LLVZDZKuAL4FXBkRb1e1nyJpZpo/i0rtvppyfkvS0rRvv4Gj28VqaGAf4T5I4z4DvBgR7w21aHY9d+Sz3q0pIkYl3UxlZzsTuDcidpa8Wq3qk8AK4LmxW7wAtwPXSVpM5TTrbuBrABGxU9KjwAtUThHeFBHvFLzOrWgB8Fi6I04H8GBE/E7SU8Cjkr4CvEblQgiA31C528AQ8DawqvhVbj3py8hnSfWarHctT42kh4BLgJMl7QW+C3yfOmo3It6U9D0qnQ2AOyNishdfHfdqZHwblTs0bEn7ju0RMUDlDgR3ShoB3gUGqrL8OvBzYA6VMc/V457bXo2cL6l3H+E+SLZj5RwR9/D+60ugyfXsX/ozMzMzM8vgIRlmZmZmZhncYTYzMzMzy+AOs5mZmZlZBneYzczMzMwyuMNsZmZmZpbBHWYzMzMzswzuMJuZmZmZZXCH2czMzMwsw/8BEDI/MQWzH0cAAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" - }, - "output_type": "display_data" + } } ], "source": [ @@ -4911,143 +580,15 @@ }, "outputs": [ { + "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABGoAAAG8CAYAAACG6EOTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAADp1klEQVR4nO39SbMmx3mej5dmUQPGnuduoBsNgABImJRESpQiKNsrRdgbhxeOcIQ2/hL+Jt56YYUdlsO0LFlWiKQkUgQJkiDQGBpDzwPQQDdAANQ8/Rb/P9LXqXivt59EvadPVeO+VtnV9VZlZeWTmXXivvP5sX/6p38aQgghhBBCCCGEEMLO8+M7XYEQQgghhBBCCCGE8P8jf6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmQv5QE0IIIYQQQgghhDAT8oeaEEIIIYQQQgghhJnwk+v+8/Dhwy13N9N4W9n4sR/7sZXlf/zHf2zlH//x//c3I7smz/+Jn/iJlcd5/b/7u7/rus4999zTyl/60pda+fTp0638K7/yK6188ODBVj506FAr81l+8if/XxPb8xLWf9wO9mx/+Zd/2cp//Md/3Mp/8id/0sr/83/+z1Z+//33W/mv//qvW/kf/uEfVt6LbWTvyd4xsfdqz2zXnHIdHrd3wOPvvffe6ofZYb7whS+0B/npn/7pdvxv//ZvV55f6Xu9ffWnfuqnWvlv/uZvbnv8Z37mZ1Yet/vyudjfef2///u/X3mcfZn3ZfvYddjfeR3Wzdp53TPwHnxmPpsdr9SVx/nO7L48bvW36/C4jafExn0e5/Utfvk+zpw5M8vYvO+++1rl+awWI+xL9n7Y3mwDG495HbafzU08XhnLbUww7JqVfsEy62zXH88PFsOVNQ1/y+N2HZ5PetdJ9ltrl971RO96zo7zvoz9H/7wh7OMzUOHDt32RVg/JHxWez+VNS37y6c+9alW5tryt3/7t1v5l3/5l1v5/vvvb2XOFbt3715ZT6uzjS1WT+v7vP4HH3zQylyffvWrX91y3W984xut/K1vfauVb9682cp8Npt3rK15DqmMcZX1JKnEYG//IFYHm3/tvlevXp1lbH7lK19pD8i58pVXXmllPse3v/3tVr506VIrf/jhhyuvb32b/YttaWO/xZHNTVx/2nhp8zXhOTZ325rBvnN/9md/tpXvu+++LffjGoVtynZhbPNafH/WXlwbs434TcoxkedwjOP5vOZf/MVftPJf/dVftTLXW3z3P/zhD1de09b9tla3PvFzP/dzrfyLv/iLrfwLv/ALrfxf/+t/Xfnyo6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTFhrfaKsiTIoszaYHakikzYZfsXmYlYAypHMIsDyj370o1am9JJypzfeeKOVT5w40cqUg1F+RcwWYJgEbhi2vgNKzp5++ulWpvz0T//0T1v53XffbWU+v1mfKnahirS98i6NiiS711ZndTPL3JygNI+w77E/V+SR9tzsF+zDjAtek2MCf8vrm32D8Bl5Dq9feS6Tdpu01cYi1md8TsWmUrF58Hyzcpk1q2JHsnqalavy7u0dmO3L2oFY37J+PydsPqL0lW127733tjL7IaW+lPHy+HvvvbfyXnxvlN+yXStWiIoNmVQsNbZOMMuCxbLZtcbzLK9lcVexMln9ei23U+zf9p4q9alYnHqfi+1j4+ac4PjB8dXGqoolsGKLqViNuN6+detWKzP2H3zwwVY2ayznR0rsK3afylxB6zzHLrMo2ng4DFv7G9crfGaeY5YPUrEy9b7LXktg7/qzMo9Xxqslx+bhw4dbmVab5557rpVpheE3Gm0rZqu3djXsvdlxxqC9f7uvzTOMcT4XMduNWXAYgxz32LbDsNWSU9nOg+ubyve8/U2B4yDbhde/du3aynPM1sTxxGCd+Vy2Drc5o/KO131LrCKKmhBCCCGEEEIIIYSZkD/UhBBCCCGEEEIIIcyEtdYnyp0o/yGVHc3N8lORE1ayDZjs2SSQll2EUIZ58eLFVv75n//5Vn7zzTdbmTtmV7KgGOt2f69YdSgBZJ1YplWKMjOrR2XnfPttr+2oIjc1KjJ6YraUJWCSRbPOVKyCvdlFrEwqtkezJlQyPFhGI5NqVu7LNmHb8l4cB4bBZcYVmxKpZOQi9p4q8v2KJNfa3ca1StYJYu/SsHaYE4xNyrnZl2hRPXLkSCv/+q//eiuzv+zZs6eVb9y40crPPPNMK3//+99vZc4DnKeuXLnSyr3ztVGxspkVq2IBrNx3nfXJfjPFptSbpaVSrsjx7fq9528qA1RvBtCdpjcjZyWzVmXNWbEZ0tpAezrjnes1zkHMakI7Uu9a1CT8HE/eeuutVuaz0Jpw/vz5VqZN4dy5c3pvyyxVWX9OiQU7PqU/99r5K3YtO16xZPZm6dsJmI2ImD2Q32i9tvopY7O1vc1ZFdu3lSvWJ9sKwGzrlUxtw7DVfsZvRo47lXVsydoj4yDryvrR4mQ2eZbNqm91IDb+WJ171zG2VcqWe932jBBCCCGEEEIIIYRwR8gfakIIIYQQQgghhBBmQllH3isD7JXy2b2sTEkRZUcsc6fnym72lDi98847rczdrx944IFWptyUuzhTJtab1WGdLcukjJQDMgsIM1RRDmtU5KC90sopUtIpFiq7jrEEaahh2ZoqdpPK8UqmhV57o8VdRWZYsenwvpQ9VqxVfBbaxxhDu3btWlmHYdiasYPjEceLynMavRlkzOJnktRKRp/tyNRWoSIT3Wk4R/zSL/1SK//qr/5qKx88eLCVP/vZz7Yy7QPM7sR3dfz48ZXlf/Wv/lUr//mf/3krnzlzppV/93d/t5VtPu3NPlSZHziGUDrN44w1Pq9JniuZUsb1680IY89WycYyZW7qnSsr8y+xsbLXDrY0KpnFptiyK5kz2ecr59OuSAsS4ZrTMu8Z9iycu7gGZplzItchzDZl1xkGf57eLGyVDFC9fXiKFbESv5V5dgpLsz5xvuNcwPUYv+n4fJb5qGI76rV7GhbL9h6sL1fG4147e2X9PH7GKTYijjs8n2OfWZxsXWptZ5mLezMnVtYANn/Yu2e/pPW98s1D5h+9IYQQQgghhBBCCJ8Q8oeaEEIIIYQQQgghhJlQtj6ZpNfolXKRyvVN7lWRpJp8iRI7kyxRukkJt1k/ep+R0jCztAzD1megZJDSecrPKI3tzZzSm+Gi97fbcf4UCfcSpN2VDCQmIbRMSbYbvMVIJWNJ5Rwet4xJvTJkwjiy6/BelGref//9rUyZ9+OPP77l9+wzly9fbmVaKG/evNnKtEHxHdi7ISYfNXtnJRtU5d2Qihy0dxd96wdLgxlb/s//+T+t/OKLL7Yy+xUtS1/+8pdbee/eva1M+w+tddevX29lzkeUiL/00kutzFgwW0RvBiTLFMP+yDIzEDKbFbN+sF9fuHChlc1WWM0AY2sFy9xTkWSbZLqSFbH3eEWSXbmmndN7/pTMOztN5f30WtQtcxH7F23yPN8sulevXm1lZlN69NFHV16/d31n7cA1I+u5b9++lfe18YFjDuN3GLaOX++///7K+5GKtXBTGUWnfOf0UlmX9o4Dle+iOcH5iP2KWzvQBmjrKWKZT6dQsZPavSqZaStrZsteNyUz3XjcsP5TWZtVvk8qdjzLLMv3yrGCYxbHHbOb2jeGla0dKpnpzKLF7FpGFDUhhBBCCCGEEEIIMyF/qAkhhBBCCCGEEEKYCWs1kiafJya1q0iBDJOP2s7KJpPs3eWd16E8lZJMyu24Yz2l5pRf2W7/JotdJxmj1JvSL2Z6Yl0ppeX5Ztnq3Ql9UxJTuybZlLVqSraaOcF3WzmnYjexPlnJFGRUdje3fsf+XtnN3saE3h3vGSusw+HDh1v5xIkTW35PeySz/jDzGscIji+8h9WJ2HvlNUnvDvO9UmobfyuZwCpjDq/fK+vfCTgGc46ghYFtSXsUbaxmZzDbHPstj1NayxjhvcwaW7Gvsd+ZdY9ZYBgfhw4damXLFEH7INuzYmce/x9he5l9+MaNG6V7fFy2O5vSpixRFUvX0izDlbnArKKWEcXk7VPqQyvtK6+80sqMqdOnT7ey2RsrfYF1sOwujHden89LuwrXzD/60Y/03r1bGFSuM6VPVta9ZMo3TyWDlZ3fu93DXOF8xzbg+ojjv30bkikZ/3qzpvZm/LPYt+9fji2McfsutmtWv9Uq9kPbOsG+E2xtYVZSqyufn2WzlZpNyb4NzBZtxyuZdzlW9tr8o6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTFirI++VwJuUq1d+WLkmocTJJF69sk9m2aC1iJJOyqKZoYOZoSqZWKpSNMqzWVdKtSkrP3nyZCszW8CuXbtambvur8sytapOvVkqevvBFAvVFEn5EiTcJo+sSOoqWZwMkzqa5JJjRUWi2SvJt9+aXcvkoCZjZOxTtj2OFWaEoiSdGTIYa7Sj2DszKwhtKrwOrRxmjzHZeuWd2fhr9oApmThsvqnIwneayhhpbWn2NYP9sJJJzOYje4e9Y2FFqs26ce7icVoJmSHLrEgmnR4GfwbOpwcPHmxlZqXifE/rYsXWst12oV6b8HZcf2mZZXqzZhHrzxXrk7WTWTxZT1o/aCMy+6xZgG2ut7pZdsFK5jTORZwbGVvDsDW2e7Nw9WZK6mUJ68Ax222lvFNUtrZgDPauCUnv+qI369OU7HKkModU1l/V69t1OTf3WvbMDm9rTlJZi5LK+9jU94b93cG+K3rrMP9VbwghhBBCCCGEEMInhPyhJoQQQgghhBBCCGEmrLU+9WYI6aWyW7nt3EzZfmXn5orUiMcpI7927VorM/OLZYCitciycpDKrtLj/+Pz8x4sU2rFTE+Um9KmRXlrRdrdK0O1325Kttorazb7zRKoZGSrZkVZdXyKBNSuWZGC91q3TDJpscbfMj5ocSCMcWbtoTVyGLZKumnnoEyUscb6UcJuu9bzHXNsInwee36ziFRisJLtotKHKn3LxvElZH0i1mZ8P5ZdpZIZsDJ39Ga3Yd0sGxqfi7FjcmCWOXcxVizrB2PLLF2WBWN8Lct+SIsi5+9Lly61ss0vFZt3xfpSsQeSXnm90WvLsvsuwZZo86a9Q7MNmu2CsD1M8m/ZGy2rGu13tOWynrymZWWyPliZf21esrGC7UBb8DBsnR9pRaTNuLJ2qWTumdLPt+M4WYJtcLupWPZsLDcqY7P1L4tZw8b43nFxyvhaWXNVshsNw9b2PXDgQCtzPuZ7evfdd1uZY5BZQ4l9b7LenPtZ18p3a2VM6LVTVWy/1r69drv5z6whhBBCCCGEEEIInxDyh5oQQgghhBBCCCGEmbBWR17J/tCbBYhUpIL2W7M+UQZF+VVvFipKW1mmDerixYutTGnY/v37W9lk5MzcQtZJsfjMPI+76rPMTBas01tvvbWyfnPYJX6KhWrKvZaWvaJSR5M6E5MiEpNNVqSCZlUx+aFZG4hZqMwaSXm1ZcowCxWvSak5ZZ7DsDW+TH5pMc970EZCWwjrR8sG60RZOeOaknJev2IT7bVAkooNqmLRmZI5bqcxaxLfLeG74rzD8/lOaNNhf2YcmUWiMv/Srrdnz56V9Tl37lwrv/POOyvvZWMtY5Mxy2dnm7BcsRON/812oYSbz8by7t27W/ny5cutbJYVs7tU1ka9WUAq9NqpNnX9uVKZy8yuW5HwWxuz3/Ic9iOzYNDu9Pbbb7fy+++/38q04j744IMr69CbWYVYPS2uqxZVy5Jl9GaA6rX+bSpGtjvDaeX8pcUm68u1Etc7vVY+UrEo9m6RQSrrYYvHiv2lYqvlnGPrZLM3jq/PuZlzJbMJcwxiu9y6dWvl8Ur7sk4cR/juOZ6ynrRMkopd09ailSx9lbX0lEzYUdSEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJpSzPlUytvRSyT5TsVpQJkcZFLOjmBypkmWDdglKq65fv97KtBPduHGjlSnhNkkq5V1sZ/52XNdKBilCqTrtUcx2QTtHxRKzqawxletXjts5n9SsT73y7HU7wH8E+2pvVriKTJqSRsad7SJvcnHGx6FDh1qZcUq5OK/PZ+dxnv/hhx8OhL8x2TfHKco4iVkq+FtK4U32yux0ZqfiM/C+JimuWGH5Dqyv8N1U5O42Dy0Ba0uTDFvftiwzPG5tbLJcYhlb7rnnnlZmn+Jx2jFos7JMTBYrZu2141UJus33tHXZGMRzeNzWFqR37tvUfNRrp9pum8acYJ+07E69mQcrWP+vZGakpZHzFzONsj+yzDitWA0q9pDxuvQj2J5m1RzPb5U1bSXOrR0t9nvXkKRileq1Odj5U7K/Vcb9OcG44HNYVkyzC/U+a2879WbY67W9VixOvXWr9ItxPXk/zsGWVY4WNY5B/K6sZJwyy7zZ4Tg+mvXJ/o5gsWa2JvvuqmQTNKtbxSYaRU0IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmQm1r9jX0ymB75V52DmWStBQx0xHl5ZREmQTJJISUQVF6+sADD7Qy5d/c8dp2qqaMy2S0Y5moZY3hM1DqyuvSpsU2YoYLZrGinKySjcW4k7LqKedXZIVzZcpz98ajSQhNVlyx0bBfM3sauXnzZitXbDrMhvPUU0+18v3339/KlI5bvzOL0lj+TamnxbzJHSmb5HUpB63shH/q1KlW5s78V65caWU+M9+fWWjM8tq7Q37lWTaZTWSpVGTSlQxa9q7Y9jzOMmXFDz30UCvv3bu3lRmzNpfZs3BuqVhCzJL8ceYKszWZLZFzPMcOyy5pY6jVu1d232uz2o45ejuyR+00ZjuqyOQNO7/3PbMO7Gu0gTDbGuc+ZmthH7dxnVg82vxrfYHxNLY3mUVzO9gO+88Um0qvrak3e87SYtOeg/2tsvarXJNsx/i3qb7Wm3nZ5hxi88/YVm6WbPt+ZtZRbhPANVtlOxJbf3MuNpsVrde9aymz1ffGXe+7t/dElvt1GkIIIYQQQgghhHCXkT/UhBBCCCGEEEIIIcyEjVqfjGp2ho8w2bP9lhLmJ554opXPnDnTysx8QqmR7WZNuZbtcs/sTrRE0WbE3e9ZZn2YqWpdtiW2C+tnu+3T7mX1oEXi8uXLrcyMMJZxZDvY1A7pvdkulrArPqlkQyMmpTaLn1mZbAd0O7+SCYFl2ivY79iXmfWIdWC/3r9/fys/8sgjrcwY57hBqSbHB1ocaJsY2xL5G8q5TfZtUnLLlGN2oePHj7cybSpHjhxZ+Qznz59fWTfel+fzXfK+ZrOxrFVmkzPrC+m1DSyBKbJZs6zx/Zhkmm1MqTJjhxa6xx57rJWZLZAWOusLpDImsD9adqbezDBj2EZ8Zs7BLNNGwjGFMcKsFmaDqlCxLG0q42Hlt3bcxvolxKaNN9vxHJa5jH24kkGJcB7gGpLrNZZ5jmUp6c1CZfW0TFW85theYJllKvTWz8bEKdl67F6bitMpY8gS4pGwvmaRMbvupu5bOW7n9Gbbq5xTyaJp1zQrj8X4+HzOZWZRNFu1jVNcu/Peti0ILU60HlsWOvue6W0vG1usTStZ3uzvDlxvGFHUhBBCCCGEEEIIIcyE/KEmhBBCCCGEEEIIYSastT717jjem2GgsmM65UKURx09erSVH3300Vam9YmSIpNY8vo837IxUNJFGRetGbRE7d69u5Up3apIFMdyLauTyTsp7TZZKSVtrB/PXydd7WFTsswpmaQ2dc2dpjdLVa+80/paJcOP2VzM1keZNM+nfYcwmxvvxb68b9++VqaUspLphZJPy9Yy7i9mwWJmDo5f9luTX/Ic1pVZ25j9js/JcY32Fdq9Ku+PbcFn5Pszeb3Znax/WB2WxpRMMZXjJgu3bFpsV/Z/9iP2EZZ5vr0Tmx9Yf/YX1pMZahg3lD+zDh9nzK5YMTmO8PnZRrR+ce6vZMfozd7Rm3WCVCypRm+GqSVg76Ri57K2t99y3D18+HArs8+fPXu2lW1+5DUZF5T8M+so+ymzKLI+Ns+YdYAxa/YT/pbPSIvlOHOpZT/cFL0Z0KZcv3K8cp0pmcYq/XKumIWF6xrOEcadzO41pU/dyXfSm2FsGLaOF4xhftOyr9qWBJbV1Po5xwjel2t69m2uD5i5uLLmJFNizaisXSuZTJe7Ag4hhBBCCCGEEEK4y8gfakIIIYQQQgghhBBmwsfK+lTZ9dyoSBEpPaa08vTp0638q7/6q6385JNPtrLJpnhN2gJoI6B0izYFs1pwN+ubN2+2MjNAUSbGMuXSlPOtk2hxJ3SzUZiE0s63DBeUk9EKUskwNCVjReX83uuYxK6SoWSuVLIc9ErXK5l5eD5ljIxTa2+z+DAWbt261coHDx5sZWY3unLlSivTgsBY5jjAPs5zKDmsZF6qxNP4NyZVp5TcJN+2uz6fjRZQy5JlfYL3tfpw3GQ7cnxgO3KMMstkxU5mFrsp1sudoCIzrsynjMdKtsRKRhTLksbMa3znnDc5V9o7rFhIzIplVDJbVcdvswbYccZCb3YJxlSvrWm7582KtZUs2YpYGVd6297Ot37BdWPlmvztO++808rvvfdeK3Me4PUtY4nV2bK7WCZD6ws8n3PCOCsg51GOR7b+qNCbfWdTGaAqNsNNZZiy629q7b0T2NqEmL3Ozpny3NuR9am3v9jauzKfsg0r9Rn3HbbvPffc08q27mdsV9aWVg+OA9yOw7by4PjC+rCelex69n1iY2jFrmjfDBwf+VzGcmfcEEIIIYQQQgghhLuM/KEmhBBCCCGEEEIIYSZ8LOuTMSUDlP2Wcut/82/+TSv/yq/8Siu/+eabrfzhhx+2MrMvmQyfZbMzWEYYSqUoSaWFiDLU69evrzzHJKa0TQyDS+Io9+JxXotQ5k4JOy1YtGlRusb27ZUI9+5C37ujekXaWsk0VrF37TSWsYL07lRfkd6bJND6prUrz6d08dKlS61M28UjjzzSyg899FArM6ZMOsvrs48zOwZ3i7csVOvk2Lw3f2/nWMyy3pSeMpaZDYsZEdimtD4xZs1yxnHNxmKOj2xH2j6tr5jE1GLTbD+VHfJ3Gqu7vf/KO6ctiHMK72XZWCoZ3DjPUorL+/L9MxsS61kZg/m8lFTzmpZtzOa0j2N34nPa81g7ckyxbGVm8TM2ZU+YYn/ttbVvymZwp6jMlb3PxPdsMT5lfWFZn7jmpD2f/XFsNfqIyjqxUmezcnAc41qSdq1h2Dp/MR7NwtDLptZAvdfZVGaZCpW6LcGuaH3Jvo8qzGF8mmJrq9hSGWss27rS7suYG4atW4cQvgP7lub8aJme7JqWKZlrBVKxL9latBIX22FL7P52vu0ZIYQQQgghhBBCCOGOkD/UhBBCCCGEEEIIIcyEjWZ96pUKmgSJViNahP7Fv/gXrUyZJOWg586da2VKqCgNNakYJeV2fdsVnzYCZqLhfSklo13r0KFDK+vDzCrD4JYB2xWf5/NalLnTBkVZKq0mfM7Lly+3Mi0ellGA9GaMmpL1qSItuxuzyVTO75Xhm92JksaKRNPeP+XZ7F+MO9aZffPAgQOtTIsPLRtm/aGssrLrPhk/i9kfCK1chllZOJadOHGilWnf+uCDD1qZz8w4ZYzzfJOGsszxi+1rUlhrBx43q0hVnjtHrC+x7pbpj/YiZl/i+cwqSImxtaVl0LB50OxlJrfm3MK+wH5n4wnLlDazzpyL2T5cJ6ybN/hvW1uwb/MeHOPY1hybOH5V4qjXRtFrKa/Ma5UsFXeL3YlYZkOjt+0tS97DDz/cyq+//vrKOlSuz7ig5ZQWdq45Od6zPmZ5Z9+fYhPjdTg+8F7DsDXmT5482cq0dVWyjm4qQyiZYlfcjmxuVrfetd1cYXvwW4zjrvWxSgbX7R63KpalTV2Tz8Ixh/NyJYsRGc/7lkXVsilxrOH7M+uT2ZDN+sT68Ppcx9o6fFPxUulPdk3L7mSWLhJFTQghhBBCCCGEEMJMyB9qQgghhBBCCCGEEGbCWuvTFOnrlN/y+LFjx1qZO8RT1vTMM8+08nPPPdfKlCebNK6SicYkZLwmrQaUnvJZKB/jvSgRX5fhgv+2djT5u+2qTVkpM1/QXmHPT/sWpWhT5J13UkrdK2ueE5WdyysZlyo2tYqVyaSVFQkopZHsa+xflA1yHDh9+vTK37I/WpYcWgBZpizcMkmN25zWCZbZLpRu2nUtmxttMIxTwmejjPXWrVutTNuMWcJ4X16Hxy0LkfWDimXJzl9y1ifCun/5y19u5aNHj7YyY4E2AcqKae/lcfbhd999t5XNpsPjZqtl21Nqzr7D2DQrB98t68z3bFkXaZ2gfaNiFRqfx3vwWmw7w2xQNt5ZO/ZaITYl37d72XWszlMyJO00lhmtd05k27B/MhZYps3uypUrK69jGeKsTMk/Y4rzF/spx2lilkY+L+cuG4PNjnHw4MFWHtswee+33367lfft29fK3ErAshNWuJPrvSnxUlmr9WbVXQLsG4xNxhfXHb0207mNT1MsrfaMbCt+V3LusjYZr9HMEsl50zJ+cm1h6357xxwraX1ifTiWVTKc2tqY2PdSZVy2bzDeyzLwjbM7r6zbbc8IIYQQQgghhBBCCHeE/KEmhBBCCCGEEEIIYSas1ZH3yn965Vv2W8qFKGWiRIi2iN///d9v5fPnz6+8L+tPiZ3JtSjLsl2reR3WkxJOylDNusRzeM3xDvkm2zXZOutNaRklWJSx8X48n9eknPeFF15oZcvWY9mgpshQNyV5nbMs8naYnNDke6RXcmvvkP3I7muZfCr1ZD+iZefGjRut/NRTT628ptkPGRN8Lsam7XDPcWmcwYlxYbvwm53M5O+sB2OT59gO/JS8m0S+IiM3OTvfDSW2lV33zQ7H629HFo+dhm1AO9rnP//5VqYFh5J/ns+5j++BEmDrI2xvvn/2F7Mj8f2wbNYP1oexxj7Cc/jsvCZjiBkSaAFkvI/tFfw9ZdW0V4xtxh/Btuid13ptTZVMTBVLqmV9smtafYwlZF4zerPxVNqJ/Y0xxeufPXu2lbk+tKxclTma47pZnNhnLXsp4butrP+tztbXGH/DsNWiyW0Orl692sq0V7DtLJtdJaZ6t2zonY967YqVuJuSLW4J8ybHafY3y1Rp77aSSc2+ASt9p5I1aEpm5N7r2BhCu6JlaLWsnsOwda7lOsBsR70WRZvXzT7K61gmU1vrVGyuveVeGyPptfNHURNCCCGEEEIIIYQwE/KHmhBCCCGEEEIIIYSZsFZzM0XG2yv9olSKsrRXX321lf/oj/6olb/5zW+2Mi04/C3lWmZZMqm+ZWIxuTHPpyyLv2WZcifKVmmhoiVqGLZma7JMG7bbNq/F8yljo53jgQceaGVaMJhxh+3Lc2g/sww6JgmrsKkd0klF2jsnTJY8BbPgUCZtNjuzAvTKje1ZKGmkFJrSywMHDqy8F2OFFhLaK2iDYExwXKKUdFxPthHPY1zYLvwWC4wvWp94fZO9cky5du1aK1uGJmLvg89o1pop8lFi2ab47HOlkmHg5MmTK48zy4H1Ecr/LWtfJSNBxTpgx3lfez92X7MYmxWRliiTRa+Tu/MenNcYXzaHssy5jLFs8ct6mAV0iiVqU/NphV5LwFyxfmL90OwDPJ9js9lsaQtg3zEq8ybryXg06y77L5+Llgdb93I+YTxatkCbN8f99PDhw61MSycz4dH2zPme5U19n0xZW9p1ejM0bcqytIR4JFZf9ltaXPmtZFYmi/E5tE1vP7LjjCmuN8yCb+s+jhvDsPV70MYsW0PYd7JlkeQYxPuO6/QRtMDZmtYyh1ayO1Uy5hI7zrHPtlNhnzaiqAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMKFufKudsKusT5UuUt/3O7/xOK1+5cmXl+ZR4UVplNiuTqlYyJBiWKYJlPpdJosYyfz4Py5bZgdelLJ7WEcrHWSfuzk+pK2VmlJHTOvL1r3+9lc+dO7fyt5TSTZF6TtkJv5LJbMn0yvcs4xD7EeOL/chsGpUsJRUovaZEmtZISiYtDvhcjAlaTg4dOtTK169fb+XxrvjEsklZhhTLmsOxac+ePa28f//+lfXmM1MKTjklZfcViTDhcY45lQwfZpdg2WwG/K1JeJcG+wLl/I888kgrMwaPHDnSyq+//vrKcziOMoMK28lky2x7kw/zt4wdvivaYZm9gRYtsxVfuHChlRnj7NeMO16fcxTjlHEwrjfnLJYrlg/OjxW7E5ky9m0qq5Qd780aY+VNWXC3k8rcRPh8Nj5xfVSxmFdsc4ZZZDg2mx2B9WF8VWxAlgXU1lCMOdaH681h2BprtINy7PjlX/7llfemxZ6xyTmUbMoeZedXrnMn15ZLXsfyHTJeaHnhOTa+boftrBIvleyyvbY5y9TG2Cdcb1hGTcbvOCMbY57XsiyiXHPaN6mNKdzWg3M8z+f1Kxa4ShZFsqltMex9c0y09jHmP7OGEEIIIYQQQgghfELIH2pCCCGEEEIIIYQQZsJaHfl274xdkZxRIvTKK6+0su1yT4kXy73WDFLJrmC2EdahYlHicWYTGF+LUlrCe1OSazIw2rEs8xahpH7v3r2tTLkaJcLMzkUb1DvvvLPyvrYj+RQqMkQ7/26kN6OE2RDYp2g3YJ+y91mREJpdgpmbaAmhJchikLFGu9NTTz3Vyt/4xjda2STfY0xWbvJcHrfMSrQ+sa6Ma9aJEmHanShPtbg2OTvbi2XGu41fFRuUtanZ7dbZz+aCZQ9g2eLIxir2Z8uIZVmZDN6X8wntGxUbH/smrQ2cB2xM4HHOCZz7KIumXYmWK8YE5/ph2BrDbHdbK1BWzXaxZ9iUjcjOL0mjO21HvXOczRlLsDuRSoZBO9/GNvYvjruMQcZsJYtXpQ5mReW9bCxnnPL8iq2J2PhgtqzxdRjnnNePHTvWyox/zq0854033mhlrjMZs+NxYVWdKraITWXr6aV3nKn0rTnBOlpfZZ+0Mdiuad9fNg5MydxFKtc3qzfLnLtsPcDMp7QD27YebGeOY+Pz+HuuITneWXyZfYvfj8ePH29lrnv5bGwjjhWW6djWrnZNG0Mt021lHrcMrbwmrVvGsmbZEEIIIYQQQgghhLuY/KEmhBBCCCGEEEIIYSZsNOvTlOMmU6JUyiRIhPIrWgEoOzLJXO8u0YTyNkrIKJ2u2B14X8q5h2GrjIp1ovzMZGO8Fo/zmpVn5vPwfF6H2UpMRs+2oDWjYkXrxeSgvTK2OVGR61asfCYNNZke+xH7OSXMzNjArCnsO9bGJp/ks/CalEAy6w0zN1nmGlonGDes2x//8R+3smVdGwa3EHKHfD5DJTYfeuihVmZWNZ5j97p69WorV9q9InmvSElJr92D74aYbWCuWGzy+Pe///1W5tjJ2GF7MLsZY8QsvfYObcwzqxxlubQgWCYlSpgpvTZJMvvsjRs3WpljC98/78X6MN7HUnP+xuyRFevmpqT2dv52Z3fqpdcavIR506w6trbk+ewvnFPYbxlHXNexf1X6kcG+zTmI9hAbfxhHfBZ7n4wDPguPc+wyqxfbajxXcC63LDNHjx5tZT7/iRMnWvn06dOt/L3vfa+VOW4yW6Rl3qpYn8zKUsmGNiVLbi9LW9Na3DGmKmuZCr1W7Mr5vVYpYr9lfHGNzTUjLVEcB3gOY5ZjHeNxnJGN8PfMWMk1N88h9m18+PDhVuY3I5+H16cl2b7zLX4rdiejYvu1LR6s3YkdJ1HUhBBCCCGEEEIIIcyE/KEmhBBCCCGEEEIIYSastT6RXlluZWd7Sod4vu16TfmSyeEppa5Id3vtIYbVrZJlwiRU47rxPMpMTdJJuwSlrpSM0yLB5+R1KDOj9JD14278lNBxF3LWme+A8lTLmmAWAtK70/6Ss1eQTWWpYntQjsf3QJk3M/8w8wstRdeuXWtl2pR4zUpGNhsrWGfKDNl/+SyUWlsGGfZBWjloAxn3QT4Dz6P1z2yNtsM845fjCO/F57HnN1mmybnNlsU6UIZrWRmIjaeU9vId8BnXjYlzxOKRz8E+8t3vfreV2QYcpxl3vZlZbP61+jD7EvsRyyZn5njP+KL1w2L28uXLrUyLEq/JPkjpNC1jYwm2ZYfiHMz5i32M8WvZCafYjjZlT9iOOcCuP0XiPydszCO0F+3fv7+VOe5+7nOfa+U//MM/bGWbv3rbz96J1Zl9mXBuMStiJeMb15K2pmMM8tk5hox/w/odPHhw5TMw5lk/jhEcj5hZ5plnnmllrpl7bWm2btxULEzJ1tRrrZoTtsZjn9wOC9emvicMi/eKJc7GKK4N2Wdp4bdsQmZR5Fps/G9+V9u3q9nheQ7j8YknnmhlrnXsO5fPY1mfKu1YyeRnGS4r8W5zOscZPlelTy/36zSEEEIIIYQQQgjhLiN/qAkhhBBCCCGEEEKYCWutT2YxMHtCRR5bkSYRyrooh6e0yjLU2G7KJm/c1A78lHyzzpRkUj5KmRVlXOMMONYWlKrzHN6P9gSTsfJ5KHszS4xJRvlb3pdyVr4/PsuFCxdamdlHTHa+KZa2Qz7jztqjksmiIsPmdWwHfr6fXbt2tTItMiaZ5nvmNQnfCaWXfBb2R8okaZdgHeydM35Zpm1iLBPl/RhHlIxyjKBElTBemMmGsWwZaizDFrF3zDGB0nk+P+vMd0CbisU1YfvweWktoDSd2DXnRMUOzP7C90lJL8t8tyyTypxLTFZ86dKlVqZUmXHELA1mq6UdwayIfJ+MFdaNscbrs49QCj5+Xo5HtGgypjiOmO3XrCPWvpUMMr1Uflt59xVreuX6S7NXVLLxmLz92LFjrUzLOOcvk+Gz7/S2MTGrwjhD6Kp7WX+0rCn8LecEs0Tx2W29MbZr8X60UvNalqHKtj+gXZm/Zfm5555r5TfeeKOVmVmm1wZVyfo0JTOf3ddYwjqW2Ps0G7fF6XZkyqqsn4ltZ9H7bi0eOZ5wjU0413GssPgdX4drPJ7HtQLXtLwHxwuuG774xS+28qOPPtrKXGdyPOWagLFp1qpKmVQy5rLMdmebcJ1gFlCbGyrfs1HUhBBCCCGEEEIIIcyE/KEmhBBCCCGEEEIIYSZMzvpk5/TS+9uK/aoiP6tkfTIofaJsn3JxyjkpBzMJHGXt47qZJM7sUhV5NtvFMjrx+jyfu7FTEkZJOSVqlLdRhkrpP9/ZuXPnWvndd99d+SzbIe9cspybVPq29RGLEcsGxb5DK55lCqKNhu/cbDQW77QHmfyb9TQJJPsjn/Hhhx9uZT7Xun5nsmfLcGQWRT6P2TsZO7Slme3Nnp9jmWVt41jGuvFZ+Izj7Dur7sXrU6rLeOc4w7rNFWtjk0/b+ZZ1oWJdtBg3OT/nHfYpypCZWeno0aOtTDsS60kLws2bN1den33k+vXrrcx5jBJsSq3ZF8wWPf63ZV5kDFqmSdIrW++1LFUyVlgdzFJhEutKxkMb0xjLS8vIZjYaPivnBY5DfFZaBadkcarA9uZ4zOPsv5V1smVgtOxRlXWlZZYZn894JpxfrO/ZdVlv2u15L7YR3/FLL73UyhUb1JS14qa+qWyttrRMpuzDZlG1rRrIpmxQpHKditWVZT4vj7Ofsi+bFYm/5bcn51bLREzG8c61OGOBscn53mzyn/3sZ1v5ySefbGVaSe1bomLzr3z/2xxayVJK7Hwbi+xvEGZjM5YVySGEEEIIIYQQQgh3MflDTQghhBBCCCGEEMJMWGt9quxoXtkluyLJppSLMijDdlKvyLx7d3C3+1JCduLEiVamDYrybErZTTJsFodxnUx+zN+zHe23ltWCO61Tikf5Gc/hTuC0uPC3bC/K7JiVg1I3yuoodavYuyqZxowl7JbP92ySS8uQ05uxxOSaPIf3Ypnvzd4nZa7sO7TUmD3OrDmWfYj9zixd7NeUm1LyOZaJmt2AMk6OBZSV8pn5DCZtJ7w+y7bDfKX/VzLC8HmtjcxKaRJewrGL78YyHs2JyvximVYsjirZW3ol3zYOsG6MOxtPKHlmv3vsscda+a233lpZtvGBNivCGGJ8EMrjh2Hr/MIy5ybaBtkulmVnp+aR3mya9ls7buNY5TpLwKxg1n6MBfbPGzdutDL7vMnYK3OuwXfCvs05yKwQ7LOWAYnPSPhbxoqtz3mcdbM15jB4pijem/MI68p2ZJzy2cw+zXWD2fkvXrzYyhwfSCWbV+UbaTuOL8GKSOwdWrZb0ts2m6Kyfq5sKWB2W7MfMm645uL17buK8ybPt3uN78GxgPYl1unTn/70yvLp06dbmZY2rgN4HY65Zm82W1MlM25lSxCbMyp/g7B47LUlRlETQgghhBBCCCGEMBPyh5oQQgghhBBCCCGEmfCxsj5VzjFZ0JQMA5Xds/lbswTZTswVKFGjtIwZLsziwPua3JTSS5aHwXfr5v0sYwftJRWZO+Vnlh2DclDuCs4yn9+krTyHGUQsm5XZrzYlbVyytJtUZJkVeWwlpsyKZbYOvkPa5nh99gXaK9h39u3bt7KehO/TslYx1tinGFt8xrFMlHU1CbhlpbJ6s70oBaZMlGXet5IZyMZW1pn3Zf1ZZhtxjOJ7Zbvzt7y+7fzPvrKETBZmQ+Bxs65S0luR1RsVC4vZ11gHvgdmZbp8+XIrM8MD+w4l1nzPlrmL57A+hH2HsmvOxZz3xnWizZD14P16ZdK91gZSsSNVzmEfMnuqWUXYPjaf2niyNCrvhG3GMYn9n+3EOLW4610/V94548XWVpZdxNZ9ZtW1+jATolmP2R95r2Fwqz77JOOZljPbVsAyHvJeHC94PrPS8BnOnj3bypxzp8T+prI+bcpeMSdse4be77U7yZR3aHZbxoFlIGR/ZKxYX7AMU+Prc83NcYFrPMYgz+e2BcxEZVthcFywbS4qttXebVkqGRUr20BYf7Xrk0qcLjeSQwghhBBCCCGEEO4y8oeaEEIIIYQQQgghhJmw1vpkWZkqO4vb8YqtidjxisyssvtyRcbLZ6f0+vDhw61MSZfZvlgHk/NRYja2PpkViJJRSt94P1qfLOsKJaCUtFLexjrx+teuXWtls47wOKWnfH5aq2hrYTveunWrld99992V9e+VwJElZH0ilWftPb9SZj+nbNIsUfwt+yzfId8J+86hQ4dauSJzNsmz9Xd7FvY7Ss1poRiGrf3WZNuV3fwtM5zZFSkTZXtVMvARe36zh/AcPjvlr9yxn++b53NMY1zTVmmZHpaAWSHsndj7Mdkzr2l9h+/Nxkiew+uwzHMYs+yPlpWGUmjWgXYJXt+sJZRLs004n4yz0jDDi2Wv4D1s3WNZdipWqd7sI/Zbk1vb+yOV5+J75Vqksn5awrxpmUBsvWrWnEpGxcqattJmZlUwbI7mWMt5ieOuxQGP06bAcdoyKrLdmPFtGLa2r4077Ie01fO42SZtnW1rYz4n68Dn5DOwDpW1SOV7Y1MZ5ZYQj4R9hv2T79wy2c6NitXVtghgv+N8xy0izGLMeZNzrsH7cl02DFvXuIwvs7HT4sQ6ccyyMcXsTvatyraozMWk8m6sXLEW2lzC81m2+XrLb297RgghhBBCCCGEEEK4I+QPNSGEEEIIIYQQQggzYa31qddSQUzeWZEXVbKUWCaaivXJpEx2jkmsaX2iTMwyelDiZPelrHQs46KVgLIxSgP5G8oHaWWiRI2WkldffXXlvWhr4vXffvvtVr569WorU0rLtqOsmm1HixOlbpTPsb34Dig9Zbl3V/ClUZHdWT8n22GDsvpYe7Mvs49cunSpldkXKPs0+T8lmSZnpq2H16R9h23IGBo/CyWqjHnGkWUDMnsJ68TjNvZVsviY3YvyVI4PzOjDe/F5eQ7HnJs3b7YypeOU57LMtqJMn89bkf7vNGz7XnuvZUupzKcVybRJj63vMJsZ44Uyaf6W53BOZFZEWpEuXrzYyrTVmuXEoHR6bEvk7y0jEvsVxw6LTYupKTaoyrrBrGWWTcMyirGezM5WsQP12irnhMWjZQLdlH2e9GaHsT5iWZ/M9sjn4hqN8xrXYuxTrAPP55rLbFZcJ/K+w7C1T3Ie4f0s+xTjjtmgWG+zPdtWBZz72b6nT58eVkEbFNfule8Kw9ZSUzLvLg2+H45/7C9Leb6K3dzi2jJqco4yGw3PsfGB8chYHteD629+b1pdzW7NcYH14BjBNWFvlq9K/6+smVlnwvrYmrzyXi17n7GMnh5CCCGEEEIIIYTwCSB/qAkhhBBCCCGEEEKYCWutT6SSyaj3eEXiV5EN9u7kX9n1mXWj5Gz//v2tPJZYr6oDr8PdrCnho+SbdaBMbBi2Pg9/QykXZWO8H6/Fe1MWT0uRZWChRI02h+vXr2u9P4LtbtL2o0ePtjJlfJR5s90pw6X83e5ru3YvzQbVa2Wyc2zn+U2db9J4qxv7LPsU5YFmtaBlh33cdp1n3LBM+TPjbJ3thv9nGZEYF2wLnsPrsB6WXYJwnOI12UaMEbM+MdYYgza2mESWv+X5LHNsMZk+6ZXC7gRmYemVvdt8ZHHH89mWfD+sD/u22WhojWV2FPZxxjL7F8d1Wl1Zf86nX//611uZ8mobs82iNLZKcb5gu7C9WG+zjvA6jLXKmsOwvmI2M1pT+D74zngdtgXLfPdmS+Rz9Y7jc6WyLq1Yn7bDQl25DuPO+nLFEkKLscWy9SP2F85FlqGF8x7tsMOwNaY4BnHM4nzB82mNZvzSyse24DMwvngvyzzFcZDX57OZpbe331TWqBXL4dJi02yatubkOZXsXjtF5T2zzuzLXPdZhkReh8c5R7GPWMa68brS1sqcdzg3mZ2HcW3vjM/M9mLmKtaBv61k0rKsmbbeqoyntiYz+zrHHLZ1rE8hhBBCCCGEEEIICyJ/qAkhhBBCCCGEEEKYCWXrk0n2TOpbOW477dvO7iYjr8jCjUoWG0rOjh07tvK42Ywoa+Izcod4PiMtR5SxDYPv3G2yOcpMaWuifJpyLNu1n/YiXpPHTWLNetIqZe1FCfeRI0da2bI+sQ6Uy5s9hMxBFvlxqUjRK1lmjIpEvDd7RS+UD1++fLmVKaWkNJKyaB5nHDHueH3LrMJrsv+ue0bGEevKdqR8mrFgdg7er7IrPi0lrA8zKzGOaDmkzJvnWCYaYuM168/xgW1tz26ZO+aKZRUwCa3NZZVMNCzbmEr4HiiN5lzG+YEZmmiTtYx8Zq/hPHPw4MGVdaPVkfMMY5bzg80VzFI4xmxNzG7FGGH801pJSTqlzhwjKplfLMsh78X3wXfG2OS7f/PNN1v5ypUrrWw2YbNVViziS8j0RCpSd1LJnNhL7/xo/cWsu8TWhixzPuH6lr9lv2B8MQYZ75x/+VvGx/g3jGGzQfG49XnWyTIx8dk473CM43HGJudWjmt8r7SWsX2tDpVvqt5tI5aSFWkV7Oecy+ZscerF3rlZkyyjIteSlbUHrUv83mSsDMPWTGqcd1hXxgjHFLNVM5Y5bzJG+L5Zb853nKPNutmbXdHsUfZ3h4o9iuMJ1xgcB9m2xnIjOYQQQgghhBBCCOEuI3+oCSGEEEIIIYQQQpgJa61PJs3qzbxhEm5imZLMEmXY7v12jsmXKNEyqSNl3pRiWUYUStQoB6Nlh5IxytKGYesO2yZxs6wevJZZoijvpAzMZF3sE2bLMssDn5nvibI8yyBj1hTKX3mvyq77S5NOVmR3fA+V+K1kd+ptsyntyt+yL1POv2fPnla2rEeUVFucmv3OrCLjDGO8ltkrKpYl3pu/5f04dvActgWtE+wrr7/+eiufOHGilSnL5DMz1nicdgmOLcwKx/HOxgeT+dr4ZvLUudKbkaMSdzxOWwHficUp288yazDbmGUhM+sE5dMcj2mt47ulNJhjPOdZs2BYZquxhLsiXa7IpxlfLHPseOutt1qZ8mbLzEhbE5+BWbIsKw3fGed0ZsO5ePFiK7N/TBnTp1hqd5re5zOrlNkuptiBK+tSWg3M2mBrYPZTjs2Ma8vKwjGeMWhZlQivOV7T8t6WKYm2Z8a2ZSBl/WjfsGxVrB/HHcYg453zL9eojK+rV6+2Mtud9eeapmKPMu7GjGzsJ+yHFWvm0p57HXz/bAf7DiWWhcmypo7XtGxr/h/XBGbJZqwxxvkM9p54X8vORns+1/pmdeS9bPyy7yiLQbObst05PvBbm3XjWt2IoiaEEEIIIYQQQghhJuQPNSGEEEIIIYQQQggzYa2OvDebDM8ZZyy63fkm17Qd0ClT4r1MJl2Rp1qmJ9oCKJOkzMpkzrTyEJOOMzMD6zA+j//H5zFpLDNq8Hlo52Db8Tkpk7XMASZPJCbj43FaMyixo0Scz0hZHZ+FctOKXJIsQcJt0mjb3byyGzrZDrvYpmxQjDtKZBmD7ON8/+xTtM3xOOPM7GOUYQ7DVksCY4d9lbYryrYrNjbbtZ9lnsN4ob2Edidm5uBvmbGCUM7KZzl//nwrMyMIz7GYsoxUbGuzuMyVXmtIJR7NamGyXMsqyHuxz1I+zOPsXzzO+YdxxNixMmOCcffwww+38pkzZ1qZY7nZbWlPpg1oGNwux77H56dEmf2N8wvjiFms2O6c48zqa5Zem09pr2CsvfDCC638xhtvrDx/Stai3rXgXOnNwlaxCW8Ks7AwRhiPtOCYvY/9y+wkloXPspFyHjh+/PjKe9kakGPFMGyNO8YpbUGMHa4PaS+iPYr1Y73NXkTYJ3h9xjvHqSeeeKKV+Q4ee+yxVua8RmskbVm8F+ffSrY/6zdLyJBoWHavStaspWDrPj4744M2IMsmals+sO8zBi1D7zBsbV/rhzzOe1gmZltPc43HZ+PYx/nXskHxW7WS+dLmMsuoZ1uxWKzZuorPxfWQEUVNCCGEEEIIIYQQwkzIH2pCCCGEEEIIIYQQZkL+UBNCCCGEEEIIIYQwE9buUWPest59MCr+NmKpuumBo6fN0nDR22heavpi6Y07duxYK3O/B3pv6Z2lN858xIR1HqdFW3XOMGz1uNF/Zyl0uY8APb+21wQ9kNzXgj47889OSVdpbcrUoqyD+RZZZ9vvYopPfwmY77WS5rH3ve2UL5jjAFMAHzhwoJUtPaD5uenbpV+c4wyfl+kBh8HTCHJc4LUsTTKvw37OuONxxgXjndfhcRs3LD0560+//8svv9zK3DeAe2xxfwzbD4KwPktOOVqJNRuHbA6tpOq2a9KHzmuyP9q+RLwX5zXOrZauk32QMUsslSXjkfHBfsrrW38fBt8Hg1g8cu7nvbknDud4lhkvPJ/72FgaesL3x/f0/e9/v5W5pw/n+u2OlyXEI5my35rFoF3fjlf29WG/YJ+y/Z1sbmE88pqMXztObO9Errn4jOynnEO4hh3/3vZX5PqY+9DZXjS8N+egyn5DfDeMO45fbHfu0cN03pW9Inn9s2fPtvI3v/nNlc9i+48YS9tLylLD8/3bt+ESnm+MzeO2pyb7oLUJYXtW1gzj9QP7uY2VrIftBWn7tDB+OQYxdjg+cBy0dYPtuWr7HNnfMlgfawfbS4hjMZ/X9u0dj4mriKImhBBCCCGEEEIIYSbkDzUhhBBCCCGEEEIIM6GcntuOm9WCsiuTqPXaZSp1M+yaloqU6fgop6KsmHJQSsD27Nmz8reUU1HSaBaqsVyc0mvKw0wSyfNZpvySsjG2qUnBKym2LYVZJfUsn5lyVlpcKDHl+6O8nJJXpmvl9U32tgQZpdXR0t9VLIebSsO93fBZGI8mi2U/ZV+mJYr9aO/evSvvxbim1WIYtlo1+A5o52F/tnSEZv9h/fg8/K1JLikxpXSc9kDKVk1Sfu7cuVZ+5ZVXWpnjoKVErKTnZp17rQVzwmTGlRTHlePE2tVi3MYEzkEcazkf0Yo6TrN7u3uZjYv1ZP9l37RzWObYz1S9w7B1jOB1zUpssmfaHSl1Zpp7zjVcT5htm/UxuT/n6+985zutTLsT7VSbihHrf3x/S5s3yaZsSptqb7Yl+x3td5x3zOrIvsy+zz5idkJL2815hnHDOZH9mv2d8cT18PgZLDYZa4TPxmeo2EIq75514zj42muvtTLXz7ReM4W3fRfxub74xS+2Mt8B7Y0cBzbVd+eE9X+u5dknK1bEOWN15jPa+Yxl9heuH22daNtIjGOF/YdzmVl4uLbkfGx2TcY4780YYVuYVZ/PQ6sU4frG2rey1QvrzPocOXJkZf05PpIrV660sq2ZSRQ1IYQQQgghhBBCCDMhf6gJIYQQQgghhBBCmAlrrU9T5Oe2gzLlVDzea52xTFJ2jknsaX/gDu6UdlPGee3atVam1ItQ+kSpF+VqtBfQBsV7UW45DFslW5QDsh0po2K78Lr8LZ+H8jZaHuydVTK5mPzd3istGGyvt99+u5UpnzWJHWXqlADynVk/WxomP7cYtPPvpMx7CqwD5c98tzyHUk3amojJMCkZtYxnY8wqyL5NuabJSvnOCOXWfE7GhVm/CGOT4wZlom+88cbKMu0xJt20fmbxbtmJ7Py5Yn2jYmXqtf32Zl20tjSLE+cHns93zhjZvXt3K7N/cSzne+aYbfJsszeaxXCckY19lb9hPRh3vAdjk23HcYS/5fm0YHAdwHjkXMznpM3h2WefXVlmm+5UNsM5W2RXUbEibuqZeu0pjGWuPymrZz/nnGXZUbmOY1/jOZyvaBukjYBz3zi+PoJxw/XturnSrNqWPc6sB5X1TcUWZO+e9eE648UXX2xly2zHMY5jAsc7zum09jMDJd9lxR6zZBsU5yPWnW1p59v2BnOm8q4ss5tdh+ew3Rg3jC2OD8OwtU9yPmZ83bhxo5VtPGKZ6wazsZnFiddhvWk95hrF+grXt5yLWWY7cmzhO9i1a1crM0s0z2eZ/ZJtNd5GYRVR1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEmlLM+mf2l9xxiMlSrQ+W4QRkYJZ2nT59uZdpoaCOg/JDSUO5Sb9Iyk0/yt5Q0MmsEd5Efhq3SNMrSeJxtSmmZydwpYzUpODH5Xe/7qEhPzbLE9rKMCGxryogtI0LFljBXzIJWsThZNpalSNr5ns1ewXhkn6U8m9Y6xhZhe45lopUxkbJn9lXaIohJMS07gslN2S4sW6anF154oZXPnj3byhyb+CzEJOiV7DD2vDavzJXerE+VtrE+xf7ce1+zQfHdsl9w7KTFifOmZSdjfL311lutzLmY4zTnPo79jDvWme3Aug3D1hgxaTjfAW1NlHZzXOD5HF84pxiW3enSpUutTIsTM79w7t6O7E5TzpnzPLGKijVpyjzYm7WN/ZT2F8rqKZ+3DJyMF5sHOI5aTNGaw3pybmXZ7La85tiix+dhvc3iZVapO2n54TNzXLN1P78NGL9sL66rmUWR3xtmYd7UN9JOY99KNlea5Xpp49AwuI3Xsu/yHM4h/K5kmbHMeGT8jbOrcY3KOZVzItcHdi2OL7YVgNmd2Ict4x23LFmXxeoj2D9YfzvHxlmew/tyDcDYtz5tNjYSRU0IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmwu01NyuoSMtMIlSRK/bKTe2alJNRinXq1KlWpmyKEiRKGl966aVWZkYMyrJMrkbpE2WMlEeZZWNsr6A8knI3y4LD821Xbd6D51MSRokay2a5qchQTc5ofYXPRSsapfMm7yOWCWkpVp+PMFlrxQZllrWlSWWHYWsfodTT+jv7C2XIZj9i/FJ6yewu4/uxrSl35BjEtqbNkljmHl7H7su4pmXp3Llzrcz24th04cKFlb+t7IpfydZk2T1sbFlavzTbkc1Tho2LPG7ZfnrbjG3PDC9XrlxpZWZX4BhC+yxtCpxbOZ9y7mI/5fhNuwdh/6UcmzExjmX+27K7cYxgW9CCwkxMtEGZrZrvgHM8pd20gdHi9N3vfreVGac7NTdV5vElsKk1Z++9DLalZSNlvFumFGYyYd802b7ZRrjuO3jwYCtzbch451jBvs9Y4W/HmZFYV86DPI/PxnpXtlfYDixbIrPLcb1qtg6+D74njokcKzkuWbYwsrTY5DPZWsPWPsT69pypZGzk+MBYMeut2eIZN4y/8XYXzGrEudks7Vwrs35m1eb74295Pu9r1i/2CY6bjB2u12ktJIwvi02Ov/x+4LthmTZqZtBct15ZRRQ1IYQQQgghhBBCCDMhf6gJIYQQQgghhBBCmAlrrU8mcbJzCOU/Jmk3ualJ2nrlt5RHUa5JyTRlR5QyUaZEu5PJnSqyKdbTMrFQ5knJ8/jflV21WQ/K2ng+Jaa0Odh7NbmpnV/Zkb4i62f7so1og6K8jfJHltk+LC/NAmR9vmKFMFtJJQvG3LBxw7JjsC+YVY6ST7aPZUgbhq2yTJMoc7zguMO6mkycMk5ek/diXNOy8txzz7Xy888/38qUuVcy6xCOAxUrXWWstwxGS6bXamHz45TMHmbxNFsW3/+ZM2damZmYaAOk3Jr3ohWC0mbaJfhbjt+0PjEmOEdZFkTWbRi29ivOoWYNZmxSwn3kyJFWNiupZaVhXbme+LM/+7NW/s53vrOynjam30nulswyZFNZnKYcZ3/Zs2dPKzMDGtd6XPvYOs7WiZwH2ae4/rR13OOPP97KjF/GB9fGfEZm6RyvablG5/hilli2I3/LmL2TfZL15BzNdQbryXWDrUXtPfVa6WzcnyusO213HM/ZPzl3jNdjS4PPxZjls1smU/YR/pbff7Y25pp0PM9wXLC1Ge3Q/D3HBdaJccGY5bNxLmdd2T94nP2c1+d4xNhkPc2Gb2tUnsNx8Pz5863MsZv2b66BOHZbNjcSRU0IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmwlrrU0UmbRJuyhUpF7LrV+5bOYcyKMqyuPsyZWOU/9NGc/bs2ZXn8FlsJ22TvJo8lbYDSrcocx1fi1Iu1oO/N4kXJd8mY2VdaRHhb61smQnsWXrtUbw+LWpsL7O78LmWnMmikunM+ifljhV5pN13DlTshMzGQPkhJYpsE/YXSk85boztFZZ9ie3IHek5PlJWWhlfLMvbjRs3Wpk2ih/84AetTEsU62ZZFmzH/krGjd6MfZWsFjaXzJWKpbJiG+3Nnmfvx+w+LLMvcG7ivWhr2rdvXytzruQ5zJ7EujEbFOXu7Gucu21esnYYBn8HlB8ztgll27wuZdu8t8WyZXd69tlnW5nz19zGWbJkG9Sm5vze31ofZL+j5ZZrV7PXcCxnTDEuaCey9R3HXcsayvvSAszrsO9zLmKcMaPguN779+9feV1aGGy9Ypn2prwnUvmt2YRtrWb1t3tVnsuss0uDdefa7OTJk61MG+zdZH3iGtXW8+xrjFP7TrdvMv52vLZi3LJOjHOOWYxNns/7cd1sGYc51rBOXNPzOfls7De8Ps+pZAS2NqpkJaZ1i2Mx+7FZW40oakIIIYQQQgghhBBmQv5QE0IIIYQQQgghhDATPlbWp4r01WRElUwgJgUnJuszeRHLlGhZNgZKvk2GbBIwyzJBSRelWJahiOVh2CoBpY2Cz2AWIT4zj7O9KN8ym4NleCEm0azYACrnU7rGNjL5Y8WWtjTrk7WNZSMhPM72q2Qum3M7Wb+wcYZScFoZbEd9xso6ewXjiG1H2Seva1nJbJd7ZtFgRqcXX3yxlWmvoL1xPKasupeN++w3NkZXJOgVi4T1rcrcsNNUrExT2qZiJ61Yg82mw9+aFffy5cutTGsS7Qtm6zDrB+9LuTHr/NBDD608vq5fWFYIk4lXskFV1jGWFeLb3/52K1fWGdvBFJtS71ptTvTatrbDzmVWRM5HbGPaCd94441Wpu2bfZxrQ5Y5/1BuT0sB11C0lnB84JrW1glcq77zzjsrn2UYtm43QHsk24gWSo4jvBZj075VNvUuK5n5KvYlvrMKZnGfMpfMFfuO43uubK8xZ9iP+Iy0ErPvV7KBmYWX7cnzac1hzI7vwXmTY4fZmjiOmH2Y9k5aJflbjh28fsWSz75iVNZqFu+sJ22oPJ/f5nwHfBaO+1rP254RQgghhBBCCCGEEO4I+UNNCCGEEEIIIYQQwkwoZ30ilR3KbXf23l3VK+dT+kR5kWVyoQWJ0kvKryx7EmVNvD4lZ3x2SrdoWaBsk9JTsyiN783fUO7F39hu4LZjNnerNouIycAqmcCIWTxMGmr9gNdh2xGTxpl0fgkyyortyGR9lN2xT95///2tTMme7TY/NxjX169fb2XGmmVbYptY9hz2cbOVjf/P7By8FuvNdme9aZ145plnWplZY2hHoTy9kiHMpJ6VbH9TsFizcWYJsdlrceq1O1Wk95VMI2ZhqdigOK9xDj137lwr08pgGdYs8xhjyMqWjWHcnpZBhBZF3tts271Zspg58qtf/WorUya9U/25knWxcn7vdXaa3myTdrxiPyS2bmSmM9p6aBdgxjDakWhFZFyYdZfrO/ZZi0f+lv2UdWNGRbYP5x9aKpjlbVxXjimsK8cdW9OaDaY3m5JRsTXZd84UO/CUTIFLw7JZckxlf1t6pieuv/iNxbUorUk8n7Fv9mGWGe+WXXNsFbJvK7MlW2ZS3s+yJfIZ+F5ZB8v4aBmzOG5UbFA2v7P+LHOM47PwXlzb2/uuWCCjqAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMWGt9Mkx6XTnH5H5TMh7wOpRx8pq0EVBKx8wMJvus3ItSLJOlWVYdk1nRBjEMW2V/vB+vRRmVydX4/HweysyYvYPtYvK2XltE7zmVDB8Vub9RsVnNicrz8bhZeHj85MmTrUxLlEklrT47hckSzV5BCTflioxrkzyPLWBmP+TvLdscxybK3Gl3+tM//dNW/t73vtfKFbtmb3+eYoWYYvUxWbvZXeZKJevIlMxXdk5vFsVKZkazEVCazv5LawOP09bBuYsxyHtVZNfGeDysWBY5XlCWzHvTwsEY51jJrDx/+Id/2MovvfRSK1vmtTvJpsaEJcyVpNfmUpnvKtdkrLF/McPLnj17WpmSeWZ34nqVfdDWkGZdNLsE5yXOm1zTWqYyns86cBwYZ31inNO2cOrUqVbmeMEy25HjCOdis2rbO55i8eu1I02xQVWyrc05Q+cqWEfLkEt7nPXzOWNbO3DbAc5RBw4caGXOM4RzMePD5jq2J88Zz5uc+xjbnIMtoxN/a7Yr1oNluw7HCvtOtgyqxLY2IPxtxYbPOnB85Dl8N1y3M/uVEUVNCCGEEEIIIYQQwkzIH2pCCCGEEEIIIYQQZkI561PF2mKyoIoMv1dmWJEBUs5MySjLzJ5UkUlSKmXWCcpKKcWiRI0yarNmjKVulFTx2Sibo6TKdqum3I33owSLz/DAAw+0srV1RYJvVHbRr1jRTMpvTLEl7DQWX/ae7TizsfzWb/1WK7OvXbp0qZWZdYJYxq07SSXDGLNJsL9Y3zEr4RjLOsHjlPOyHRmzr776aiszu9O3v/3tVqb8l3Wq2FAr42YlfnvHZbMvsa1pOTNJakXyvdNMsYJNsawZvXO3jbs25rD/cm5lFrJDhw61stlYzVrIMu9rWZ/Gz2g2Y87NlC6b7YrPxvh9+eWXW/nP//zPW5kWRcsQcSf5pNqdtoOKzcWyCtLOcOTIkVam/J+Z1JgljH3W+hHHUa5R77333pW/5drV5jg+L9cMFls2B9JCNQxb1982HzMzlmVnM9ss6Y273vNt7K7YqSpMyRK1BNge7Cccm2kfWYrdybB1GS19jM3jx4+vPN/WqxxzCMcHwm++cf0Yd1zHMs55XftWtbmV38Z892aH43XGdsqP4LhjWz+Y3bryfcX24bhsVnBmwaxkoSLzX/WGEEIIIYQQQgghfELIH2pCCCGEEEIIIYQQZsLHyvpk8naTfW6HLcLkSLQUUVbJ8ymhsp3DTUJosm2T89PWRLk05XwmO6cUdhi2ZoR57LHHVj4Pr8v7sa5sI9qaKD87duxYK1PaXsn4NYVeC9WULDNLl07eDttJnVJEyhWZgeLf//t/38qvvPJKKzP70IULF1p5DtYnPiNlnJSaUw7KcywzDPsOY3xd1ieWeS1KIq9fv97Kr732Wis/99xzrXzmzJlWpu3C5OZT5NC9lpteS6Ndk+/A2p3taTv5z4mKbWtT0vjeDCQV61OlbpbBkP2U/Z2ZazjnUAJMS4W9cytX283qSjgPcm6lHeXcuXOt/PWvf72Vz54928p8/ilZLaewHXanpdmEyZS629rPsqtwrmFGo6NHj7Yy7UiUyXNurfQjs04wpmgbYewwXrhepZyfdWOZvzUbLtch4/Gbz8a1K9clbEdal2nV53NyTJmSYW1TY3Hv+tP6qM0fRu9WADsNn4nvmfFlsbYUbD3J7St4nP3avr34PccYN0sUsaxKw7A1bhmbLNu6kXOl3Y/n0+7E52E/YCzzOMcjjn18Zh7neMJvIXuWXsuhtTvfDc/ncSOKmhBCCCGEEEIIIYSZkD/UhBBCCCGEEEIIIcyEj6Ujs12TiUkfK7K+3jqYDNvkfib7JFZPSu8osbRrUtrJMiWmJuEety0lcZSBcWd/2p2487a9A8pHaRHhs1G2a+3SKw3ttU5U3pndqzfT2BIsUbZ7OmPBns+kpMwmxEwTn//851v5j/7oj1bed6ewMWTXrl2tzP67d+/eVrbxgW1o9iiTko5hnLJ933zzzVam9emFF15oZcpHacHo7as2vliWO6OSnc36nI3vbB+ObxzTlibhJhXpuo1zm8qQaNhve7OXsG+yzPGB8w9lzrR+MKY4/1j2OusX437KNuW8S4sT5dzk4sWLrfz666+38rPPPtvKzNRm2aPmTK9lY8nWp954sWelXJ0yfPb53bt3t7JlG2P/Yj+iNZZ91urGeGHdGDtml+C6lDHB/mtxbVsH2Pp8bEXiv3ke575HH320ldnWHC9olWK5Mnf0Wk83NW6SKXG0tBg0+Bxcd7FfsH8uYZ0+hvFIOw77tWXZ5XFuR0ErD9vQrIjcEsQyIw/D1jmb61Wu06wezBTL4xzLOE6xTpallfXhcWZH5pYdlUxwFVu1jSG8PuE75ljE971nz57b1o1EURNCCCGEEEIIIYQwE/KHmhBCCCGEEEIIIYSZsNb61CvbtixIttMzJUK2o3VFrshzKtL4XluM7fBP6SWf13bON8koZVbr7BX8Pa9LWZrJ2swSQ3gOpa68Jp+zYlebYpUivdmg7LdLtjsZJtMj7Le0Apn1gFknKKuem7TfdtGnrPLQoUMrz6EskX2fv7XxbTzOmKWI7UXppmXEoT2K40ilr06xJvVi9anEl8nFOb7x2fmelmB9srnSypuSzFesxJW+Y3Mxxwebf5mBge+Q51BizXMOHz7cyrS+8beVrIPjccn6GOORcxwtw88///zKMi0rlgVjzmwqu9PSbBeVzDkWd5w7aEM4fvx4K3Ou5HVoBWCZcwXHfq6/bJ619TZtv6wPz2eZMcgyY8Us/FxLsJ42Zo+fxdbBHCMYaxwXLEsQz2EsT7H4bYfd3sZoO96byXRpsWmZy9i3l7hON8sk45TjCeG63bayMKuj9X2ec/78+VZmXA/DVvshr8XvSsuqxlimjY1rCMYs+zzHDpuvad3kWMlnoOXKxiaWzXZeyWzNPmrbo3Cs4zd7pU9HURNCCCGEEEIIIYQwE/KHmhBCCCGEEEIIIYSZsG1ZnywrjUm+KYmqyOcrVoBe243Jv83iREmXSUkpGeOO5ZRBmfR9DKVclHi99dZbrcxsPZSo8dlYb8rG+AyUnvL92U7XU6wZvefY+b1Sz6VJQ4llwbK+RImiZWxh3/na177WypQes69tyvrUm32DULp43333tfJDDz3UyrajfsU6YRLusTzZdoxnzHMsoEWEknfb/X5Tkt/tjkE7bmMxx9ZKeQ52u9sxJbOMHa9Yk6Zk1TPLTuWaZv35/ve/38rM3GLZxpgNipYKy4plkupxe5rlkPfjccrBX3zxxZXHGadzsztNsXj0Xn9pc2hvvDDWKGPnPMJsmVw3MS44b1qWtIqF3yT5tPvQUmE2AtaNfZ/1IZZtrWK75jnj2Ld1I+OLcyWfjfM916W0zdCGYFkqp4yhletMyS7WS8V2O1fYfvyGYp+pZtucE2x7zmvM/GMZgYjNcZwHuc63rIaMd2YZpR1nfB6va1t12FYm/G6tZGcjNg4yljlmcS1NSxjbziygPIf35XXYL/nObF1i390cr/mejChqQgghhBBCCCGEEGZC/lATQgghhBBCCCGEMBPKWZ9MOkQsIxCla72ZLCpZnywbhcnn7ZpmbeBvKX+ldIuyL8pfaXeg/MzqaVaOYdgqiaOdg5Js2p0oCbPsBXxm20mcdTW52qYyKE2RaG5KqrqEneUr7cR3y2diP+T7fP3111uZsr59+/a1MrNE0TrQa0nZlDyf/fTUqVOtTGn63r17W9msTIwbnkNM8j2un1mWKOe+detWK1NiaraQKWzKykR6s05YhhJKQEllvpkrvZlzKhmxescnG5srY3alzmb1ozSYfZxzEeORVgb2C3texhAlwxyvKC8fhq2SY7NCMIsEM94xIxufoTemtmN+2ZStrrfcW4c5YbL3in2Y/YjrQEL7AMucK832blTannVj/7dshOzLlsmR7cP6M1Z6txcYP4udx7ry3hwjLMsjn5/xvh021N6se5VsMr0xa+P40uZNwviidebBBx9s5Zs3b7bynNfsfA9cP5vdic/Ifs04rfQFriu5vmU2J85146xP/B6sWEPtG5MxyLJR2VrF4toyrvJ7me+Az0jblNlKx9/kH2EZS3l9jrm0c7JuxnIjOYQQQgghhBBCCOEuI3+oCSGEEEIIIYQQQpgJa3VIZv8hlPzQbrB79+5WpqSKUmKzZphVqkJFWliRBPJ5bbdmyru4qz8lr9evX29lSrX57LwOZX6UvQ3DMNx///2tTAk425dyL8quCGVjPMcsWJZdY12mjVXcyaxPJgHtlerOFZMEmnXGZM987meffbaVb9y40cqHDx9uZetTU6jIhC1+Dx482MpHjx5t5RMnTrQy+y9jjbHC9uEO9/ztuj7O37ONGKeU6lLObZk/trtPTrn+lKxCtmM/3yvHH8v6M1cqlqLeLE4VG1TlfML7VuzAdk3LAsEx5PLly63MtYHJiu39E0qMOW+OsfGfcE5kn+Q9erOw3Um70HZYnHrLS5tDezOHEvZzWt25vuUYz35UGR8Ma3vafdhPORexzuzjrCfP5/VtDU8Yg5xDLYbG97CxhlYrtjXncta7YrWo2JemrEUr73U71sNLjkfWne/N1mZLgd9JnONoeWH80ppj227QykQYp7b2vHTp0srzx21r/ce+ARmPti2IWUYr4wDP4RrStnWw7Vc4TnF9b5ao/fv3r/wt3+XZs2dX3pfvgNe0rJZGFDUhhBBCCCGEEEIIMyF/qAkhhBBCCCGEEEKYCWutT5Q1mYSQEieW/92/+3etTJkSsyB9/etfb2VKuSiZplSSck1KmSw7VSWLhEm4TYZnkiXanWiDsh31iWVBYXaMYdj6bLRRUb7GtrbnoRSVUlLuem1WNKu3yct7JeKV324qW1Ov3HlOVOwMFVsE3y1teuwjlPWxP1cyVlidp9jRGI+MkUceeaSVKVfkLvq2M71JvqvSdMYmr2U2H7Yvy71tuhTs3VN62pvhb670ZvDozeJUuU6lDkbFomVzgsmWWaYc2KyFlEhTks1zaNngmDC2DFvMcy7nusQse1OYg93J+pAdt1ir2PbmSm9WK0rdmaGs0j97Mzr1Wp9sfc4y1+ScZxi/ZiMgjFmeb/2L9103ZlfWeFxzsK05z/Le1hZm9ZyS6exOWg7t+mRTc8BOYOP0umybc8VsiY8++mgr21YhjB3acfitxn5NWxPnMX5TM8sQr7Mu9q3/8N6Vb2y+M447lTVNBZuPbJsG1ofvhnVjRi7OAdxqgeMpbWzMdsn2IbbliBFFTQghhBBCCCGEEMJMyB9qQgghhBBCCCGEEGbCWuuTyego26Gc/+rVq63853/+563867/+66388MMPtzLlQm+88UYrP/PMM61MOdKVK1dW1s3kcJRBmUS3Ir+y31IOSruT7aJPKImiVJuWDUpth2GrTNzkoBX7ANuLdeXz0C5CKR4lvyxTDleR9VfsLpvawb43C8sSMOmuvf+KZNQk/5RKmuVhChXbHOOF2c+efvrpVmbWpz179rSySQsr9o2qDNOyalF+ascr0vOlU+mvJn3uzdi309h4sx2ZRnqZIre3rEc25rC/0xrM+eTkyZOtTJm3ZT+zMYHz7HisswyOnHdZ5jlm+Ta2O9NT5Tq9kvLefjDF5rzTWB3NjnnkyJFWfuihh1aeT8u42XF610QVy63Z+Cw2WTeuHxmntk4wqz3l/4xrzmkfJ4srz+O1aPPgGtXen80jdq8p9GZ6qsTyprKCLS02K3PQnJ+P8wa/6Y4dO9bKnO8Yv9z+wmxfjGXGI8cibmVw8eLFVqY9at16vrfvVWzPliHSysSsizbG2X0tyzLtZzyfawO2Hd8TM9Px3XPtwXtxLuHayJj/qjeEEEIIIYQQQgjhE0L+UBNCCCGEEEIIIYQwE8rWJ8qOaD2gJJISxW9961utzB2ULUsU5UWUNPKaZikya0NvlgNimXEoM+NxSp/MymASfj4724rXGYatsk/u4l2xTpgMl9JVPhttV7SomfR8SjaWXhvUlGxDZG5yyR4qfd6y5Vh70MrGvl3J/tFLb2YDjhUnTpxoZcpKOS5RZsj6mxyS7cZ+bc847oOW3YkSc5ODLyWTwaawDALWX/k+lpAV607aXCq/rWRWmXJNuw77NW21fLeMa8vQwvPvu+++Vubag+WxnNusT5xrK1bqXqZk/+q1UFXuZeP4lIwzS8v6ZHVk23Ae2bdvXysfPny4lZmZlOM6x3uurcgUe5ytG1k2ux7ryXjkWtrah+fwubjuZSzbt8O6tbfd2zJUsR60jjDGaU9gu0zJ+kSm2Am3I+vNkuFzsz8zOxLfLWPQtpi4k3AMOXDgQCt//vOfb+XHHnts5W9p1WeftW8sxhrnPn4jX7t2rZUt09M6erO0Vq5TiYXKeGHZnSzLHduR3zm0ovHvDmY/43Fud8I+yra2b3uz+RtR1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEmrLU+mQSY0inKCSk1ojXnd37nd1r5v//3/97KlB9S/mPSLF7fJPCWncrkoCZ55nUoLTMrg+1mbXUjZksZtwOlbMwaY7vqVyw/bFNKtiiNpdyL1/w4u/n3sCn5/hyyrWwak+6apYbHKeXjcfYpswhth92pIoekNPQzn/lMKx86dKiV2U8phTb4XDyf8smPI+1nPHO84Dhi8Xu3wrbj83Kc4RhN6xqPL7mtemXCvWMbqWT/s75t5YrtzOZTxgFjlrZaSoN5L8YT+wKlyrdu3Vp5zjC4fJp1tWw9m8oytqmMS71ZmSrHN3WdJcyhZndlG3AuoNWOayXL2mcZOCuxU1k3ss4cI1lnyw5DSy7LFeu8ZQrlcc5v9uzr4qmyXuW9+T7MKtub9aliiTJ6Lfa93wlT5oYlWIYJ624xtSmL8RTYv2h/+cIXvtDKp0+fbmXGLG0xXHPyGTlv8vuM22AwaxDLtIZVvp3XYX3JYtvG1soWDLaG4G/N6sbnNJskYfvSBsUtFTgHcNzkWtQyI3N9y7GLax1mkjKiqAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMWGt9IpQjcedtls1qQemaSfZ6sx+YhLKSfaiSscKyDJklxH5rx012brtZD4PbKNjWlZ20TdLJa1KORUtJRRa/KXvMlHPs/N4d+OcK+3klq1HlWTeVHYZsKnPNvffe28qUkjJDBzOVcVyqSCYtVioWs2HwDDeMWcpVKYPcbgvhnKE8lW3NsYiy1SXEaSVbwk5RGbOnZCOx8ZX3YnZB2pTYFxizXD/wOOPGMiqsg3LlSma73ufvzV5h15mSialyL2NTWWnmhPV/y9xkax/K281qU7HDE8tKxPvyHM5xnHMYL4TnmITfYPvQ9kXLIZ+dfceyuVUxKwifhxZK2kuYtev69eut3JuZtde2bWyH/ZXcLesHsyKaJfZOwv7MNecTTzzRyl/+8pdb+eTJk618/PjxVmaccn3L2LRvT55DSxT7uF2nyqbW7pU1UO86yezwthWLnc8xi+PaQw891Mr8xmB8cfzhWM/7Xr16deV1aEurjInzX/WGEEIIIYQQQgghfELIH2pCCCGEEEIIIYQQZsJa6xPlUrQM0BZDaeE777zTypQC8fwpWSTseK8Fya5TuZdJUitySLOrUJZl5wzDVrsE30fFvkUs2wUl6czaRckW5Xpmv9oOeiWmld/eLRmgKOGnpNeeqdLnSW97TJE38hzKEpn1ae/eva3MnfZpf+iVWLMNiT37+PomS2XMWla1pWVkmIqNpxU76N3YVr3ZQnrnrN4sIpsaK8zuxFizeYwyZLMD0/phWe2GwS0o/M2HH37YyozNTdkSK+/AjldsTbbOYJ3teCXuyMfJhDd32K9oUT1z5kwrc345d+7cyuuwv0yxZlhsmsWW8z6fhbE2pV8zbngdy2RosTnu7+xLZtVm/RinXKNyHWAWaJZpobLvB2OKRbyy5pxi7+0dZ+YE3wO/M/g++Ry0lWxq/W7vh2vRw4cPt/LnPve5VqbF6dSpU63MLIe0cXF8oMWSML7Y3/mtzXagpaa3X6/rI7Z2N3uvnW/rCbMvcdwxm3TvdQjXJXxPrD+zc3FusAzQhNZQvj9mrOSYZkRRE0IIIYQQQgghhDAT8oeaEEIIIYQQQgghhJlQzvpEaQ93vCfHjh1rZcquKPHidShvs4xRJsfiNXvlw3ZO5XglI0zFLmF1Y9vSNjEMWy0V3Fm6YgcwiSnbmpJW2jRYtsxTvTI7oyLR7JVeV7JvTLFW7QTs/+wzJh+lDPBOWr4qkkmrD7M3UFb68MMPt7JlbrH3zP5uskpeh+25TpLM31BO+dZbb7UyZZMV6+LdSiW+2HeXZrWwuak325o9d2W835Q91Ogdd03mTVttJaMHf2s25HHd+DwcLyhnZzxaJjKjYlPqHQdJb/YZ6zdmfapYMCp9dMm2RNadFp7nn3++ldkGZjHmfDHFGm8ZBtneXANyzqGsnv2a60meX8nYyXM4NnPNSGsY16psz/E6sdIPeW8+M+0ftD6xzBhn7FvfnpKxr7KWupPrzKXZ+VlHrv1+8zd/s5UPHjzYyq+//norsx9OsaDZPMVv2yeffLKVn3766VamRYYxyGexbGi25QW3DaHF6cKFC63MTE/8Jpu6ZUGvralCxUptdnhi2R/tfGtrHiccNzjmmNXTMu/ye5ltxd8y45cRRU0IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmwlrrk2UHovSREkeeT5khz6nIREklI0avXHc7JIe9dhI+O8uUp453g6YMrmJ9qrQdf8syd6t+9dVXW5mSX8q3NpUdo/ed9UpSl2BrqlDZPZ3PWpETTsEkw2ZHorSQv6V8lLuwf+lLX2rl++67r5VN2t9rRWRGCJN2cgwcY2MZd3qnbHLJNoGpVMYfwvdhu+vf7fRmd6pkfbLrmBXC3k9Fwsy+b+MALZyWPcfKjL9xH7GsUZQl05bIec2yS/SyKev1lPnL3mtlzWS2tIptZk7YPMjj6/rSR/TGXSUeK1mPWE/Lpsp1I+0bnIv4297sq4ybK1eurLwv16dvvvlmK/NbYHzdyhjHcYHPQBvM+B4fYZkWK32id51pbCobX+9vl4CN57Q70V7327/92638n//zf25l9nP2Q75bzjX8VqUV98iRI618+vTpVmamY9aHGZ3MOsN1Js+xfsdtJzhH8fiUdeW6b6OK3WmKVdBi0J6BNiXLhGdbrth6gmMC3439nYKWUY6DtqUC24S/pT3TtpIhUdSEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJpSzPpnsziwvVq5kapiSrakiv5qSEcPuZeebZNhkZZRZUYI9DFstZ2z3CpV3Y/JWuxdl5JuS3E3J4FU53ySGU3Yy3wlYR8qzTQZIKpLeXuuE2Z1st3WTfXIHdNqdmPWJ9ijKnClhJRZTJjmsyIcZi8OwVd5KiSrjiHVdmmXgTmDzxDrL2RypZPghlfHY5pTeOlRsgFY30jvecxyoZOHj+WYrNKuIZYwan8exgPHMcu9z2jhotsxK/5iSJarXMmf37c1oswSqWcNuR6WNe69TuSbnfbNCcE7kHMVyb904HjPzEqX9XDOus+lPaSOrB+OX64zKmtbYlF28km2qEne94/USYrNitWF/Zjaof/7P/3kr/97v/V4r/9Ef/VErs22YxYn2pf3797fyPffc08q0O9FO+NBDD7Uy5yxe07L62vMyXmgtZHxxa4reDKLVb69K1qfKNgd23LKwWXZCti/HEcY449q+B3ic75jWNWbqoiWKbc1x1uxt/FY5cOBAK9NyxXsZUdSEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJpStT7YLMpmSLWJTdiSTCU/ZMb13936TXptckXIqSt1ooRifV5E49rap7a5vEvOKfaMis+uVf/ce75WOLyEjT0WKXtlJ3a5px60tKUtk2aSelASy/IUvfKGVf+M3fqOV9+zZ08qML8oGK/HFfs379rbnWDpNG4W1i7VFbxwt3SrVmx1jyc9bGfN6rUyGSeN7rYsVa2RvVgdaM1555ZVW/uIXv9jKtD1arNDuwRik/HldXU26zPpRlmxrnSl2XRtD7R1v6l1uKqNi7/XnxBwy50yxp1SyiNJia1lZp4yvfOe0GZkVft29prwD3oPjAi0inH8tM8uUdf+U75beZ59iz19abPL90J5imXNojd+1a1crf+Yzn2nl8+fPtzKtT7yOZQTi8aNHj7Yys0TZus/sO/Z9ajZcK1foXcOP/202JcveyuP8rV3Tvh/GdVp1fTtOCxK/EzhW0tLG87n+4NjC75CLFy+2Mq1u7CsnTpxo5QcffLCV9+7d28qlOf22Z4QQQgghhBBCCCGEO0L+UBNCCCGEEEIIIYQwE9ZanyqWlErmnEoWgikWGTtOCRLlTiZLs/PtuEmWKrI3XpOSzPfee6+VKb1bd+/KLtwVy1JFxtybNaS3br1ZmSpluxfb3eT1c6Uig50ib+7d8Z2SQ7Y3JYSsA8+nDJBS1UceeaSVTQ5pcW3vnzv2c5f3SpYcSjXHmYjuu+++Vuaz7d69e+XvWafttg/MQfbca6+oZPeZK5blwPptJYPHpiT2lYwivXOFjdmE1kBany5cuNDKzKBhEmaz5NrYMgxbY5XZGa5fv97KzKLB7DC96xWb403Cbccr8529M/utvUvLsmHH70Z6s1pNscZX6jBlvOzNHlWp56bsquuuU81Gc7t7rLMof0RlTWM2lV56s7NV+pPFZiUL71yxOeXw4cOtbFm/uLaiDeXJJ59sZVqouOY0my1tVpyDuNbjNXvXovYOWX/arF5++eWV9SSVvmbfYeN5k89g63s7btmdeI7ZqdjWXK+zzN/yfJaZwYvnWz/je6Utmm3Kb0PLKkV4fdqvuMao2NiiqAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMKFufTIpesc707rBudSC2GzqpyBUrdpyKjM2k15Y1ghJFWpwogxrLNqfI2ir1tndmcvZeGbaVe99lpd/YdSoWmrGtZY6YdcZ2UjdJrGHyeZP7UZbI+phtgce5k/qhQ4dWntMr47U+y0xPtmO9sa4d2H94D7M/mJ2ycu9qRo1VzEECbX2L75vwPdG6sgQqGfMq9L7zKVYIG4/NrmXPaJksaH1iJo4DBw7ctg6MIcqQq5lYeL/vfve7rfzaa6+1MjPlVOY+k3xvKnuQSbXtfdg8bjYQe0abM2zusevPlU2Nnb2/7bUR3UlrVeV8G8cqfX/cVhULx6bmrMoWCVMyhFbapWLXqqyNLfYr48Bc4fhhmXNsvOEagVYm2llohaG9iNCeUrHXmB3exshK3HGOO3jwYCvzWUhlixKzK/F8ttv4N7Y2s6yrvJY9s2WGMosan58ZIu098buCx+098ZqWKZJ96MaNGyvrwLUOMz1Zv3zhhReG2xFFTQghhBBCCCGEEMJMyB9qQgghhBBCCCGEEGbCWuuTWQMqUj5KikivPHBTO6ZXbEBmdyK9dqKKHJQS7nXPXpHA9lrF7Dkprey1PlUyVpBKX6k8r/UJy8JFKRrfgbXJnDCLE6WIlA1yF3OWabszK4HtVG/SRTvOLEuU/jHbC+0PfBbbmb8ivSZ2HVKxA45/y/8b757/EbbLfWWctZ3nzZJKKvabXqn5piysfHbLyPX++++38hJik89E2ewUO0Mls5KdX7Fs2LxWsdxV3jl/ywxQzz77bCszu4dJ0Gl9Y7/g9SlhHoZhuHTpUit//etfb+XnnnuulTkmVqTqZp0wG0IlrisSdru+nWNjQsXKxOtYhkQer2TB2GkqcWFMGSN7j/dmgJpiy7JrViw4U7IzrbuH1aly3d4tAozKnF6xI5HKdwLpzVBrdnezrswJju22FuA74TrIti7gmEQrjK2naFtnm5nt3bIY8V1VLPy2XQDXw48//ngr/8mf/MnKOhDWmete9pF162G2hWVxIpUMWHzH9vy2HmZdrcw6V/7WwHtZRknW+cMPP1x5Pp/d1gO8zjvvvNPKN2/eHG5HFDUhhBBCCCGEEEIIMyF/qAkhhBBCCCGEEEKYCWXrE+VhFaZIQyvn9O6cb8dZtl3HTTZVsW6ZHI7XNyvDujavvA+ra8XOMcX+QCrHN2VvMxuIZbAye89YOj9HmB2JNoFTp0618smTJ1v52LFjrXzr1q1WPnfuXCt/61vfauV33323lWmPMtscrUyUbnJ3/QceeGBlPZ9++ulWPnLkSCtT0lixB5GK7aA3K9y6TGjc6d1sabZrvcW/xY7VySxOlr3Fzu/NQlUpsx3YPmyT48ePrzx+5cqVVmZfnCt8PrY935VJ4HuZYseoWKjsfZrc2vqvZVE4c+ZMK3Mc4xjFsYLyYY5RvCavMwzD8Pzzz7fyD37wg1Zmdicb1yrZDCu2MTIlW48dr2QF6+0rleuYdXGuTMmEaFTatbdfbEc/6rUZfRwr0+2uuV30fg9MycJFKjawKZm6rA6co1k2mzrtQ3OFYzjXjWZ35jqTbcDjHBc5L1S+Ayp2tEqMVKxJhGMq68zsV0ePHm1lZh+iNYfPaNluK89SZYrN256ZZbPD8RnM+sRvCdbTbOqcG2hNokWamJ2M74DvifZvvjMjipoQQgghhBBCCCGEmZA/1IQQQgghhBBCCCHMhB+bIvkMIYQQQgghhBBCCJsjipoQQgghhBBCCCGEmZA/1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEm5A81IYQQQgghhBBCCDMhf6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmQv5QE0IIIYQQQgghhDAT8oeaEEIIIYQQQgghhJmQP9SEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJuQPNSGEEEIIIYQQQggzIX+oCSGEEEIIIYQQQpgJ+UNNCCGEEEIIIYQQwkzIH2pCCCGEEEIIIYQQZkL+UBNCCCGEEEIIIYQwE/KHmhBCCCGEEEIIIYSZkD/UhBBCCCGEEEIIIcyE/KEmhBBCCCGEEEIIYSbkDzUhhBBCCCGEEEIIMyF/qAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMyB9qQgghhBBCCCGEEGZC/lATQgghhBBCCCGEMBPyh5oQQgghhBBCCCGEmZA/1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEm5A81IYQQQgghhBBCCDMhf6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmQv5QE0IIIYQQQgghhDAT8oeaEEIIIYQQQgghhJmQP9SEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJuQPNSGEEEIIIYQQQggzIX+oCSGEEEIIIYQQQpgJ+UNNCCGEEEIIIYQQwkzIH2pCCCGEEEIIIYQQZkL+UBNCCCGEEEIIIYQwE/KHmhBCCCGEEEIIIYSZkD/UhBBCCCGEEEIIIcyE/KEmhBBCCCGEEEIIYSb85Lr/fOCBB/5p1fF//Md/bOV/+qd/um2Z2PEf//Hb/83IfmvnsMw6s0x4nPX5sR/7sVb+6Z/+6VbevXt3K//bf/tvW/nhhx9u5aeeeqqVjxw50soPPPDAbe81FT7PX/zFX7Tyu+++28ovvPBCK/+v//W/WvlrX/taK9+6dauV/+7v/m7lvazePF55NnvHlevwtzzH+tZP/MRP3PZeN27c2NwL2SBf+MIX2sP+1V/91cpzePwnf/L/hbq1B8/5+7//+5XnsI15/j/8wz+sPE4YO+ybPJ/v5Od//udb+VOf+lQr79+/v5Utvu67775W3rVrVyv/wi/8Qiv/7M/+7Mr6sI9/8MEHrfz++++38tmzZwfyve99r5WfeeaZVr5582YrMwb5DmycImxf/pbns9/yuPVz6wc/9VM/tfKavA5/W+lbVgfe62//9m9XXoe/ZVs9//zzs4zNe++9t1WScWTvtjLm2fHKbyvz5qbqY8crcxzvy/MZ+4xrxjJ/+84772y5LuOWfczuvam2s+tYnFbmLMPmRyvb+NP7Wx7nOPDWW2/NMjaPHz++8oXamMqxpzIG8xyW7ZzKb4mtYyv91N7bz/zMz7Tyvn37Wvlf/st/2crHjx9v5d/4jd9oZcYj59O/+Zu/aWWudTmnj+tR+Wbg+Zyn2RaM/zfffLOV//f//t+t/Nxzz7XymTNnWplztN3X6kYsvuycyvrWjlt/tbn74sWLs4zNT33qUx973tzkd9Mq7PqVsZBtb2soHuc62c6pXNOw9ZrNjcOw9X3Yu7F5jUz51uVvOT5WvvOn/G3Cxih7Rpsr2e58x1wDnz17dmWjRFETQgghhBBCCCGEMBPyh5oQQgghhBBCCCGEmbDW+vTXf/3XrUypDqU9JtHslf2apKgiy61ImUyKaFKxinSRkuz33ntvZf0vXrzYyqdOnVp5TkWGPBW+J9o5fvjDH7byjRs3Wpn2KMpBrd4muaxIBnvfH7F+YDI5+61ZX+YKY5Ple++9t5X53iivM5sSJY08zuvzONup9zp8PzzOfsTj999/fyt/+OGHrfzggw+uPId2J0qyKb1mf+H4Rng+Y2XcZ1lXnme2C5NEmrWsV9pO2KZmObPj9i55nPflcbY7j1Nqz+OMR5Pasp3nSqWOvfai3uvYOb3zZuV4ZW6tyITNBsJ+R0sFrce0eY5tm4y7ytg+xXZkUvDKGohU1gG9VuJey3ClvOR5k2M+x6S//Mu/bGWzXVpf5Tm27qhsF9D7/s3+UlljMz5+9KMftTJtQ0ePHm1lrisOHz7cymxbPjvnw7H1idjz2PjCNQ3vfc8997QyrcdcH/A6HC84jlRsKhXrR+W4jXd2vPfbycaZObGp8aPXrjrlmpW51d4h+69dk32T/Y5tZf2rspXBOouZWQutTsTWrpU5yyymvK+1kbV7ZesTUvnbQWUNZ7+192FEURNCCCGEEEIIIYQwE/KHmhBCCCGEEEIIIYSZsNb6ZBIek3SSXvn0pnZoJr07dVdkWZbRhm1y5cqVVqZklBJTk72ZxHId1l6Url29erWVX3rppVY+d+5cK9NSUnnHm6JX5rupLCZ8xt5+sNPQVsL3bDJLywDQa1UglXaqWAvtmnZ9ywa1Z8+eVuYzMjsMrRM8xyw7lMFTHj/uU/w/1slkqZWMHZXze6XOlfHUpN0mk63IaiuWALMQmB1srlTmr8pvezMhVsbI3n5B7Pq9v52S6YVZZg4cONDKnE8Zf8MwDC+//HIr0/a7qSxcm7Ir98qqp7yzyvm9mWh6LWM7AfsJx3myqWw8U/pCrzW8105n4zEtRG+//XYrX7t2rZW5juX8SMsR15LrrKt8B71jllkaadu3+ZFZrM6fP9/KZvPvfce9a1rrc5V1UuW+S4jNKd96U+bcTVG5r9l6CPuyWX/MJm5rWouDdfZ6s3eSTY1BlcxK9gxmcepdf26K3q0/KrE5/+gNIYQQQgghhBBC+ISQP9SEEEIIIYQQQgghzIS1OvIpUvopVhW7fkVaZXWoYDvNE0pnmWGH9fzFX/zFledUsql8HKx9bdduSlq5yz3lqr2ZCXozFvRK4Oy3U+T4ZAnSUGKZASo7plfklNaWFneV7ASUZVqfZyYOlpmxgZmeWKblgXFqGcmY4YKybUKbFTM4McaHYRh+7ud+bmU9LLNDZRf6SvaO3hisxJRJRnutW6QiASV8drYbLWZLYIpFqCK935QNdFOZoSrZTgzrU+wLtD4x9mlvHGdwe+utt1rZrA0mjZ5ia+k9x2Kt9zq91oleu13lOnPF7OQVuXpv1h1SGaft/EqGqd44td9y7KdNmDYjZnGi9YkxyPlwXT15XbNkV7LXcC7n3M/MVbYe5nhRsU5U+hDptUb2vjM7v2KfmxNTrE87Re9WHqQydlYyAtt2GTaW025ome+GYRhu3brVyrQsclywe9j6vtfOXbFrVspT3kdvVuaKdda+SYxlfZ2GEEIIIYQQQggh3MXkDzUhhBBCCCGEEEIIM2Gt56Z3x3GjV0pdkZVWpMG99e+VOFHeefDgwVb+/Oc/38rMTFGxMqyThlXsKL1tTbsTJa2UiW4qq4XVYYrUs1eCT0ziPmep5UdYX+2V1Jk1h5g9im1s8mTKkNmnbNd6xhSfxTI98be8PiWdbCuTbbLM3zImKK8ey5/N+mX0Wi2mWFxs93+T6dsYZLJzs9v1yoKtTe7kjv2bYIolYTvqMMWm05uFr3d+6G0HjgMcW2hFHPdfzs3vvPNOK5u1weq3qSySrDfHoykWQmPKc9lxs4gvIVsiMfuAlW3snJJJzerTy6bsMjzOeZBzK+1OBu0VnA/XZTKlDYo2DLYLY4ftTusyM7vRjmXWA2LWiUqGpop9tNde3ruNgLGENe0ngcp3W2UdbuNSJasU44xxM86Cx38zpsxSZHWyZ+vN9ETYFpUtBaZY9e1Zeq2OFTurEUVNCCGEEEIIIYQQwkzIH2pCCCGEEEIIIYQQZsJajf4USWdFTlvJBNEr1zTpvcmy7Lhd3+T/lDCbrJLnMIPMvn37Vt5rbKEwiRd35KZclRku3nvvvVa+ceNGK5u1oyIL347MXr12iSk2vMr1lwD7BfuYvUPL+mTPbX3epHyWsYdU5I20OVDCzMwvJqs064xZw2i54nHG0zqJIu1YlJb2ZmsivZm3KljssEyZu/WVSnYBG2etDibbrVjD5oS1a+98t91sKsNe73UqY7wdZ2xRmr3OPkx5N+OU82OvxcDeMeds2jdo2eDxmzdvtnJvRp8Km7JKVSTfS6BirzRZusWyWUvtuK3jSEXOvyn7O39r6wdaC7netMyJlsFp/Lz2DpiNlHO/rY8Zy5yz2RaMfc73lknQ5vveDGukd+6z3y5tjfpJY4rdza5jW2dYH6ysNxhDXG8Pw9ZvQxvXLBYqc2XF7lSxPk2xoW7Ht2TFGmnv1YiiJoQQQgghhBBCCGEm5A81IYQQQgghhBBCCDNhrfWpNxtALxVZUK/EryK3J70ybMvucurUqVZ+8MEHW5lyS9qPbt261cq0clDmOa4D60p7AuXgFUkrj1My2mt32lSmkLmxBGl3JWOFSSWNilXQ+pdZVRgjlZiixJoZ0x566KFWPnbsWCszXtjHaYswa5g9C+vM31JSPZYrmiS7N4MIMVl4L1OsqqwzxxxaOXh9O27yTrNWWeasuyXrk52/3WPPpuS9lfOt75utw9qK/c4yX4xl2+Tee+9tZY4LFYsBsbagdYLj0Z49e1qZ6wCuD775zW+2MsemXqZYk6bYo3qtHzsN+56NSZUsc722hYoFtvLbyjw+xWJplnrGINuE1if+lv19nRXa/s+yO1kfY9y9++67rczYZ50eeOCBlXWoZDGrjHF2vtFrtzR2KsvgJljK90GFTX07W5uYtdCwMYfzJte3wzAM999/fyu//fbbrcysb73bkVTqZzYrUrEJ9/ahTfW57bAozn9mDSGEEEIIIYQQQviEkD/UhBBCCCGEEEIIIcyEtdan7cjgUMmCUZHx9kpG7Ryrj13fZJ+WQYLSLZ5P69Ojjz562/uO/49yMu6Qz2dgZine74MPPmjlDz/8sJVpoaow5d1sh8ysVxq6BIuTQWsI+xjLlgWpYomq2J2sn5tdphKbtCYcPXp0ZfnQoUMrr8l7sV/zXibbpP3QMnTwuXid8f0oGSe9/fNOypgr47iNlWYPW2cV+wj244rcfyzPXSq9cuUKlawLvef32uZYZiyTSmY6wv7Fedbk3+PnNVvilPHfnpN2J45TzDLDMi0bXB9ULH7W7hU70hSb0nZc805hc2JvVsnKdWxeNmuVZQGakpGyd5zhfblO5NqQ60qewzmRdkD+dtyvOZ7TmlQZC4jZZlk/jjtcKzAeKxlbKtmgbK1emWenbNnQe07YHJV5tvLNZOugynxnYz/Ppx2QmdrG8zXj2azolWxzlT5v42kla+xO9fPeNfOU79/5z6whhBBCCCGEEEIInxDyh5oQQgghhBBCCCGEmbDW+lTZxXxKhh+7jkmHjIqMqGKDsrLVgXJLyjspIaO0k3LQvXv3tjJ3uGd5DKVvlG5SvkZ5J+9NCRmtGZSxWhvZzva9u3lXjpPe3fKnZK9YGuwnJnes9HnLutMr1zU7FY/b9a1MWwAzpbC/0/bHvs/d7HmOZTkz21/FVjb+P0qpORaY5aPCHPqqyb/NpsRzOPZV7AS9svM5UZG4TskEUrnvpjL/9NaT4xKtDGY5YhxUsp/xfM6B6/qXxeMUqw7Htd27d7cyM9Xt27dvZV0tS+Om4PNXsq31ruFsfF+C9Wm7LYeVjECVtqxYArcbxrJlJGNc83yz5jMOxr+xccTa1+xOltWGsc8yxweumS1TKpmS+bRynEzJIDiH9cPt2JQVdw7YOGDjca9tyqxI9luez3nZLP/DsNUiZTZ2e088x74NKnMQ2Y6tM7abyt8XKs8y/5k1hBBCCCGEEEII4RNC/lATQgghhBBCCCGEMBO2LetT73WmSJ96r99rx6FEi7Kx+++//7b3ouyLcsuKjG1d9grLEEBpKSWnzPrE3bxZrsg7K7viW50rxytMsQ1Udl23dpgTlAZXrAHW3pVsFBXriWVHos3OfstnsQw/fBbGlGWzosXJMrX94i/+4srfWpaod955p5Vv3ry55RlM2s5nq8hBlyLvtHpOkez3ZuCbKyZXnpKxZVM2qCnZoMxWyb7MuYyyal6TsTzOnrbqvpWsbbQTjW2MNqZsKvMRr0m7Jo/z+d96661W3lSGuF56s3X22lnnSm9GFZPqE8v0ZDZQu/6mxr8p2cx4X86h7Kc2Jlgd1tnlbY1SWTeavcrGGs73XA8fPHiwlWmD4lhjayzWp2IztPOnjNfG3TKHzs0G1WtTqtj8K9mNevuLzcuMg3VbR/TGeYVKG/VmE54bvX83qXxvzn9mDSGEEEIIIYQQQviEkD/UhBBCCCGEEEIIIcyEtdan3ow6vZKwigyq11pVydzUa8fhb/fs2dPKR48ebeVHHnmklbnTvNk3Pvjgg5XHTT45xmS1lt2JMlazPpnUjbI5k6j1ZtUyKv2DVOTWFSld7w7kO03lmaZkxKq0t9mdLCMQsyhY9gbaFihn/uEPf9h1HdbhzTffXPkslZ3zP/zww1ambWr8W9o8WH7vvfda2aSoJotfIjYOWFYtwvapZK5ZGr2y7U3F7JRzbFw06y6tP8yGxHmQccqYsj7CPsVzeB3OueO2NQvSFIsaLY3MSEfrBNuCVknOuRzjzKqwKVt47/qscq8lzJVkyjs324KNTxWbC8u7du1q5evXr7cy+3xv9qEp8L5cS5qdl23CNS2Pj7Oamq2a51l/s8yJzGRqdmPGLOfoQ4cOtTLnfrO0VWxsFSoxVfk+qVj15soUi679druz6pGKPYh9kJkK7XvOrm/3snazrE2swzieuFUH53jLsNZr9+K9uaZn2dbGS18n99Z/WZEcQgghhBBCCCGEcBeTP9SEEEIIIYQQQgghzITba////2yHbNasJ1OyTU3JBkV4nDJMyrlpcTAJqGVEuXHjRiufOnWqlU2iNr6WyVIpq2Z2CUqvKTenzGxTkuaKDLtX+r8du+LfSbnkprHMRxXZZK982uTGZkkg7F/2W0osWX/aCExuzP7OelK2TNsU24Hxa5JhWiosg9swbI1bZoazLDMmnV9CxrEqJgVnPzBLwKayDOwEFUn2prIl9NKbTcWsT3yHJu3ev39/K1PmzIwrlFFXrCg2PnCOHvcdXov16IX1Y+YMWlb27t172+twPJoi7Z6y3iKMU8syUrF1LGHssmetrD9tzLa52NrJ1opPPvlkKx85cqSVn3/++VamrWeKVa6CWYssU1klg9M4NtlenCtt3qzY/DkWWDYo1unAgQOtfOzYsVamZZrXsQxQvZlrercOqPTRJWfMqdh5Kr/djkyzFSqWKM53nDeIfc8xviw2zW7J9SrXvbatxfgetk1AZX5hPe69995WZtZkwm9Vy2J8N1EZr6OoCSGEEEIIIYQQQpgJ+UNNCCGEEEIIIYQQwkxYa32qSPmmyP16M9SYvM12Xrc6VI4TyqWZyYHSLUq6KBOzTC+W3YbXH2PPz2emrYm72V+9erWVTdLZu4M3qdiITKpr1+ktk95sYUvL+mR9wWTClSw6lDpWpMsm2+d1rMzzKW+k7JP2pX379rWyZX7hcdoiaL/icWZC4315DtuKx8dWL7YLbREcO8ziVdnxf+nYM/LdmxWhkuljTkwZnzaVXbEX9nPaDth/zXZgcy5tg1auyN1tbGEdrP7jf1vGmgo8n+MRsz9yHcC5mHYnjjV3MuNb73qrsmYy6+JcmWI5tOxFXNcxXji2WdYUXv8//sf/2MqMkVdffbWV/8N/+A+t/O6777Zyb6avSl9gPc2uSmxeZvmee+7Z8hs+A8cR2oftfmxfex/cqsAyrPG9njx5spVfeeWVVuZa2izcZg+0Od3Ww73fNsTWakuwJdp7rlhiK2N575YM2zGesW/SgkQbFNelb7/9diszVmzdZHXmvRhbNl8Nw9b16pTMzZx/uTamNdrOp036brI+9VrZo6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTChnfTJ6Mw/Y8YqcqpKZgudMkRVTonbw4MFWfvDBB1vZbErWJrROUCJr2RXWZX1i/fgb2jx4DqVylqHH7AabylximLyzIqsjn6SsTyZ35HGziZiVxLIZ2Dl2vtmaKllHbHd6SjQtI8TY8rCqnpa5hXJQnsM6UF49lnCz3izzPEpaCZ+f7XU3YeOyxSzPWZeZYO5sSn7eO7b12lYYO+zztGCY1YJ9llkqOM/QJmyxUpED27jHOoxjiH2J97NMFsSyP1rGCs7rlK1/8MEHrUwb1JQ+McViTCz7TGWetaw3c6XSZjaH8v0TtgffP/sX12V2PvsmLTvM9MQ5i33KxtfeDI+Ev+X4ULHn2nzK48Ow9ZkrdlDWie+DdkKOWbRL0Gpx8eLFVmZb8z098cQTK69/7dq1VuacXtl2oWJFm5IJsbcfzInK92BlDVmZRzaVMc/Or9yX8ywzj5k1llsBsF9zvrPvJNu+Y52l0dZgpLJFAr97LWsy70ULlq3p7yZifQohhBBCCCGEEEJYEPlDTQghhBBCCCGEEMJMWKv9rci3zHa0qd31K9Iq2/GbMsZeOTClXnv37m1lStR4DiWphHWj7PPQoUO3rcNYrmgSUMrDKIOjnIzyWUrSKzaEivSQbMo6ZH1iirRxStaxOUHJrbW3ZUXplX+bhNbsTmY5rGT1oZzZMjpR8s3noryTv71x40YrU/Zpz8g6UGLK42P7IC1OJg1nXSvZbnrjbonYO+jNMDQnNmUVrYxhU8Zs9kH23+PHj7cyrb4vvvhiKzMGGWucc2n9MasvZdGMr8p7Zh3WybTNcsx509qRdaVU+4EHHmhljilmfeF4beMm2ZTVza5ZscZNyZS5NKZk3WH/+vSnP93KXO9dvny5ldnvOI+wT1lmIcaXrYF5zpR3aOsBs9SzzuxrtDeNsTV6ZS1itg1e0+Z7ruOZ0Yn2KK77H3744ZV1YDZVWlYq3xtTMtfavGK/XcK8Sexbb0rGOVtzWl+r1I1U5mLLQEi7HscNxhczINEGZf3C1rSMD24pMN4qge1r34mVeZP34HqC4x2/TyuZZZdOZSsPEkVNCCGEEEIIIYQQwkzIH2pCCCGEEEIIIYQQZsJa61Ov1GiKlK+yy7fJCU0CaTK5yq71PN9kcryOWVFYpqSNclDK4Uxiuq5+JnW9efPmynvwtyybJLtiXyEVWVelf5DKfY270UJiO8NPkdVbPzc7nVlSKjFrclNajSgLtz5r9i7KmRmbvCb7kWW5YpxSProuIxul8JS0UobN91fJBHE30Wu9Y/uYzXWubIeFpff8Xlk4+ynlyezLlbHC7FGWgYLHbY62sd+y6ozrN8X6xExPe/bsWflb1puWS87FrCuZYpmryNF77T2VzFtLsAkTG2PMMsCy9T3a3o8cOdLKhw8fXnn+448/vvK+nF94nHOWZVMiU2zc9oxci3KOZl+2dmP9x2s9y3LI6zJOeW+zSPA4r2+xT0sjxyluT8BMNGxTZrmj1dOeecp80Ds39G73MCcsqy/LjBebLypjXu9ve6lkYiJcP3L+pYXo+vXrrVyxJZnd2NbPw7A1FnozJHKcYqYnljlu2pYKlW/1pWD9oNK2UdSEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJpSzPlVkub2ZeUjFpkGJUG/mpl47lVmr+IyUTFrGCstowx3l7fxxu9n/sX62MzjLlffam/2h0icMO8dsDlOyUG2HXHgnMPk8qdjL2MaWccmsRlOkodZHKFVmmXJNypbN9sXf0gbF82nNYJnXJ7Q+UPI8DFtlrJSossx3wF3u70ZrXpWKBcNsaXNlU3bP7cDam7HPPkvpNWXLFy9ebGXGmtkJeX1mmOI8yBg0aTqtUpzfLXvUMGydp2lHojzbbBS8Fp//4MGDrUwbFOdfPs8Pf/jDldc3eucjO78309OULGJLGLtsjVrBbD68zqVLl1rZ3j9jhxaZP/7jP27lK1eutPKzzz7bypx3Kmtmy5hD7P2b1dfswFYHjg/juZXPzzKtRpxbK3ZowuNme+b1OcczQw0tbXwGWhr5jvnMUzIxVd5Z7zueK71jjNmgOEdwDrLMe8S+xSrfOobV2eYvswBzXratOWze5FzH+7KtaCscn1f5vmOZY4TN2Xxn/K1ZK5fQh9dh/dUscFt+uy01CiGEEEIIIYQQQgjd5A81IYQQQgghhBBCCDPh9tsN34ZKRiAer2Rfsh3c7ThlRMxMYXYGyirNykGpGOWQPJ8yLkrpTLZvcksepzzTZKXje9NGYVmjTpw40crMOENpmVlHrI0qtqZeyWDFHtArWa6cv7Qd8vneLJNFJSsT5b2UKLJPvfXWW63MflHJFjIlK42NJ4xNyo15Pvs444h1s4wzlsGJsnOOCcOw1V5Fu4hlr7h27dqwiiX0ve3Cnr03y9vS6LWZbiqTlGVbY5lzAvsv51nGBa/JuYxwzGHcMYY4zjCWGfv87bqsgCYrZ9myRfIcy7jDGOeag5k5+AzbYXvrHWcrmTh7swbulJ2vh95MT2aRYP/k+6dN6emnn25lZgTiuuzdd99t5VdffbWVX3vttVa2+DJ7Pqn0i0qmGFoZeJyxVrFvjPsOY6qSIZJtzTHInsesUoTjGs/n8/CdMVsNrZs2JpJKBqhe+9KmMv/tNJV5iliWoePHj7cy+96FCxdameN0b2ahKd8fFgu2RiWMKcu6SGx8YL8m43awzLIWp7ZG51qZMWjfLeuyxC2NSqanWJ9CCCGEEEIIIYQQFkT+UBNCCCGEEEIIIYQwEz6W9clk2LYTtUl+KlYFk1bxfF6T2Y1YH0q/rA68/q5du1aWmUGCEnE+L49TDmm735vsayxFo+SS/8esE2fOnGnlw4cPt/I777yz8jjbkXJNtlevfHZKBqjejAWV6xi9Nq45YdY0sz6ZNY+yu6eeeqqVz507t/Kcq1evtjJtR7Y7e+Ud2jtn/WnFMgkzr8/2oezcMtRwTLBMEZSMUrI+DFvjnOMXf8P2mpIx65OA2Uf5/uZKb5Ye0ms36cUsBZyzmLlo3759rcy5j5mbGAu8Pi3GnFtoDWTcMZMS5yVaong+zzGbxjBsjUHaHS0TBuGcy7YwGxQl9Rw7NjV/bcc8ayxtTqxgNh97VrMtEI5P7OfMCMT4oq2J2Z04tvE67NtcN9oakvWZklHQ5ke2A2OQa2/GDeOA5w/D1ixsXJdyzcHfmA2Scy7bjusStgXHCMusw3UDn4fX5NqbawCOidZvtnveX5ptpDK2EfbJQ4cOtfJnPvOZVjZbyeXLl1uZa0vL1lWpW2VOt+vYVh72TW3HzU7EazJurF+P72Hfg1Yn+2bmuoFwjLBtHZZIJYveui1OPuLum4lDCCGEEEIIIYQQFkr+UBNCCCGEEEIIIYQwE9Zan0xGZRKvSkYnSg4pY6QkmfIolimPojXDJFqsg9klKJ+jBIlyLdvNnbIxtgnldrbrvNWN54/luGw71ptSNmYaYLaeL3/5yyuvw7LJdk32NsW+UdnBvlf21msPWLK026xM1mZmj2IfZp8/efLkyt+avcgyvFTeoVkwTM5MeTLl38Ssjqwz49r6gkm+OV4Nw1apM/+Pv+GzcSd8ZofZlMVlKVRkxHwHS2ufKdaDitx6U5Yai3HOv4yX3bt3tzJl5HYd3pfX4fm8po0tFdvjOJY5P/J5OI5Y9hlmEOGYyHmT1izGMq2O1i6kYney4xUJfiVTiDEl69ic6F2/VDKq8Bzaf7iG4nH2f84JlSyKFguVelbgWMt5jPMVz7HsRqwnn51Wp2Go9VtaKK2ujHleh+MI1zpmobXMr7a+ZxsdO3aslfnubW1k9Gb+u1ti07ahsPbgmGoWN64PmaGLfYprRcsIPOVbpNJP2Uc4L/Ebmf23kiXK7FHss+uyJbJNLQOUZUikvfnAgQOtzLjj2Mf1M63XvRm55gz7AfulZeEiy/1SDSGEEEIIIYQQQrjLyB9qQgghhBBCCCGEEGZC2fpkEiTKqyh9orTHMjqZ7NNsBJSo8V6WsYF1qFhF+Cy0gfD6lM8dOXJk5XGTorEOFbvWWPLH3/D/KJ2iJJs70rNNKefm+ZYdxzJZVOSAJvWbskP6dmDZhuYK34+VzUbH/nbhwoVWZlYTxintAjxOaT8l0BVZscGxghJIs2hRnmzyTEqvKxnWLPsGGT+jZdqwMYVtapmhPglYjJsNYAlZAGycs/Hb4sKkyxX7Uq8VwiyNnEM5D3Ju4XHGAaXTLJstkfYKxqxlaKHl6C/+4i9a2TJLDMNW2wnjjr/hPZiJyrJOUi5P61Mle0WvZakic+c7q1h9WDZLNuu/ZKtFr12MbVDJOMe+zfnLshhZG/M4+13vGEIq4wxjjZYFWhmsnpaJ8uLFiyuPD8PW+XX//v2tzLbjdwJ58MEHV16X8zrfh2WTNWst52uOd5YJjN8AXK9w/bypdexOrZO3k8q3gmUy5RhMex3He84vp0+fXnkO18Psz71tbNl+eC/GDo/bXGRzl7WVWZgJ23xsfarYjG3soA2Q3/B8T4xrxsg4M9zSsGyC7AeVTE8kipoQQgghhBBCCCGEmZA/1IQQQgghhBBCCCHMhI+V9cmsIZT5UCr4yiuvtDLlhJQGUx71/vvvtzJ3T6e8mfeiRI31pMyKUiPW33ZzJyYpt928KQ1jnXk+5ZmUsbFNaOsYhq0yUdaVv+G1+PyU/b3zzjut/PDDD7cy5aas69mzZ1ee05sNyjLr9GbB6D2n8tspGax2ApOiVySx/C1jjXH6xBNPtDLljbt27WrlN998s5UZp2ajsHdltgAe530pw+ZxxhTl/zyHkmSOOZZ5jXFAqeZYFsrfUALK45Ud/E3+u4Q+ORWTjPJdLsH6RCrZOazM52Z/4xjP/sV5wOT/Vh/OcZxn+Fuz2BJeh/2dcnRmT2Ic8BkZ4yyzbuwjtPaOZd5mF+F5tFGwj9HOwPtxbmXWK9qHWdfe8dqoWNd6+xnpzSZjltq5Ymtaez8VG7TNd+yT1vaWEWhTmX8q742xfOjQoVZ+6KGHWplrUZa5rmS2GsswNt6mwOKOcFwzK6bNm3x/PN/ai+/DMsFxzOKagN88tHEx++p2zF93iw2q8q1gWxRwHfvaa6+1MvsLx3ubv2i5tXnQ6lzBtrawbTEsTtkHeQ77F5+dfZnf4LTaM87G/7Z3Y1ZBbqPAMYL34/qAbW33nRuVWOO7ZDvYezWiqAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMWGt9ojyHskHKqyj/+dKXvtTKTz31VCv/7u/+bitT/kMpGq9p0qrdu3e3MqVSrBulx/xtRcZFOxFlXNxtm+cz64RlvzLrBGXklMtSojbe7Z73oKWKxymtY/vyfGZ94j0++9nPtrJJ61566aVWXieb+4iKfHpT9qXe45a9YAmZLMzKZLvimzzS5IeUTT722GOtTIsT3z8lo5R88/q98mzKkHlN9lk+L5+R/Z3nMO5Mtm/yZFqlxv2d45rZGnmc57PM9uU9lpCJbBjcAkrsuM03ZAnWp4rdpNdSwX5kmYhoaaUUnPFiNmHWh7Ye1pkWwkceeaSVv/71r7cy453X533Zr/meOebweWl94vXN6jWGbcS5nM/DNuU9WCfej2Ml27cyjkzJ7mRya85fXEPQVsk5nWsXe/dcP7BNrK2XMG8a1vY2b9oa1ca/7Zbw99rEGXeML9qdaIvns9v8y77D/sI5jXPd+Dxah4jZh4mtgRmzrLdZa3gdxs7hw4dbmese2hZ4nBlhaSm37QI2xZIzspnlx9bsLHM8vnr1aitzDPv0pz/dyhzv+a1n9+I1ubbs3bbBMrhxbck5h9+SnBMtK7FZq3hNy0g1zkRkNkP+nv3frE9mDeV4we8HWxvdSVufjemV9Zxtp8Jxlt8z69YurQ6VSocQQgghhBBCCCGE7Sd/qAkhhBBCCCGEEEKYCWutT5QXUU5LaQ+lZb/8y7/cyr/2a7+28nzKKSmJpPTr4sWLrUyJLqXdlKIx+4zt2E+ZmWXQ4E7tlCyNM7x8BKWUlGSarJJQPkfJ2brMCfyNSbNYV8syY1Jw213fJL8vvvhiK/NdUt5m72NTGZ02JYeb8+7it8PaoCLZY3+jXYJ9jfJGykfZv2g55FhBObBZAUwiTjkr72V2KrMdMK5t53/2TcowGR8mux0Gt/6xrS0eOfZRGm474c/B/mOZwPju2YfYD2wc4PtgmzAzCOeAuVKxPNgcYX3M7LHsR5yzOKcw6wjrQ8mtZdB4/fXXW5nvgdeh5JlzIutTsY2wzAwyvK+tPVifsT2CfZX1MCk5YZ9kDPIelDFbppDtiFmzsrBP0IJBWwvHOHLt2rVWZv15nP3DMunMFVsTTsmiWMmu2MumMnTZcY4hHL85V1bWgGZrYN8xm/743pWsT/w972frXt6b493Y5rHqXox9ywDF63MMYTvS0sW6sf7bwdJsUDZ+2FYbZt3lGMxvw9OnT7cy3y3XXOwXXPudOXOmlZlViu/T1jVmn7RvI9aB/Y7xyDrzHF6T84BhWbTGz2BzDevKWLYtCdjnuSakDapiGbb+3Jstz2xKbDu2tW2jwL9HcJxhm/BvH1xXVWzwUdSEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJpSzPpnckRLaP/iDP2hlypJfffXVVqacjDIoSmuvX7/eyh988EErW6YFk58R2wGbEmvuVM0dmk0WzXuxDnxGSkBZf0rG2La8zlgmSskZ5VV8HrYp24jns8xrssz3d+LEiZXPY3YUSqNtF3LDLAEm552SWaEiF54rm8pqxTL7xZUrV1r55MmTrcx+wZ3zn3zyyVbmO7906VIrs/9bPDKz2zhDxEdQ6sl7mWSSMkazN1LybNYwMo5NSmkpiWRM8fnZjrw3n5/1u3z5citTJrrdfdVsorS2MivY448/3spf+cpXWvlb3/pWK9MqUrkvsWxQc6KS8aFitbCx9tatW61MaS3nHc5ZvO+NGzdamfHO+1LOb/My5fwHDhxoZcuARGhfY2zavMlnsYxMfEbG2TBs7Uv8ja0D+AwWv5xnK5JsUhm7K/OgZe+gVYxrGstcY5lFCK3NZrVeAr0WkEoGt4rVnVRk+JVzpmR6orX00KFDrcx1L/uFZXMz6yXnZfY1xtkwbP1+2Lt3bytzjGM88t4cIxiPLDNmK98GvJdlUrPsrZY57oknnmhlzn3c1mG7WfKa1uZNsy6yzO9H2qD4TcO1G+c1zkfWtzk/WjYoXp9l24KC8xKf0a5j2ZNtXGfdzOo1DFv7PO9nNlvGNtuI78Di17K5TRlbDbOA0ibMzMjsK4xfe0azBnNM45p/3XYnHxFFTQghhBBCCCGEEMJMyB9qQgghhBBCCCGEEGZCOesTJVKWpYjnUwZFCRbPYTaKCxcutPLLL7+88vqU/FMSZVYbk+hSKnb06NFWpmSYElD+ltekfInSMtuBnjJMy6Jl2RiGYaskjthO2jxOqatJrdh2rB+l55RScxdrk6qabJVUJL9mvavIfytyOLMizBWT8Vo8VjJQ8LeU8nFHc8YLpZLMKEIpNfsjZaI8Tnkgs0rx+ux3jDXLzkYZsmVjMBsN44bSTp5PKegYxhrrx+dhv+U9KJM2uSmtpLSv9GYZsR3v2V7Hjh1rZcpBn3766VbmuGRZefiMlomDMc6+aOPvXLEsFb02TbPWMsMa25jSXc5flHOzXTnX2HjCOOX8xWdk7PNd0S5TsSmxv1t8WNYeu/6qf6+6n2WD4705LnDNYZlcpswplWxhFr9m72J9uIYzKyKtbjavVKync8IsEjZXVjIV9lKxeFSsT5Vrmn2HNjiWab21+/IcznWMG44bjK2xVY5zis0jHKc497MPmw2GmI2XMct1D+cptl3FRsIx2r4x2EZLWHNuN5Xxo7Ltgb1P2sfZ79iHCddBXNOyX5g93bKAErMBWV/gOayzWZ8Yp4wt9lOO3+PvQsaz2aq5LufamvMm3wEZW5RX0Wv1tHGT62e+M66ZuKal3YnPwjZl5ia+D64N2A9o+eZ3cbI+hRBCCCGEEEIIISyI/KEmhBBCCCGEEEIIYSastT7Zjv6URFFmRukT7RKUBlMeRtk7z6e0jNfn+ZRpmXSIUlLKnWjLoiyccnGew3uZpJMyLkojKSumJIptRVklJVrcpXz8PJRg8T2xfmYx4P3sHMrj2C58TmYD4rNxN3te0zJA9cp5ezM3GL0Wqjlhcn4er2Q5IOznlOm99NJLK69P+Sj7CGWSn/nMZ1r5V37lV1qZ/YW2OUopbZd7lin15H3NJsn44vNathqTNrNfD8PWuDCZJeWRrDelpIxNG4MYs5RY8zix5+d9P/e5z7Uy7U7/7J/9s5XXZ0auN954Y+W9zp8/38omBTZbE9vaLB5zxexOUzIYMJZpBaCdkPMO5fZ8V5yLOeeaDYTzL+OU8yb7tWVoIrwmYVzb++ez8zo8f2wRZkwRy7xYsVLzHpRGm32jMpf1ZhiybHnMwsU2tXbgWM/+xLWLjY8Vm9CS2VQs99q7p2AZFTkOMFscY5ljiMUvx2CWOT+wT3GcoYVkGLb2K853lkGH8W+ZLC1rHS1eFgtcN7CfWwZKy2LLZ2Fbs3zu3LmV19wOlrC+nZIxr2KD4vzFfkRrjq1j2RfYh22c5tjJcZHrL7M6cq3E+GAsc1xntjRek32Q36q2hhpn/OO/OUbwOTnX0NbHeZNliy/GMsuVbzTLBMa2tuzOp0+fbmVuO8BnYTvQDsx3YxZxfidwXOod66OoCSGEEEIIIYQQQpgJ+UNNCCGEEEIIIYQQwkxYa32iZIkSMitT4khZE6VclCZRHma7rZv1qZJtgFIxSrcogeRxSt14fUrmKFmi9Il1o2WJbULZF6WUfEZKvSgfHdePcmtKwm7cuNHKJl3lPVgnvidekzI7yuYopzt16lQrM5uXvVeTTFcyIlQwe4/Jl5cgDSWWucva0qwNZkejfY39k32KNgfKL3k+JYSWOY51o8yQdaOMkcfNrse6mS3CrGGURTPmLLPKuH58BsYOZbUV6xPvzbGS9lGzgHKcpS2C7+mpp55q5c9//vMr60PJKGWfHONYH+6Ez7GFz8u2o0yU8cg+ZHLWuVIZe0jFIsP2Y9twjjDJN9ubNiWLQR63sYJSX/ZT9hfGptmU7D2b9YnzHvsOzx9nZLMsF5aFzTLlMNY491mWN17HxuveTGC8po0tHHMZy4TPy/fEcebKlSutbBnCzNIzVypZY6ac32t3szVIr8XDrs8+zj5imW4qGcxYZ47xXDNcunTptucPw1abLS2HjG3ONTzfLCVclxNe06wZPIfPz7i2bLIWm2xrjl8Vm/onicr40RuzbFf2z7Nnz7ayZS6ztR/XUJaZkedzrmSfZSyw7/Pb0NarvD7jmvMVj9v307o5ivfmvM71La18rBPnFMaU2WZZb5uvK+OprXX4fcosldy+gZY2zu/8hmV9OFfaWMnjZluuWIajqAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMWKsjNyk6LTKU7TA7DOWKjz/+eCtTlsaMJZSBmR2DZbNyUAZFORUtTpRrUWZFKEWjdI1SsUcffbSVKfWiBI42ILM7VbJfjWG9eT+2BSVnttu2ZRNh+1IOyOtTGkg5INuF75hyWJN79UqNjSkZo5Yg4abUl8/E4+xXlewV1t7sRxcvXmzlM2fOrLwv44tjhWVaYB1YZ/YR9lnGTkUuTpkh68O4piyW/Z3WAZPRjq9rGdYop2R7caxhTPF87khPC5JZR3gdyj4PHjzYyg8//HArM0sQf8vn4pj+3HPPtfJrr73WyjYuUfJt2Xb4niivXWdrmSMV+6ZZFK1scx/fD22vHO8pgWZ/Zh80+y3vZRJmSp75ntl/bQ5lHfhueZz9wuY6nrMuMxj/z8ZQs44wrnk/SqNPnDjRypVMSYbZY1h/WhopTec7oPyb12S/oYSbfYjrAbNuLc0yTHptRHbcrlNpmynWp8oa2NZoXIvavMz5juMx+w7Ltp5nfJgVbxi2jgtcN3MdzPuZxcXi2tY0Zv3jOsa+fxgXnKf4LBwHOc9yvGN9NrX+XFps9s6bxNa0toakZZhbW9A2amsWvk/2TY7HZhXkvfjOWeYcx7jj2M+2Yn2I2bhsThtnfeLvOV6wHfnMPN+sxGYr5jzFudXmTesrfE+MX1omue5lBiiuk9ifuD6ntf/ChQutbN/Otv2ErbeMKGpCCCGEEEIIIYQQZkL+UBNCCCGEEEIIIYQwE8pZnyhZMvklZV2Ub1G+RAsSs4Xw/Ir9wXaDpsyMMktKnCwjDK9vGZ0oH6U0jnKya9euDatg3SizMovKGNbVMlRZtgxKzymVo4yT16Fcle/GMvfweSgz4315Hcpk+fy9VjeTDlekzNanl2B9Mim6ZQ+o2J3YNmY/5Ls6f/58KzOTGvsF447vnxJTyj7NusV+av3RssZQYmm731sGHJMujiW4rDfvx3bkuMN68N58Tkpd2b6/9mu/1sqUiVpWPFqfeF/ucs+xjHCM/r//9/+2Mm2ulP9aZjo+I+9LO6S9J5aXlvWpMiZV7BKWIcRik+MD38/NmzdbmfJbYlmf2PaMQcukxPdJWfTYNrjqmryOZc3gM7KvjfsI44iWCtaPbcc1CuvN+nF9wLjmbymv53xq85rJ+vnuWWfKzjmeUsLOdmQd2A/OnTvXypbtj1RsP3PF2ruy1ujN5kZ6bSiVMcHmdPZ/rvW4RjMbLvu4vWfOs+xHjC1aiHjf8bPQ8sBrmW2QfdvWMTzO8zlGWDYdnm82Dfs2sEy0LLMtaM3glgef1AxQFkcWj6QSX+xH/Fbl+GdZN2kt5fxoWXBZH65vzcbLOY7nsw5mp7O5iHXm+bY+HbetZfvlvENLFM+3PszrmM2f1+HaxcZowvZlW1hWRN6X7ct1OLd7oM2f37C9c2WlT5MoakIIIYQQQgghhBBmQv5QE0IIIYQQQgghhDAT1urITfZvu62zbDJh2iVMPm2ywYr9xTK2sEx5FGWftgs324G/pWyT0idKOCntp+TKbFzcYXqc9amS0YfyLZNjcYdqns9nZpuyrjyfUlKWKf+2LBgvvPBCK1NubRnFtkN2bH1oCVh9zSJhsWzyYb5nk+/xXXE3dMob2RcOHDiw8jrj3eZX1cHeM+WTlk3ILFGUPTKeGDeWcYWy0mFw2SfHCP6eklHGNc9nXXk+3wfHNWZs4b0Y74QSWD7z2bNnW/krX/lKKz/zzDOtzFjmu+FYYVY3/pbvj+1g/dssf3OiEpsm3a1kfiEV+wbfrUmSbby37ISV2GQfNPm3ZbXgNa0OZlEc2/jMDkx7Bp+H9WOMmD2SMbt///5WZj/nvTjHcwwllsGN4+mRI0damXJ0Pj/fJefZV155pZU5btj8a/bypWWWmWJl6s3otN3YO2FMcV6yzGjsa+yz7Au0DlhWFvYvxgrH9XFsco1rWRVZJ9oNbCyzDDqWbY7X4TNzfWB9gufzvrb24jxOCzBtkrzOpphDf70dFUu+UcmWyOPsF8yiya0tOKaalZ7rQMs8Rosb5y/LdsqY4Nxi6zXei7Fi37lmbR6vw9kPLZMgn41jDa1crCvvbd+MnI/YFnw2wrjm+2CGU7MJW8YsxiNtibTJsQ8Rs+2TXpvwsr5OQwghhBBCCCGEEO5i8oeaEEIIIYQQQgghhJlQzvpkcjKTwVLixOtYZoopEiFKvCh9ogzZLCEmrWI9CeValhHDpGsmd6dVyjLdDMNWKRqlobaDPY8z4wPrYb9lPVi2ncopgaNEj9Kyhx56qJUp56Y9jM9IuTiPs33NCmGybZMLLyFjhVGRhvZmd7LYZLuaXYjvzaT0tls+78vr075jlkn2O/YR6+8/+tGPWpnxZO3A42NborUFf0PZs1mEzLbAsYljCscdtinLfGbWm++VMfjf/tt/a+XvfOc7rcwYtHgx25hl+mH/YL+kDJfvaQkZMSrWwgqVDBeV61eyJRg2PrAvsO/bfEJ5svVNy17I+DD7r40n43uYxJztwntTzs05y8ZTSqz5PMwywuw4tHLY+EgJ98mTJ1uZMn0+M/sEr/+DH/yglWlvZHzZvGn0nr/TbCrrU2+GyYo1o0LFZsi+wDnH6sb4YkzwmoQxyLne1vBch4/rz/mCc7w9p2Wo4vm0FrJOvBd/y9hkzLI+nHN5TY6DlUw0HFsee+yxVmZ2RbMVV+i1zi6BUlYc6XvsL3w/9p7ffPPNVqYdh23Jbx3OCTY/0GrDeZDjLq/Pfmq2Ic5Ldo6db2ur8VYZfAb2ST4/4XhhWU0ZR1zf8vmZKZYWJMsOzHbnWMNMqXyX/E4gHMteffXVVv7e977XyvxWr1iDK1TOj6ImhBBCCCGEEEIIYSbkDzUhhBBCCCGEEEIIM2Gt9cl2pTYsU4zZAirSIctEY7vcU/pESZRJrCmBpAyf9aRszDJiUBrGZ6G0jHW2Xd4pv6Jsb3xvSvQo5WKZ9eZz8h4mMbdnYBtRJstrUm7LOtCWRpkcd79nG/EZ2V7MMGT2qErGKNulfQlYjFR2zjeJrsm8zQJpdgZmImJ92Hf4W/YR1s3sSOx3NiawPhwHiGWWsXGDfWQsKeezsa9ybLId+W1nfz6n7fLP5+R7sqxXllnjq1/9aiszu1NFjl7JqlbJ2EfMeleZh3YaswNXMrJV2pJU5s2K1YLH2cbss2Z1tXGAfbmScYVzEeOGFoFr1661MuOM9Rzb4/hsjDVey94N68FnNosfZe4c1/jMtCNdvHixlRnvHINOnz7dyrRBWcYK1u3FF19sZdqdaA/pzUA2t+xHH5deu9OmskFVrtlrrTLrk2XS41qJ6zuzI5hl2NbnjLN11kvbeoBrUcuQyHNYtrU768F5jVZEjnFsLz6zWa54jtkr2C7M2nb06NFW5rp3CVkON8UUq2AlE52N8eyTHJtpRzPrEK3qPMfuyzhlX+BajLHJmDArYiWuK1mCx9e3fs5tNBibltGJ9+a8xnpw3uR92f+ZccmyanF7DVqfeA7HMrbXlStXWvnP/uzPWplZn6xNeufBXotiFDUhhBBCCCGEEEIIMyF/qAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMWLsxB/1htn8LoWeLXi5Lq2WeekuhaF5q2+eAdaYXjf5E89vanjY8hx5Gev3o4aMnj3Uwbxzbavy8lsKNe4Kw3R944IGVx3ld1tX8wjxu6dLoq2WKUqZaMz8jn8vSn/M69DPS4//GG2+0Mveusfdn+7AsAfOSV551SqzxXvTVmkecMcjzWU/GCJ/LUs7a9dl3bK8mPhf7OM/ndTgOrIPX5f3oeefzWEpjXoftwv7MeOd1eJzXpKeabffd7363lb/2ta+1Mv37lTHXyrYvkvl8bb8DvuMlxKml5+5NjV3ZE8OOV/YUsbZnH+HYz70cOJZznrH90lhmO5innp5y+tE5D7z88ssr68n+Owxb49HSl3Is4PPbXlqMNT4b37f56Hkdm+9szxGOCawbY4rz4HPPPdfKTC06Ze+LJe9LY/siTtmjhlT22ZiSntuuwz7FvsNz2McJ+5HtM8G+bPvFsQ6MCUvnOww+l3PO4t6GTElv78/mb0tpbHvecTzifVk3rmlsrW97o3AMsT00bD3Xy9Ji1uZNi19i35g2/3INxffJbxq+H47H7DtMAc13aHsk2v6FrI/te8R+yrHc9n9jmb+19OLDsDVe+J1o846NEbwu247j1PXr11uZawvuOcs2ZRux3bkvDeOL12Q/YPtyPcz9cPiObS21qbIRRU0IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmwlrrU29KRksVWjleqYOdT+kXJVGWgpJSJkqfmC6NEtATJ06srAPvy7RulJmZpI0SO0rgLJX5+Lr8P5ZZb5Nts96UQ/MZ2Hasqz0PZWmUyFOGThmbWUVMqsh3Qxki5XO8l6UVrqQJ7rUo7ARm2zI7IanIvO1ehFLlW7dutTL7He/Fvsn3Q/kk+xHPp2SS/d3sMmYDYrwzlilVZjxWZfD8N9uF/bMSj+znfK+0l9j5lJ6arYM2y9/7vd9bebw3XW9Fgmzpnw2ewz69hHSlFVtYxVJmcUq247jZoDhXUKrMWGO/rqQrNRsUrX7Hjh1rZcYmLbCUZrNu4/sxLszOTbuiWRgIZdWcKwnrzTgllLZzzOJxezecu3/wgx+0Mq3KjJ2KhNuelyzNUlGhMuZXxrzeVN2kMtZyPrF7sY/bcc4hLPP67Gucrzm38Jq0I9iadBi2xhfX5YxnptxlH2adzArOOvH6tn7m2pUWKq6HOS8zvsy6xTUA53G2HVN18x1Msf0uLTbZN8zaY9i3qtmQbSxk37bvCc6DXJeald5seXxGziGV9Nk859ChQ63M/stn5JxmabtZt2HY2l6cj+w5LVU9MZs044jPfPz48ZVlrg8Ya/w25L34LKz/tWvXWplWats6ozJXVrYC6P07SBQ1IYQQQgghhBBCCDMhf6gJIYQQQgghhBBCmAlrrU9TdhmvXKeSgaciPaVcjZJJSi7tHEq0KGOjrJrSNcrPbty40cqUU1EmxzqY3Yl14w73Fy5cGAglYZRiUrLGuto9TPZJSR+laGwjs51QysV7mcXDZHWUw/EZKWPjDvyU2NKiRukan4v1N4napvr9dmJyuUrmpil2J4tTywxGWwRjh5JeywrHGLRd69k3K8/OmGW/sIxv9ryM6/EzsA+zz1v2KUqdLUMNpau8PvsB6802orzzO9/5TiufP3++lS2up8j3TYJsMnXCtuZvl5D1qYKNN5sqV+zJvdmgaFO4dOlSK1uGNct2wX5ttiGOJ7T1fPrTn25lji2cK/jbcb0ZIyyzT5pVg2MW24XPzzHO5Nz8rVk0LbsJn41zHO1OXDdYXJPe7ESbymC0E1SyH24q1uwd9lrKzLpnNnzakAl/y9jkOpH91OwCXN/yOC19/C3jg7E4/j3ncs79NlZy/q5Y2jlGWKZMth1tJGw7jnG0WZpVjFlQ+Z5s3OSYaJarXpZgg2Ibsy+xbTj+2Thk34+2hrR1I78T2Rf43syCY5nUbJ3JPsK1JJ+LccdvIN6LNmHa2W1+tGyn43+zn/Mb1dZybBfLbGgWaL57lvl9blnu2C62jQDfJbM78dvA7E5mN2U9ba6fYjGOoiaEEEIIIYQQQghhJuQPNSGEEEIIIYQQQggzYa31yawhpCKnteOV31akQ4RSLFpwLFuCXZ9SLEqezRJEWRqlWLQsUM5JKZrZrNbtkM96U4pGCR2fkxJTSt/YRrw+z7f2MnsJ24vXpOSMUjFKBtnPKEW7fPlyK9MGxV2++T5MJtqbyWyumNSzV4pesUFVMEmjSQUpB2X92RcIr0PJM3e8t+xRHBMYpyZbZX0s+9DY+sT+bLYdk5XzOOvNOGLbWbYL3ovP+e1vf7uVv/GNb7SyjY/GlAwoNm5U5MtsqyVYn6zP23GT7W/3mFQZK+w4x1pKrDn/0NbDODp8+HArM444b9KCwDGebcjYZyyPsyWalYnSaLYFbSFm5+A6gOdbdkmW+ZxWB86bHAcox6fd6YUXXlh5jsUaqVifKr9dGtth7Z9iFSW8DvuLZVLjPGAZV8yGzH5ttgP2Qa5pbZxmzLHvj9eM7KtmWWFb8N7WFjYX87esH8uWBZVrUa4/Gb+sM+tgWwHwvrSH8D2NvwHuZtgeXAdZ27CNef7Vq1dbmX2vsqUGz2EcXbx4ceW99u3b18pcc3FOsOyljBf+lsdpMeZ3Huv58MMPtzLnWfY7xi/nSmYbY9sOw9bvUj4zLconT55cWW+ebxZNztM839qIbWpbJLDMNf2bb77Zyq+//norP/fcc63Md1BZo1qWskp2z97vtChqQgghhBBCCCGEEGZC/lATQgghhBBCCCGEMBM2mvWp1+40JWMFMZuSSY/NykM5me1yT9mjSRptZ3Je8+DBgyvrT9kXrz8MnnWCcjeTSlbsCXx+StQqdie7DmVylABWJNmUf/McylApf2Qd2FaVjADsE/aMc8Ji0+Sd9tsp1ie2E/sgy3yHzGZgVkqTGVqWJMpiGYNmkbF3y7rRasFd8Rm/4z7Lfkj5JWOYsck2Mvk05aAmSef5tGMwo9PXvva1VrZMV71MGcdNLk9s5/wlZJbppTeLTq9NbVNUxnhKjCkLNzkwY4XX4Tm85uOPP97KnKMYE4yn8b05XtCmxfinxJoWEd6Pv2WMW4Ybk3Dzvmaz5HqCEvznn3++lTeVHabC3WJ36s36ZEyxG5sdkv3IbBR855X1DvsybRSWLdBsCpZpkfMmf8tr0iY5vhbLBw4caGVaNRgvtCbR5sA4sq0ALAMlx6CzZ8+2Mp+T74NZdmgD4bvhusTmdMLxy7J83Y3zoK3N+M1Fqw7bm/3t93//91uZWybwnVRin/2ItjlekzZe9guuFTnnsJ+yL/CdWxZUrt14HWZkOnXqVCu/+uqrwyps6wu28zBsjWfbGoCxQ2xrA/ZhPqdZnxg7rAOz/bLtWGden+/+zJkzrcx3aVsBmN2pkq2JTInfKGpCCCGEEEIIIYQQZkL+UBNCCCGEEEIIIYQwEz5W1qcpWZl67RiUpVkdKLOi/MzkkJTJmSyRMihKL00WTXkXy/ytZTp66KGHWtl2KR8GlzezTpSSWxvxOSkHrbw/k7BbnzBbGo+bNM7ks5bZi1T6Jct8riXIStl+lfdAtiPbhclWTfJPTErNWDBLI/uO2ddMrkh5KiXPlNdaHLAO4/qZbL0iSWdsWhYJwud/+eWXW/kP/uAPWvncuXMr67kd1qdN9T+zRy3BlmjvymwONv5NyZxIerPS9L5Ds0WwzDhgfFBuzTLji+ez/1LyTCn0+BmZzYLxdfz48VamfJxWZ5Ob2/jCZ2a7cP7lmoPncAxiHRjXX/3qV1fWmXNihd5MT3dj1idjU5mberE+QrsP+4VldSGWOZBjqmUiYp9iFjaWaeuwrKSWTWUYtq6PLasa78F4ZF0vXLjQyrROMDZ5HbOIs70Ym1x7M075XcF2fOSRR1Ze07JBcSyz7FwVeuN3TticyD5Dq9Gv//qvtzLnCI7xf/iHf9jK3//+91uZ743YuoZ9gTYo2u/sHfL9Wx9krHGuZL+jXZF9kNkP+Vtmg7KtP8h4TOO4Qysi7UK2zQFjk++Gz8x4MXuRWZ94Du/FMYTxxYzDLLPOlQxNRuVvIrbtRrI+hRBCCCGEEEIIISyI/KEmhBBCCCGEEEIIYSbckaxPlPlUMhKYRJNlszvR+sNzKJmkXMssS5SiUbrF3/L6LFMa98EHH7QyZVwms6K8a7yrNOtHOSmlqJSSUgJISTapSLAs+05FEkbZn1kY7JqUt7FstqneDA3Wt5Zgr7AdxzeV0alCRRpqWYwYF7QgVd6n2RX5bk0KTqkqY8KyKlk7UzI5vp9ZHDmmsI/xefhbk6haVoAf/OAHrcyMFWxfsik59KbsrMRicwm2RLPo9sassR3ZoHqlu4Qxy7mI0mNKuCtZmMziwPpw3qcsfFxP9jezQfFatF3w3iZhp6yc51esX4xljomvvPJKKzNrG7Pm2PhgbMrKtAQbhbGpWOs9h7D9ON7bmpbXN7sT5xZ7P7wX7UGMA8KYZTxy7cl70brI3zJWaNkYhq3Pw3mKGeOY9Y31vnr1aiszjjgG0YJkduNr1661Mp/NbIy8DtcTtCjy+szEwxhnu5uFqjezzJLhOM3+TIvniy++2Mqf+9znWnn//v2tzHfOLHkcU3n9im3UYpB147jO+YixTHsU18l857yXZR3l9xDjgxZg9h3amPiNSMvgOGNwZZzn8/PZ+DyEdeJ4xPfHtTWf3yyB9p3IWGYWVFqfGHeVb0Ozr1e2epliRfzkjAIhhBBCCCGEEEIIMyd/qAkhhBBCCCGEEEKYCR8r6xPlPGZlqmTXqciFbKdkygZtt21KxShvs6wxrA+vbztmU7plO5ZTJsfrUN7F83nOWD5GmRbPo8yUcq9du3a1Mi0YfDbLUFKRyBOzt5nlwfoE5b9mIeHz2vVNcmbSNevrc2VT2XWmWElMWsksZrQzsD9TAk0Jt71/SiB5HUogLX7NBkWLA6/zcdqzkkXC+hX7JH/LMYvXoSSb0l7K0yn/trjYbqZkW1ty9gr2YWKZ60hvhqZeejNGVTBZOOcosyaxb5oViTYI1p82Z16H0u5h8PiiJYPvw2KQ1+FzmiWZczzHMp5P2fq3v/3tVv7Wt77Vyq+//norW7YSo2Jx6o01W5MtgV77V8WuOAVen2sc9hFb31UyLXIs4hxNmxLjgOtbxi/nE9aH87LZsiwT3DBsjVW2+40bN1Y+A/s/n59zH8cF2kv4bcDY5LhjNrBKNiDWgRYn+0ayjKtsU1uvbvc8sRPYtwj74ZkzZ1r5P/2n/9TKX/jCF1qZfY/tx+9E9lXbhsHg+zSbLDMKsq/xWbgGti0vePzEiROtTLse164cHxjv7FOs8zoLGOOFliqbH9m+9j3MtuCawDIo27uxb0mOTbRGPvvss63MODVLI+n9m0UvyfoUQgghhBBCCCGEsCDyh5oQQgghhBBCCCGEmVDO+tSbTcakSWY1qtTB5IGUblKmRNkjy7REVTKQ2K7SZoOivNMy2vBZbMf3sWWD/7bd4+1+ZiPib01aZlJ1UrGLVGwOhG1tu3NXbBQV+bJl5JkrfIdT7Ay9Uj62JfvqY4891sqHDx9uZfY7yh4p+2SZbc8YP3ToUCuzz5rNhP2F8cjjvM54x/uPsD4yzrhi9jpKOi2mzL7FtjbJ7BtvvNHKly5damW2dSU2t0M+bXNApb+yDZeW9anXblI5p7f9yHa3Ga/PfscsGzyHdj3GNeXotC9wHCBmmxpL6Bn/HLM4hjKbjFkOLSskY5NZYHicz8b6/Mmf/EkrP/PMM63MzBSVrCS9VDJ7VayI251Z8E7Rm7XDfluxjLPM+Yv9mes79iOz/tg1aS+wMsdX9k3a8mgpYEzYmpx14/m0XQzD1rnMrMs8h5ZIWhjsfox3ro35zIxNjgnE3rHZOth2n/3sZ1fei9e0rQwss9uUOWauVL6P2H7f+c53WvnVV19tZVpwWGZccM1l46vFF98/+5RlK6JtyDJb0bJkGQIPHDiw8jpc97E+nEP5vLw+23bdvMm44HUJ12y0VvLZOM/yGbhFAu2Qtv0By7w+x4qXXnqplZmdin2osjauZDruXdv1zpVR1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEmrLU+9VKxR1UkQmY9oQyKdifK28zyYHInqw+ll5RZUTJKqZdJLymHo0TLdptetws1n4FlXpfSUmZ9otyN7WWZqyryLWL2oko2JT4n61ORh/VmbrA6VDI9zAnLTmBMsRmavJk72z/11FOtfPDgwVamBJh1phSR8cLsEvv3729lWheZBcYyJ1BKTIk045ESY8pKWR/KU9fFB+PfMldRlmqZCXg+Y5zPzx3/KfVkXS3TRK/daco5FneVLICV43PFsgyx7jZ3EGuDXhtKrxy+d6wgfBbG8pUrV1qZGV14nGOLzVc2R1vmmmHY2o6MQWa14Dmsh40FlGfzeVjmvMx1yfPPP9/KP/jBD1q5kilmu5nSV5ZgtaiMJZVYq8jhK/ZrHmcfYb+zNaGNr+y/ZlmwLCu03DE2Gcscuzif2lzMeYznD8PWeY315nmc73mc9+A8WLFdsK5sF65dOO5Y5kjCPmHZ3+zbwKxYlk3SWFo8EpvLLAMvx3J+63ENxXfOPs++xjY2qyvhu6pkImK8MB4Z7xz7ObfY+WZlsr7DOvO3tGWNLWA2NvE3XEPzmfk+LNsl60H4jW3rataHdmOWuU5mv6lsbdG71UslI9sUm/D8V70hhBBCCCGEEEIInxDyh5oQQgghhBBCCCGEmVDO+lSRC1lWEzuHmKyUUEJFSRslUZSNUU5W2S3fds6nRJoSa8rkWDaLg2V+oESNu9SPZaK8Lq9FTGZKGSelcrwfJYa9kq1Klq/KddheJjGs3HenMt3cKSjXtXaqWFIq74Tns/9zp3br25QAs3+xzN+y/pbtotJ3KIWmHZDHLdMTMUvjWBbLNqK8k+MIf0/JKOtBSS5l4RcuXGhlWrl4TbZpRdY/5bidU7EcVixObJMlx+mmqNipiI27vRLdXhsUy4xZzsuUJ9MqRNuBjVG0LHDuYsytkxVzHjSsfTlOcW3BOOVz0t7J7Gyvv/56K3N83I6sSb1S7Yp9bsmZnqZYArvl6jL+WX9m2fqz1ZN2D/ZxxhTXsTyH9mRanBiblcxIXFdahjSuYYfBMzLSvjT+zar68R6cH2mj4HqCz885nusb1oExXrEVsx0Z+2Z55bxv65LKGL1k6xPfP+nNbGiWIs4XjBeznle+IdgXLPuf2Y7YB/lbjgPs48ymapndCJ+La0Ou280mNgxb18psO96b2xPwe5NjBNeojCm2ndmjeC+zMPMd0655+fLlVra+RaZYyo2KVbXSv6OoCSGEEEIIIYQQQpgJ+UNNCCGEEEIIIYQQwkxYa32akinGzqlg17RduykfpuSQ8qiK5cruxTIlWiyb1JMyNspHTQZFmRhlX8Pgklnem7LPkydPrnwGStQofTOZWcVSZPWsHK9kVqhch/Rmh1maTJRSRGIWCcusZbvWWxub5PDixYsrr1/Z/Z3nUGLM+vC+lHHympQ3mmWBliPey+w44wwyHzFuH7NWst68N20R/C3lsC+99FIrf//73195fRsv+A4qtpCK7LM3u5PJi81iavVZGjb2WGya3JrjulkazVpH+FurA9mUnYXXYR+s2Bgpw2Y70F5BeTWfa9wOvJbZfnkPiyObyxnjHFM4Jp47d66VOd7tlHWoEte9MbiEmN2ODHKV57Z7VTK+Ve7LPstsn8yYtHfv3pX3tYyCnN/ZXxh3Fis2vo1tQxwX7LqMX8bd/fff38rMVmUWY9o0WA+zMll2VMvCxTLrQDvGo48+uvJeZlOxulXsw0uIR2JbbVTsfpV1rM079n1n/ZZls2vbFhRHjx5tZWYapeWO8wbrzHmGFiJug0ALlW1lwfbhfDjOwsT/sy0DeF3GC8cO1oNxzfvZWMN3wH7ONrVMT9zyoJJFcafmwVifQgghhBBCCCGEEBZE/lATQgghhBBCCCGEMBPKWZ96ZdKVbDwVKT2lUpR4EVqfmHWhIrFmHSjRooyLsjTbwZ5yZsoe2Q5mLWJ5neyR/zaZOyVqbAvem7Ixy2QzJROEYfIz2wG79/pGRQ76Sc1ewf5pmYtMPmp9h1Jly25EGbZZ8SiNZPYKSjJ5Pq9D6SnLrD93y6fsmvfl9dm2Y+sZz2MM8360ZTLTBssca77xjW+08quvvtrKjGU+G2WvbOvKDvO9fcjGL7OGmly2kvXJ+uhcqWTtsLJJ7O25GQu8DuPX2rs3e88UmzOfhXMlJc/2jIwnto/Z+2iJGIatsWrZXmxMZEyxzGfgPHv+/PlWZqY2Pmclg+Z2Y+++khFzU/PyTrMpy7VZfqx/2XUqNheLZc5f7P9cM/O37Mu05tA6z/Utn5HxxC0IeA7X5LzOOJMp50fbGoDWLI4FtDwwHjnWcI63zFU8zjZi23FNsy7746rjbFNCixrPMftrhaXZnYhZynrjsbJtg93L7FTEshWxH7Fvct1Hix6vY/Yr21KD5zMm7BuZz8g1Ju/FtcQwbI1VZoxj+/I425pjEMcaxhHfAedljhf2/hiDXD8zwxrbvRJHU+ay3u04ujMIdtcohBBCCCGEEEIIIWwL+UNNCCGEEEIIIYQQwkyYnPWp97eV45QIUY5FmRUtFZQNUhI1JbPBup3qP4LSOLNd8LeUdFHGxvNZ/7G9ib9hmfWg3ItyUO4SbtI9s3lsaif5Tf22YqWrZHfgb5dgqSDsb2adsJ3wTYJnGXvY12zndUKpMvsj60DpMXdnZ7xToslnpNyaMWKZWDhW8L6Up7IdeB3ajFh/tskwuEyU96Ys85lnnmllk91fvny5lSmZ5bshfAbW2zIW8Hyz6/TGl1lTKudX7ruEOK1YuypxZ3YJvkNaCG0etGyGlB6b1bFXdl6x1Ni4wXikLYBQOk3bBOH4MAxbxxEb+9j/TYZu2dxu3LjRyrSRMPbnZneaYl+yvrsE20VlXVOxRNm6yTJ48jqM3145vI0t7LO0P3A+5fkcKzj/WqZUyzBFGxT7O+dQs2GO4bXYppYBjnHN+dHWw/wt7RhsO9aBY+uePXta2Z7Txj62KbcmIFyXcN1eaTubE5dmUey1fPXa/yu2xCkZMhkX/C2tsVwb873x+4x2PfZTy/RrcyLHKMuuuXv37pX1GQbPJsUxxSxVrB+tWbYtiGVUtOPMjMV1Mo9XYrN3qwijt//1zpXzX/WGEEIIIYQQQgghfELIH2pCCCGEEEIIIYQQZkI561NFRjcliwShZItSLkqMKZOmtNCk/RXJvGUmMWkc70t5G6XdrA+fhRI4SrQo2+b1x79nPXgPyjIpCaM8znYV3yl6s0tUbGwVKdqmLF07AaWMluGHmNTTbBHWv3gv24WeckVKJlkHy9jA3eJtd3rLPMXMKrymxS/tFWYrHMfgR4ztFXxm1s8smrRIVCyRbEezpZmNyI5XMrxUMiuY/cHOsXJlvlmC9cmojE+W8bDSNpTtMx75nu04Ybz3ysgr/YixQ1k045F9n2OC2Ul4Pq2Hw+BZFc3SSSqSbM79tDbwnLlRWZ/Ze52SvWKnmTKesT04prI/V9bAU7KwcUygBeHkyZOtfOrUqVampYJrzqtXr7Yys6Zw7WoZS1lmO3CONisxy8Pg7c65n3CM43zKLFOMQdaPx20c4Pm0I+3fv7+Vr1271spmRyEcs15++eVWfvTRR1v5yJEjK69jY3Rl/ljamtYs2qR324PKGr9i7+39/rU+xUyAhw8fbmWuGdn3uY5lH+f1+VuORdY3bf3ImBiGre0yzgj1EYwRwnVGJUuWWb7t+5/tyLU05+Lx9gQfMWVbj8q7791mpcJyV70hhBBCCCGEEEIIdxn5Q00IIYQQQgghhBDCTPhYWZ+m2FMquy+blI82AsoJeyVOVh9C6ZbJM812QbkWZV8mnbYsGGMqklxei1I5Hh9L3D6CslLKWy27hjEls8IUm9IUSdvS5Nzsn3yfZpdgXzWJMi0DvOb169dbmVJH9mdKqXlN9kHbOd6kp5RxUhr5C7/wC63M2GdMVSTAlELz2Xk+49p2ux/fj7auc+fOtTLlmsy0wXa0evOd2fuzzF58l5bFxuLFrKQVi5OdYxZTY2nZKywLTGWu5BjM98N3SMk/s5HQwsDjtNYxkwmlxIxNvvNKNqjKWMtxiWMX487GActeZzaocYYL/tusZbwuxx2Od2ZdZtmyTs6NKVk5l5aFjdg4xHdl8WtZ7BizNs/a2Nxrg+I1aZFghhbGFK0T7Ke0xXNtaPdirHAsskw9ZsceZxfkdWnTolWfMcjxyGwUfAe0QrBsVmqzfJvVjeuDyjcG11K0dDLTDzNYmQ218g3Gdp9D1rnbYfZ8sh1j6pTvXOvb7NeMQZ7DuDt48GArW9bgStY5q79td8F6jtvBbFQ8buMg44jxy2fg+MXvBMssy3Z8/fXXW5lWRLNuGnfSHpisTyGEEEIIIYQQQgh3AflDTQghhBBCCCGEEMJMKGd96t3teMruyDzHpEyUYlV2Rjd4DiWdlHdRNkb51a1bt1aWKaU0iTjlbfaMlHCO62EydN6bEkrKSnfv3r3yHmahoRStkiVqU3YnUrHJVejNYrIETJbM57Dd3RlH7F/sF7w+j7Ovced13ov2IkLZI/uXWZkMyrlZH8otKSumLYmZHBgTJm1m3x/bB2nnoMSaNpXKDv5mWerNiGTyfbNm9FohejM6TclGMUUyutPYWGW2CD4rpfFjO89HHDt2rJU/+9nPtvJ3v/vdVqbF6ejRo61MK7FlTpySwaAiHee9aGm07DY2F1kmqXVUrHyEccp3ZlL1OVufjEqdtyOrxZ2i8p7NGsAxlfHCa1ofqWSWsXraGtXihf2Ra0DL9GSx3wufhdfkHEqL5RiOiWaX4LNxbWGZpbguf+ONN1bei2NHxdZEi4dlq7H1JOd91of1vHTp0srf9m45UbESzQmrb2Xt05tRkfRmvLTsTuzbXAPa1hSMWcYdbX8sc31becaxzfAj2Mcts9swbF0rmiXbMsWafYnxYusMjh2MccYIrZtsa34z9K4bp8xfle9Hex8VoqgJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTChnfarI7XslapXrmJSpIlu2+vfuBk0pFqGVgXJLk/DxWXg+7RjcvZ9ys/G/K+1F28X58+dbmRI6StcoN6Ws1qSxFdluxfJQkRtOkdpXrjPFTrUTUEZHawDfp+0Mzz5G2aBlTuE1eQ77GvsUMxrZrvWW0Yn9hbJP1pm2KcaOZWZgO/A6rA+tgayDWZ/27ds3ED4/JbAsm92J9bDMIhVLEccHPjOPsw58f9bnrZ4VW5M9C49XMv0sIR5JpT1MJsy4O3HiRCvzHV68eLGV//W//tcrf3vq1KlWfu6551r5i1/8YivTRvG9732vlTk3sb8QywZl87JlHuOcw/ZhjPM4y5zfOF+NYdxaVh6TJduzmdViinVku6nMfVMsjUvA5kTrt7TEcj6ipYjXsTWh0ZvRju3NPm+WAq7dWDezwJp1guMP28Gyo1bl/xxH+Ay2fQDnY7Mb2PYBtHtx3Dl9+vTKuvLdcD1h1icbEwn7BC2pXMfwnfVuFWFz9BKsT2RK1qdNrRes/ew4257rPvZlxg77pmVuYozbPGZrV/Yji007fxjcbm1ZnzjH85l5nPfgMzMueA5tUzzO9rW/EZA7aZ/f1HYcZFmzbAghhBBCCCGEEMJdTP5QE0IIIYQQQgghhDATPlbWp0q5ch1iWZwoJzSmSPxMmk4oM6P8itJrHjfZJ5+F9hDKaynJHGOZmIjtMM4d/9nWlNZR0klJK49T0tYr897Urtp2TZP0kYo0dAky0YqEm+/HLDI8h/3FpNGEvzXJt0m7+R5oR7IMVoT9l/c9ePBgK7N9GF/8re2oz98yxllnWjOGwTNNUKrNczgW9MrfzX5o446Na6xDxfphlgf7bW82At6L5/B57VnmhD2rZfSy52P/tIxRZ8+ebeUnnniilS2bGy0b7PPMjGaWjSmZa/jsnFsq79bGN44V62xMfE72ec61ltmOz8w53mzIS6TXDmz9ewnzJvsb+4JlG7x27Vor0ybMPkUrAPuOZTXp3QqA59DmzKxwPE67Ii0CnJcso6LZnzkWcc3IcYxtyFix+gyDZyy1rKicj3kttrVZRLjmZtuxfhybWB+znNm4QWxNZv2j1/Y75btrTmxHHXszZRmVb0ybK9i/eM6hQ4damfHIufjAgQOtzDjg/MMyr2PfzmZdGs+/vJZ9l9qcbRlk7R3Y8/B8jr+2XUIvvVa63uzDlayfJcvrbc8IIYQQQgghhBBCCHeE/KEmhBBCCCGEEEIIYSaUsz7Z8V7ZXeW3FUtNRZZr9algO1JTxvb++++3ssnMeF+ThlLStu7ZTd5tbc37USZ6/fr1VqakjXJQQjloJWOLMUXGOSWjk12f9Wd7LiHLjGXoomyQthtadWiR4Dk//OEPW9kyibFtKhnArF15PqWYlH3yHMtYYRkYeA7j67777ltZH9aT8c77UubNaw6Dy+grWc8qMlyzG5h1xDLo8Pp834bJv61uJt8nlfHaMmGZbWpO2HuwOYXtYZZTjs3nzp1rZUrvX3/99ZX34vm0SPD98/xdu3a1sll6rV+YtZTj1d69e1fei+ewHWi7sCxyfK5xtgq2tdm9LBMVxyazHlt2s51iipWpYtuz473rgZ2G4zT7hdkHGAucCzjmmc2ud+w0+N5oGea6lHMfMwtxDWhxanHA8YfxaFlcLAvT+Bmtz3B+5RrFLMqVeZZjB9vrvffea2WOuZbJle++8r1R+eaxdqhYd+y+S8v6NGXsrGT7rcRg5bitgS3zGvuXZWoz+5JlVTKrpo1jZjdeZ51nfFWs+r0ZnTmfMtY4vnD+5XhUifftwPpWb+bp7mx//VUNIYQQQgghhBBCCNtB/lATQgghhBBCCCGEMBPKWZ/suEn2KsftOr0yQKtbBbsOJZ2Uk1FKSvmkycns+pR6sUzZ6lh6R6kcZWMVGRWla5bdh1I5Ss5M5m471ZMpFrjK8V65XcVqsQQJN98VZZN79uxZeZz95cSJE638ve99b+X1LU4rskmTg7IOrBuzMtEKQWuh2Q8tAxT7OOvA89kXKvJRMrYoMl4oGbXsO9a+lonJ+iefweyXdrySza03O0IvFWno0rI+EXu3Zhnhc9Oa8/DDD688n1khmEWC75Ntxn564cKFVmY2qErWJ9bfspfwHMY+60PLUmVO6LXvVK9r5zN+uSaglJxy9iny5kp9KvFYsU/a8YrdaW5Wrx5snjJL3Trbzqrjdp3erDGW0Yx2J8YyYSxzDqWFiJhFkRaE/fv3tzJjlnFgc6utdYdh6zObBYnjpllGK98D/C1tn2+++WYrs335Li3D1BQbVGWdWRkHjSWsY8mUsWSK9cTOr1ifrMw+y8xxfCe0AO/bt6+VGe8PPPBAK3NMGNt7V2E2K44bZrMaBrcpERvXKlskWHvZeMrnYRv1fgtvit6+ZeVYn0IIIYQQQgghhBAWRP5QE0IIIYQQQgghhDAT1urIKzsr99pfTEo6xbI0JZuQ1Y3SSFoqKpmeemWJZuVYJ/PvleURe2baoOyadl+7fu97miJT7812YedUnnGnoZzy3XffbWW2Gd8nbREmKzaLmJ1TkuzhOpQuHjlypJW/+MUvtjKl17QvUbZMOWQlswaf17LDUMJNaSjl35Rb8prD4Lvz834V64FlCTL7D5+/kpHNsnqYTJ/H2UZm0bJ6WhYnqz+Psz0rkt+dxjJTmZXt4MGDrXzq1KlW/s3f/M1W5ru6detWK3O+ePnll1deh1m/GHe0TXGssHfLtq9Y+nicMcUy+5SVCePMrJTjMZ7XoiXM5hqzcnH8Ynvx+puS79vxylxm44xZlni8YoPqzZIyJ+yd95bZzysZPyt2fnsPjH3CcZGZPC2TI/ss68b+S+v08ePHV9bNxns+I+drjhVjyzDjkZYts4HxmVkny4jD52S9eV9bP/E6HHNt64Bem1zl+CeJih2Y9NqXes+pjHO2biL8fqS9j+V33nmnlWl5Zmxa3ycWp7bu5TVp7xvf26yvxLYS4P3Yz3kdm5dZb2ae41y8qXlnUxmdKvXptSXOf2YNIYQQQgghhBBC+ISQP9SEEEIIIYQQQgghzIRy1qcpUr5KpidjSqanXksUJY2UYlHeWMmOUqmD7WTP64+hRYq/r0iwKtJKytVMwj6Wrq6iIi+u0GuV6j1nCVJtg3JK9hlKdCmZvnnzZitfvny5lSmT5nue8g5NPmq7tlN+yeszywpjhM/OOGCcXr16tZXZDnwuWj/YDqwPjzMjBOs2DFvj4u233155Hutt8dVrG6zYHNhGtsu/2ZRMOm70xlSl/qzP2HI2RypjsGVXoTWJGdB4TdqaaBdgf2asPf30061M6y6zTlB6TbsEZcuWScrGBHtGHmeZcUd7FGPL7DjrpPJ8BtrArO+ZnYOwHzIzh9lKzU5FKjFeyWA4xeJk7Vvp00vIAGXrl14pus2JZg/l3MHjtCSzDrQ/8L0xZm2tSEuFWYZZT8bgZz/72Va2+ZHXoTWB62eeT0vFeN40WxTblG3B+DW7MduFbc0y68G1AsdBricqa3TrW9tha6p8byzNTlUZe4xei9OULD08v9ceyn7EDMIcH8xuX8kCatmWPk6WMPu9tdeUTLHjceEjOI5YRuR1tudVVCxOm8reWOlblblnuV+qIYQQQgghhBBCCHcZ+UNNCCGEEEIIIYQQwkxYa32qyH92KstBr3y4YpuqWJy2w65lO9xTJjcMW6WllIxWZJC92ZpYp4qks1c21vuejClSN2KywrlCqa/JL2lzoMyS8l5mPKAEumJzqUj1K9kraMuyneAZC5RCcyd4Xp9yZsYKpeP79+9vZduNfvfu3a1Mi8P42Tl2mPXAmJK9wCyQFQmvxaPZpgw7f1M2KLPJzZV12fo+wuxotMfRgmR9mzHyzDPPtPJv/dZvrTyf8wttU+wLPMeykFX6Hc+nPJkyb1oZeF8bN3ol8eueoZKtyjK9sd05Rtx3332tzDHLrDKVOdqskdbPzErK4ybfN/trbxaWuVLJUtprmbcMUHw/tDhxzvrc5z7XyowLxr7Z5Lkus3GDlgLWmXF38uTJVv7Sl7608vrnzp1rZc6/jFnel/VkedzmlqGJa13aqywzKanYMXh9wu0F7L1WtnvYKdvR0qyIxLJcVtYRFZsS6f2uNGwctetwruf8yzGB60z2d/7WLLY2n9gYz3YeZ9Sk/bjXWkbs+4T3Y4zTlmnfKr22rinfifbs9r57+1BpO4muK4YQQgghhBBCCCGEbSN/qAkhhBBCCCGEEEKYCeWsT5uyg9xJOV5lt2aTRlbkSJVzeiVRrA93yx+GrVYWSuIq9TDpsv22kt2JbEpKSHplnFNkn7aL+lzhbuiWBcmsQyYhZJ+y3eMrfc1sHZR3WmYGZq0yWbXt8s5MN7Q1Ua5I2TYtFSappl2A/WJsO+D/sa5vvvlmKzN+rY9ZP6zIsC1mTT5b6fN2L7a72aN6xyVrX74/ynGXgLUN5b3sF+z/Fy5caGVmYOG8wNinnP+1115rZcYa++bzzz+/8rc2t5jM2+ZNxinLfHZKnmnTsDGH9+V11tmTezMh2pjId8n2YpYOjnEco2mpsPualNoybJnFcixhv931TbI+xXo5V3qzPlXGMOt7bJsrV660Mscwxu/hw4dbmXZg2umuXbvWyuxT58+fb2XL+sR+wXfFuZL9mvWnTYMxy7WEZZbkOWM7P9uOZbMgcRyxrDEWs5V3XMl2WTk/9MO1Vu+4UrE7Wca8ipWtYoshtnUA+ybjlFsTHD9+vJXZr2mJ4thv430ly1U1q6fZCStbRtjfEbgW5ZrGrsMxgedbJtNKuTdDGOm9jr2nWJ9CCCGEEEIIIYQQFkT+UBNCCCGEEEIIIYQwEz5W1ic7x45XMo1MqUPv+b0SRZPMTdkh3CRzlH9S9jYMW2VzlYwFvVlXKnaMyjUrMjs7n0y5V+WcXqnbnDB7ETFJtsl4e2XhxOSNJpNkhgtaP2jZYP+nJPvTn/70ymvyvTGrhY0/bDfL2kR5KstjCw7tJdypnmXKNa1OJjGt2BMMk3/32v2mjHeVGDfp7dJik8/BPmZZLWjhoQT60qVLrcy+Q3sU5cAmJeb57Gu0CprlweKXmPyZz0XZNq0cvf3OLLyW6WiM2etMAs570OLEsYnWDrapZasxWT/byyTTZn2y7E42tpCKfN/mht41xhKYYmGx+fTtt99uZYsRzlk2PrBPvfHGG63MccNsQ2YReOWVV1Y+C+cuWiY5D7Ivc7y6fv16K1umqmHwtYhlwuM4VZnLbN1j9FqZ5mx3WloGqEp2ykoGPHtum8sq16/MfbZOsd+yPowRxi/jhefwXlx72r0q3whj+7+tV2xbBNbJxhrLXPzcc8+18sMPP9zKtHRyvKMFdPydvOq+dtwsxhXbb8VyVrHVVbj7ZtkQQgghhBBCCCGEhZI/1IQQQgghhBBCCCHMhHLWJ2OKJWpTWZMqsvpKFqPKzu52/d4drykZpUydu+VT8jkMWyVevdYns1FYdo1KlqwptjQ73muV2o4d4ZeQ9cl2STcpH/ubvX+TOpKKlJi/pbzx6tWrrUyLwMWLF1uZkmnLWrVr165WPnjwYCtTirhnz55WpiycliVm4ti7d28rM87YJpR2M3vUMGx9NkrGeW/LAESrgmHSU2Ky+ykZ73rtEla3iq2J96XEn9jxOVEZk2hn4HNzzGefomSYfZiZVtgnKRmmpNmsA2Y7MEm5Wdb47IxTltnfLdMc28cyjFlmsHFfs/GR2HGOC3x+Wrlo3XzsscdameMRrS8sEz4zGWeY+4je2OyNcZOCk0rbzok7aQexNQWzgTErIG2/u3fvbmXG+Llz51qZMU67RMXqyj774osvtvKrr7668lnM4mBzvWUXrGKWLbIpW8Gmfjs3lhCPhNY/+9ax75jKWFixPvWOqRwjK7YsYmsAzhuWXZDrf2ZC49xasQOzj/A643qzbOsGjju2puU75rh27NixVuZzfuELX1h5L46h3/zmN1eew7YjZkurWJ96syuazdWy3RlR1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEmrLU+VTJyVGRpFYlir4WFmF2mkm3KMjBYFgXLhEB5Zq/E2Ha4p7xtGFxmbNJzkwaaJcbkWNYulWxKvXan3gxhlfta+5jkrCJF22loGWB9TXbH47ZTfa981Kw8hOdT8v/WW2+1Mi1Olh2F5/yP//E/WpkZZE6ePNnKtCC89NJLK+tGC8mv/uqvtjItJPwtZeqUXg7DVmsWn9Mk4JRNmsSUbMpaaJkMWM+KXNgsc6QyLlWslHxPS8syY9kPOLZzfmFGFfZ5sw6ZVcoyQFHebNlUKhanSuxT6sv+zuvwGStZjyrZh8Z9pGJRJjY+0o7CeD98+HAr04LyS7/0S63MzFBnzpxZeb6NFRZHtt6yOOU7s2tanFasAkuwjfSOo1OeydYgfG+0yfIc9i9aBF5++eVWZp+qWF3NimUWAfvtptpnzBysOtv1bOH23H///a1MizMzjtl3SSWDX8X6VFl/sQ6cTytbTXAtw9/Sqs9xmudzruRxyxDHcsXCPLbycJ1R+UaztRmvy3P4vtlebAs+G8/nXMwsUf/lv/yXVuY2Irb1A5/R6mnzoPUV+762ebn0t4/bnhFCCCGEEEIIIYQQ7gj5Q00IIYQQQgghhBDCTFhrfSImraxkgek9bvJDk1lVJP9m/ahI8i0DhcnnrH2snpS0UeY6lpf3ylvtt8Qk7JUMUL0ZmipS0sp9TdrYm8nCpPxLyPrE+trO66SS4cfOqVgLK7vxs59XMjmYzJ/2KMYLYUYnysj5zikfPXr0aCvTukQ7CTNu0LIwDFufhxkLeG+TnzIDFo9z3GHb8TqWocfksCbFpD3Grm/2lUqsGfztz/3cz7Uys+qYFHau8J3zvdk7vHXr1spzmDHM3g/L/C3tDHyHlJSznrRBWSxXxhBSmYtMnm0ZGCyGqjaFynxkcz/vzT5p7ch7PfjggyvPoTzbJP6W3crqaWO6jYOW0ac3w2PFDrfT3Ek7i7UT25vzSMWWfe3atVbm+6zM1xWJfeX8ylqvynZskWB12o4sUXOjNyPqnOAYaWMh50H7jjMqW2dU2q8yHhusMzMg8dl5nHM3rVK2Drc5tJIBedw+le9w0rvtCMvcbsC+1TnHHTlyZOX1n3zyyVbm2Mp+w7qxTc0aRyrWJ16fda5Yko0oakIIIYQQQgghhBBmQv5QE0IIIYQQQgghhDAT1mrTKXU3Oa3J7c22QCq7cFdk9RXJkmHn876Un9ku4r2yOsueU2m38Xl2vCLtrtTP7tWbocneccWK1nt9O87n4o7fvD4tGHPFbFuVd1WRG/e+c/utZVgzyahleOG7suvQBkWLh9l3aFF6/vnnVz4LM2ussyUSWrMqmdp4LRvXKNE0KtJbk8+yXcwGWBnvLMYrcnxad3j8/fffX1nPuWJ922w7fCdsex6nzYHjEy1OZnPhcbNi2fxOGI88x+LLrDb33HNPK/MZ+Vy0JVq7TcWe2eyBrAfHF2bkYjY4s6bwt7RQse0s4waP8/0RHrf5zt69zRM2RllGk7li4+t22J17bSicNyjbt3pWsqza2qoSR73WmY+Tka+y3q1YKirWjMo77rWH7RSVNfCSbVCcC/hMHDstY62tzSqWH1v708JCqzptSjbuclznXLF3795WpvWeNiDOlZYplMdtjUnMVjxeW1n/6d3+oJLNk+sA+5sC253txTmUz8zjZ8+ebWXOyyxznWlrncrfIyzrE5+RfaXyvRlFTQghhBBCCCGEEMJMyB9qQgghhBBCCCGEEGbCWusTpbKUZVZkdBXZXa8cj5KrSgYku9emzrcdqSuZdHqlqmMonbIMQCYr/TjZMlZRsTNMefdWT7tvRSJs8lde87777rtt3XYa9rfeWNjUO68ct7r1ynJpr+A1zV7AzCqWoYhljm+V3dmrY5dZ+XptBZRNmiXVJL+UVnJMN2sZ284sNDZ+2fs2OSufyyyKPGcJ9gqzsBCzoZh1iOdY3+b7Z7yY9cksbmZhtv5vcmZKuDmmUsLMccz6qcXQx5HzVzJ88N58H5aBg7/lMzBzCX/LZ2Z2M3tms36xf9ACV7Fz99obzWbFc/gsc4Xv06yWm6IyV9p7Zl+w92Y2B8av2T0qNiM7vslsUFPW4r3rmE294znYiHot7kuYNzlfWCY69n+OebSxW//nGMz243hMaxXHcs5Zhw4damW2q63LOPfx/N27d7cyLVS8l40PhPe1eZxtWP3GrKzXezNmVc63dSOfje+Jz8asT2zrp59+upWZvZVZF1lmfzK7OGE92Z/Y52x9U9nWIIqaEEIIIYQQQgghhJmQP9SEEEIIIYQQQgghzIQfm8MO5iGEEEIIIYQQQgghipoQQgghhBBCCCGE2ZA/1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEm5A81IYQQQgghhBBCCDMhf6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTPj/AAC5zj7HjzajAAAAAElFTkSuQmCC\n", - "image/svg+xml": [ - "\n", - "\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " 2020-08-05T18:23:18.381179\n", - " image/svg+xml\n", - " \n", - " \n", - " Matplotlib v3.3.0, https://matplotlib.org/\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n" - ], - "text/plain": [ - "
" - ] + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n 2020-08-05T18:23:18.381179\n image/svg+xml\n \n \n Matplotlib v3.3.0, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGoAAAG8CAYAAACG6EOTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAADp1klEQVR4nO39SbMmx3mej5dmUQPGnuduoBsNgABImJRESpQiKNsrRdgbhxeOcIQ2/hL+Jt56YYUdlsO0LFlWiKQkUgQJkiDQGBpDzwPQQDdAANQ8/Rb/P9LXqXivt59EvadPVeO+VtnV9VZlZeWTmXXivvP5sX/6p38aQgghhBBCCCGEEMLO8+M7XYEQQgghhBBCCCGE8P8jf6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmQv5QE0IIIYQQQgghhDAT8oeaEEIIIYQQQgghhJnwk+v+8/Dhwy13N9N4W9n4sR/7sZXlf/zHf2zlH//x//c3I7smz/+Jn/iJlcd5/b/7u7/rus4999zTyl/60pda+fTp0638K7/yK6188ODBVj506FAr81l+8if/XxPb8xLWf9wO9mx/+Zd/2cp//Md/3Mp/8id/0sr/83/+z1Z+//33W/mv//qvW/kf/uEfVt6LbWTvyd4xsfdqz2zXnHIdHrd3wOPvvffe6ofZYb7whS+0B/npn/7pdvxv//ZvV55f6Xu9ffWnfuqnWvlv/uZvbnv8Z37mZ1Yet/vyudjfef2///u/X3mcfZn3ZfvYddjfeR3Wzdp53TPwHnxmPpsdr9SVx/nO7L48bvW36/C4jafExn0e5/Utfvk+zpw5M8vYvO+++1rl+awWI+xL9n7Y3mwDG495HbafzU08XhnLbUww7JqVfsEy62zXH88PFsOVNQ1/y+N2HZ5PetdJ9ltrl971RO96zo7zvoz9H/7wh7OMzUOHDt32RVg/JHxWez+VNS37y6c+9alW5tryt3/7t1v5l3/5l1v5/vvvb2XOFbt3715ZT6uzjS1WT+v7vP4HH3zQylyffvWrX91y3W984xut/K1vfauVb9682cp8Npt3rK15DqmMcZX1JKnEYG//IFYHm3/tvlevXp1lbH7lK19pD8i58pVXXmllPse3v/3tVr506VIrf/jhhyuvb32b/YttaWO/xZHNTVx/2nhp8zXhOTZ325rBvnN/9md/tpXvu+++LffjGoVtynZhbPNafH/WXlwbs434TcoxkedwjOP5vOZf/MVftPJf/dVftTLXW3z3P/zhD1de09b9tla3PvFzP/dzrfyLv/iLrfwLv/ALrfxf/+t/Xfnyo6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTFhrfaKsiTIoszaYHakikzYZfsXmYlYAypHMIsDyj370o1am9JJypzfeeKOVT5w40cqUg1F+RcwWYJgEbhi2vgNKzp5++ulWpvz0T//0T1v53XffbWU+v1mfKnahirS98i6NiiS711ZndTPL3JygNI+w77E/V+SR9tzsF+zDjAtek2MCf8vrm32D8Bl5Dq9feS6Tdpu01cYi1md8TsWmUrF58Hyzcpk1q2JHsnqalavy7u0dmO3L2oFY37J+PydsPqL0lW127733tjL7IaW+lPHy+HvvvbfyXnxvlN+yXStWiIoNmVQsNbZOMMuCxbLZtcbzLK9lcVexMln9ei23U+zf9p4q9alYnHqfi+1j4+ac4PjB8dXGqoolsGKLqViNuN6+detWKzP2H3zwwVY2ayznR0rsK3afylxB6zzHLrMo2ng4DFv7G9crfGaeY5YPUrEy9b7LXktg7/qzMo9Xxqslx+bhw4dbmVab5557rpVpheE3Gm0rZqu3djXsvdlxxqC9f7uvzTOMcT4XMduNWXAYgxz32LbDsNWSU9nOg+ubyve8/U2B4yDbhde/du3aynPM1sTxxGCd+Vy2Drc5o/KO131LrCKKmhBCCCGEEEIIIYSZkD/UhBBCCCGEEEIIIcyEtdYnyp0o/yGVHc3N8lORE1ayDZjs2SSQll2EUIZ58eLFVv75n//5Vn7zzTdbmTtmV7KgGOt2f69YdSgBZJ1YplWKMjOrR2XnfPttr+2oIjc1KjJ6YraUJWCSRbPOVKyCvdlFrEwqtkezJlQyPFhGI5NqVu7LNmHb8l4cB4bBZcYVmxKpZOQi9p4q8v2KJNfa3ca1StYJYu/SsHaYE4xNyrnZl2hRPXLkSCv/+q//eiuzv+zZs6eVb9y40crPPPNMK3//+99vZc4DnKeuXLnSyr3ztVGxspkVq2IBrNx3nfXJfjPFptSbpaVSrsjx7fq9528qA1RvBtCdpjcjZyWzVmXNWbEZ0tpAezrjnes1zkHMakI7Uu9a1CT8HE/eeuutVuaz0Jpw/vz5VqZN4dy5c3pvyyxVWX9OiQU7PqU/99r5K3YtO16xZPZm6dsJmI2ImD2Q32i9tvopY7O1vc1ZFdu3lSvWJ9sKwGzrlUxtw7DVfsZvRo47lXVsydoj4yDryvrR4mQ2eZbNqm91IDb+WJ171zG2VcqWe932jBBCCCGEEEIIIYRwR8gfakIIIYQQQgghhBBmQllH3isD7JXy2b2sTEkRZUcsc6fnym72lDi98847rczdrx944IFWptyUuzhTJtab1WGdLcukjJQDMgsIM1RRDmtU5KC90sopUtIpFiq7jrEEaahh2ZoqdpPK8UqmhV57o8VdRWZYsenwvpQ9VqxVfBbaxxhDu3btWlmHYdiasYPjEceLynMavRlkzOJnktRKRp/tyNRWoSIT3Wk4R/zSL/1SK//qr/5qKx88eLCVP/vZz7Yy7QPM7sR3dfz48ZXlf/Wv/lUr//mf/3krnzlzppV/93d/t5VtPu3NPlSZHziGUDrN44w1Pq9JniuZUsb1680IY89WycYyZW7qnSsr8y+xsbLXDrY0KpnFptiyK5kz2ecr59OuSAsS4ZrTMu8Z9iycu7gGZplzItchzDZl1xkGf57eLGyVDFC9fXiKFbESv5V5dgpLsz5xvuNcwPUYv+n4fJb5qGI76rV7GhbL9h6sL1fG4147e2X9PH7GKTYijjs8n2OfWZxsXWptZ5mLezMnVtYANn/Yu2e/pPW98s1D5h+9IYQQQgghhBBCCJ8Q8oeaEEIIIYQQQgghhJlQtj6ZpNfolXKRyvVN7lWRpJp8iRI7kyxRukkJt1k/ep+R0jCztAzD1megZJDSecrPKI3tzZzSm+Gi97fbcf4UCfcSpN2VDCQmIbRMSbYbvMVIJWNJ5Rwet4xJvTJkwjiy6/BelGref//9rUyZ9+OPP77l9+wzly9fbmVaKG/evNnKtEHxHdi7ISYfNXtnJRtU5d2Qihy0dxd96wdLgxlb/s//+T+t/OKLL7Yy+xUtS1/+8pdbee/eva1M+w+tddevX29lzkeUiL/00kutzFgwW0RvBiTLFMP+yDIzEDKbFbN+sF9fuHChlc1WWM0AY2sFy9xTkWSbZLqSFbH3eEWSXbmmndN7/pTMOztN5f30WtQtcxH7F23yPN8sulevXm1lZlN69NFHV16/d31n7cA1I+u5b9++lfe18YFjDuN3GLaOX++///7K+5GKtXBTGUWnfOf0UlmX9o4Dle+iOcH5iP2KWzvQBmjrKWKZT6dQsZPavSqZaStrZsteNyUz3XjcsP5TWZtVvk8qdjzLLMv3yrGCYxbHHbOb2jeGla0dKpnpzKLF7FpGFDUhhBBCCCGEEEIIMyF/qAkhhBBCCCGEEEKYCWs1kiafJya1q0iBDJOP2s7KJpPs3eWd16E8lZJMyu24Yz2l5pRf2W7/JotdJxmj1JvSL2Z6Yl0ppeX5Ztnq3Ql9UxJTuybZlLVqSraaOcF3WzmnYjexPlnJFGRUdje3fsf+XtnN3saE3h3vGSusw+HDh1v5xIkTW35PeySz/jDzGscIji+8h9WJ2HvlNUnvDvO9UmobfyuZwCpjDq/fK+vfCTgGc46ghYFtSXsUbaxmZzDbHPstj1NayxjhvcwaW7Gvsd+ZdY9ZYBgfhw4damXLFEH7INuzYmce/x9he5l9+MaNG6V7fFy2O5vSpixRFUvX0izDlbnArKKWEcXk7VPqQyvtK6+80sqMqdOnT7ey2RsrfYF1sOwujHden89LuwrXzD/60Y/03r1bGFSuM6VPVta9ZMo3TyWDlZ3fu93DXOF8xzbg+ojjv30bkikZ/3qzpvZm/LPYt+9fji2McfsutmtWv9Uq9kPbOsG+E2xtYVZSqyufn2WzlZpNyb4NzBZtxyuZdzlW9tr8o6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTFirI++VwJuUq1d+WLkmocTJJF69sk9m2aC1iJJOyqKZoYOZoSqZWKpSNMqzWVdKtSkrP3nyZCszW8CuXbtambvur8sytapOvVkqevvBFAvVFEn5EiTcJo+sSOoqWZwMkzqa5JJjRUWi2SvJt9+aXcvkoCZjZOxTtj2OFWaEoiSdGTIYa7Sj2DszKwhtKrwOrRxmjzHZeuWd2fhr9oApmThsvqnIwneayhhpbWn2NYP9sJJJzOYje4e9Y2FFqs26ce7icVoJmSHLrEgmnR4GfwbOpwcPHmxlZqXifE/rYsXWst12oV6b8HZcf2mZZXqzZhHrzxXrk7WTWTxZT1o/aCMy+6xZgG2ut7pZdsFK5jTORZwbGVvDsDW2e7Nw9WZK6mUJ68Ax222lvFNUtrZgDPauCUnv+qI369OU7HKkModU1l/V69t1OTf3WvbMDm9rTlJZi5LK+9jU94b93cG+K3rrMP9VbwghhBBCCCGEEMInhPyhJoQQQgghhBBCCGEmrLU+9WYI6aWyW7nt3EzZfmXn5orUiMcpI7927VorM/OLZYCitciycpDKrtLj/+Pz8x4sU2rFTE+Um9KmRXlrRdrdK0O1325Kttorazb7zRKoZGSrZkVZdXyKBNSuWZGC91q3TDJpscbfMj5ocSCMcWbtoTVyGLZKumnnoEyUscb6UcJuu9bzHXNsInwee36ziFRisJLtotKHKn3LxvElZH0i1mZ8P5ZdpZIZsDJ39Ga3Yd0sGxqfi7FjcmCWOXcxVizrB2PLLF2WBWN8Lct+SIsi5+9Lly61ss0vFZt3xfpSsQeSXnm90WvLsvsuwZZo86a9Q7MNmu2CsD1M8m/ZGy2rGu13tOWynrymZWWyPliZf21esrGC7UBb8DBsnR9pRaTNuLJ2qWTumdLPt+M4WYJtcLupWPZsLDcqY7P1L4tZw8b43nFxyvhaWXNVshsNw9b2PXDgQCtzPuZ7evfdd1uZY5BZQ4l9b7LenPtZ18p3a2VM6LVTVWy/1r69drv5z6whhBBCCCGEEEIInxDyh5oQQgghhBBCCCGEmbBWR17J/tCbBYhUpIL2W7M+UQZF+VVvFipKW1mmDerixYutTGnY/v37W9lk5MzcQtZJsfjMPI+76rPMTBas01tvvbWyfnPYJX6KhWrKvZaWvaJSR5M6E5MiEpNNVqSCZlUx+aFZG4hZqMwaSXm1ZcowCxWvSak5ZZ7DsDW+TH5pMc970EZCWwjrR8sG60RZOeOaknJev2IT7bVAkooNqmLRmZI5bqcxaxLfLeG74rzD8/lOaNNhf2YcmUWiMv/Srrdnz56V9Tl37lwrv/POOyvvZWMtY5Mxy2dnm7BcsRON/812oYSbz8by7t27W/ny5cutbJYVs7tU1ka9WUAq9NqpNnX9uVKZy8yuW5HwWxuz3/Ic9iOzYNDu9Pbbb7fy+++/38q04j744IMr69CbWYVYPS2uqxZVy5Jl9GaA6rX+bSpGtjvDaeX8pcUm68u1Etc7vVY+UrEo9m6RQSrrYYvHiv2lYqvlnGPrZLM3jq/PuZlzJbMJcwxiu9y6dWvl8Ur7sk4cR/juOZ6ynrRMkopd09ailSx9lbX0lEzYUdSEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJpSzPlUytvRSyT5TsVpQJkcZFLOjmBypkmWDdglKq65fv97KtBPduHGjlSnhNkkq5V1sZ/52XNdKBilCqTrtUcx2QTtHxRKzqawxletXjts5n9SsT73y7HU7wH8E+2pvVriKTJqSRsad7SJvcnHGx6FDh1qZcUq5OK/PZ+dxnv/hhx8OhL8x2TfHKco4iVkq+FtK4U32yux0ZqfiM/C+JimuWGH5Dqyv8N1U5O42Dy0Ba0uTDFvftiwzPG5tbLJcYhlb7rnnnlZmn+Jx2jFos7JMTBYrZu2141UJus33tHXZGMRzeNzWFqR37tvUfNRrp9pum8acYJ+07E69mQcrWP+vZGakpZHzFzONsj+yzDitWA0q9pDxuvQj2J5m1RzPb5U1bSXOrR0t9nvXkKRileq1Odj5U7K/Vcb9OcG44HNYVkyzC/U+a2879WbY67W9VixOvXWr9ItxPXk/zsGWVY4WNY5B/K6sZJwyy7zZ4Tg+mvXJ/o5gsWa2JvvuqmQTNKtbxSYaRU0IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmQm1r9jX0ymB75V52DmWStBQx0xHl5ZREmQTJJISUQVF6+sADD7Qy5d/c8dp2qqaMy2S0Y5moZY3hM1DqyuvSpsU2YoYLZrGinKySjcW4k7LqKedXZIVzZcpz98ajSQhNVlyx0bBfM3sauXnzZitXbDrMhvPUU0+18v3339/KlI5bvzOL0lj+TamnxbzJHSmb5HUpB63shH/q1KlW5s78V65caWU+M9+fWWjM8tq7Q37lWTaZTWSpVGTSlQxa9q7Y9jzOMmXFDz30UCvv3bu3lRmzNpfZs3BuqVhCzJL8ceYKszWZLZFzPMcOyy5pY6jVu1d232uz2o45ejuyR+00ZjuqyOQNO7/3PbMO7Gu0gTDbGuc+ZmthH7dxnVg82vxrfYHxNLY3mUVzO9gO+88Um0qvrak3e87SYtOeg/2tsvarXJNsx/i3qb7Wm3nZ5hxi88/YVm6WbPt+ZtZRbhPANVtlOxJbf3MuNpsVrde9aymz1ffGXe+7t/dElvt1GkIIIYQQQgghhHCXkT/UhBBCCCGEEEIIIcyEjVqfjGp2ho8w2bP9lhLmJ554opXPnDnTysx8QqmR7WZNuZbtcs/sTrRE0WbE3e9ZZn2YqWpdtiW2C+tnu+3T7mX1oEXi8uXLrcyMMJZxZDvY1A7pvdkulrArPqlkQyMmpTaLn1mZbAd0O7+SCYFl2ivY79iXmfWIdWC/3r9/fys/8sgjrcwY57hBqSbHB1ocaJsY2xL5G8q5TfZtUnLLlGN2oePHj7cybSpHjhxZ+Qznz59fWTfel+fzXfK+ZrOxrFVmkzPrC+m1DSyBKbJZs6zx/Zhkmm1MqTJjhxa6xx57rJWZLZAWOusLpDImsD9adqbezDBj2EZ8Zs7BLNNGwjGFMcKsFmaDqlCxLG0q42Hlt3bcxvolxKaNN9vxHJa5jH24kkGJcB7gGpLrNZZ5jmUp6c1CZfW0TFW85theYJllKvTWz8bEKdl67F6bitMpY8gS4pGwvmaRMbvupu5bOW7n9Gbbq5xTyaJp1zQrj8X4+HzOZWZRNFu1jVNcu/Peti0ILU60HlsWOvue6W0vG1usTStZ3uzvDlxvGFHUhBBCCCGEEEIIIcyE/KEmhBBCCCGEEEIIYSastT717jjem2GgsmM65UKURx09erSVH3300Vam9YmSIpNY8vo837IxUNJFGRetGbRE7d69u5Up3apIFMdyLauTyTsp7TZZKSVtrB/PXydd7WFTsswpmaQ2dc2dpjdLVa+80/paJcOP2VzM1keZNM+nfYcwmxvvxb68b9++VqaUspLphZJPy9Yy7i9mwWJmDo5f9luTX/Ic1pVZ25j9js/JcY32Fdq9Ku+PbcFn5Pszeb3Znax/WB2WxpRMMZXjJgu3bFpsV/Z/9iP2EZZ5vr0Tmx9Yf/YX1pMZahg3lD+zDh9nzK5YMTmO8PnZRrR+ce6vZMfozd7Rm3WCVCypRm+GqSVg76Ri57K2t99y3D18+HArs8+fPXu2lW1+5DUZF5T8M+so+ymzKLI+Ns+YdYAxa/YT/pbPSIvlOHOpZT/cFL0Z0KZcv3K8cp0pmcYq/XKumIWF6xrOEcadzO41pU/dyXfSm2FsGLaOF4xhftOyr9qWBJbV1Po5xwjel2t69m2uD5i5uLLmJFNizaisXSuZTJe7Ag4hhBBCCCGEEEK4y8gfakIIIYQQQgghhBBmwsfK+lTZ9dyoSBEpPaa08vTp0638q7/6q6385JNPtrLJpnhN2gJoI6B0izYFs1pwN+ubN2+2MjNAUSbGMuXSlPOtk2hxJ3SzUZiE0s63DBeUk9EKUskwNCVjReX83uuYxK6SoWSuVLIc9ErXK5l5eD5ljIxTa2+z+DAWbt261coHDx5sZWY3unLlSivTgsBY5jjAPs5zKDmsZF6qxNP4NyZVp5TcJN+2uz6fjRZQy5JlfYL3tfpw3GQ7cnxgO3KMMstkxU5mFrsp1sudoCIzrsynjMdKtsRKRhTLksbMa3znnDc5V9o7rFhIzIplVDJbVcdvswbYccZCb3YJxlSvrWm7582KtZUs2YpYGVd6297Ot37BdWPlmvztO++808rvvfdeK3Me4PUtY4nV2bK7WCZD6ws8n3PCOCsg51GOR7b+qNCbfWdTGaAqNsNNZZiy629q7b0T2NqEmL3Ozpny3NuR9am3v9jauzKfsg0r9Rn3HbbvPffc08q27mdsV9aWVg+OA9yOw7by4PjC+rCelex69n1iY2jFrmjfDBwf+VzGcmfcEEIIIYQQQgghhLuM/KEmhBBCCCGEEEIIYSZ8LOuTMSUDlP2Wcut/82/+TSv/yq/8Siu/+eabrfzhhx+2MrMvmQyfZbMzWEYYSqUoSaWFiDLU69evrzzHJKa0TQyDS+Io9+JxXotQ5k4JOy1YtGlRusb27ZUI9+5C37ujekXaWsk0VrF37TSWsYL07lRfkd6bJND6prUrz6d08dKlS61M28UjjzzSyg899FArM6ZMOsvrs48zOwZ3i7csVOvk2Lw3f2/nWMyy3pSeMpaZDYsZEdimtD4xZs1yxnHNxmKOj2xH2j6tr5jE1GLTbD+VHfJ3Gqu7vf/KO6ctiHMK72XZWCoZ3DjPUorL+/L9MxsS61kZg/m8lFTzmpZtzOa0j2N34nPa81g7ckyxbGVm8TM2ZU+YYn/ttbVvymZwp6jMlb3PxPdsMT5lfWFZn7jmpD2f/XFsNfqIyjqxUmezcnAc41qSdq1h2Dp/MR7NwtDLptZAvdfZVGaZCpW6LcGuaH3Jvo8qzGF8mmJrq9hSGWss27rS7suYG4atW4cQvgP7lub8aJme7JqWKZlrBVKxL9latBIX22FL7P52vu0ZIYQQQgghhBBCCOGOkD/UhBBCCCGEEEIIIcyEjWZ96pUKmgSJViNahP7Fv/gXrUyZJOWg586da2VKqCgNNakYJeV2fdsVnzYCZqLhfSklo13r0KFDK+vDzCrD4JYB2xWf5/NalLnTBkVZKq0mfM7Lly+3Mi0ellGA9GaMmpL1qSItuxuzyVTO75Xhm92JksaKRNPeP+XZ7F+MO9aZffPAgQOtTIsPLRtm/aGssrLrPhk/i9kfCK1chllZOJadOHGilWnf+uCDD1qZz8w4ZYzzfJOGsszxi+1rUlhrBx43q0hVnjtHrC+x7pbpj/YiZl/i+cwqSImxtaVl0LB50OxlJrfm3MK+wH5n4wnLlDazzpyL2T5cJ6ybN/hvW1uwb/MeHOPY1hybOH5V4qjXRtFrKa/Ma5UsFXeL3YlYZkOjt+0tS97DDz/cyq+//vrKOlSuz7ig5ZQWdq45Od6zPmZ5Z9+fYhPjdTg+8F7DsDXmT5482cq0dVWyjm4qQyiZYlfcjmxuVrfetd1cYXvwW4zjrvWxSgbX7R63KpalTV2Tz8Ixh/NyJYsRGc/7lkXVsilxrOH7M+uT2ZDN+sT68Ppcx9o6fFPxUulPdk3L7mSWLhJFTQghhBBCCCGEEMJMyB9qQgghhBBCCCGEEGbCWuvTFOnrlN/y+LFjx1qZO8RT1vTMM8+08nPPPdfKlCebNK6SicYkZLwmrQaUnvJZKB/jvSgRX5fhgv+2djT5u+2qTVkpM1/QXmHPT/sWpWhT5J13UkrdK2ueE5WdyysZlyo2tYqVyaSVFQkopZHsa+xflA1yHDh9+vTK37I/WpYcWgBZpizcMkmN25zWCZbZLpRu2nUtmxttMIxTwmejjPXWrVutTNuMWcJ4X16Hxy0LkfWDimXJzl9y1ifCun/5y19u5aNHj7YyY4E2AcqKae/lcfbhd999t5XNpsPjZqtl21Nqzr7D2DQrB98t68z3bFkXaZ2gfaNiFRqfx3vwWmw7w2xQNt5ZO/ZaITYl37d72XWszlMyJO00lhmtd05k27B/MhZYps3uypUrK69jGeKsTMk/Y4rzF/spx2lilkY+L+cuG4PNjnHw4MFWHtswee+33367lfft29fK3ErAshNWuJPrvSnxUlmr9WbVXQLsG4xNxhfXHb0207mNT1MsrfaMbCt+V3LusjYZr9HMEsl50zJ+cm1h6357xxwraX1ifTiWVTKc2tqY2PdSZVy2bzDeyzLwjbM7r6zbbc8IIYQQQgghhBBCCHeE/KEmhBBCCCGEEEIIYSas1ZH3yn965Vv2W8qFKGWiRIi2iN///d9v5fPnz6+8L+tPiZ3JtSjLsl2reR3WkxJOylDNusRzeM3xDvkm2zXZOutNaRklWJSx8X48n9eknPeFF15oZcvWY9mgpshQNyV5nbMs8naYnNDke6RXcmvvkP3I7muZfCr1ZD+iZefGjRut/NRTT628ptkPGRN8Lsam7XDPcWmcwYlxYbvwm53M5O+sB2OT59gO/JS8m0S+IiM3OTvfDSW2lV33zQ7H629HFo+dhm1AO9rnP//5VqYFh5J/ns+5j++BEmDrI2xvvn/2F7Mj8f2wbNYP1oexxj7Cc/jsvCZjiBkSaAFkvI/tFfw9ZdW0V4xtxh/Btuid13ptTZVMTBVLqmV9smtafYwlZF4zerPxVNqJ/Y0xxeufPXu2lbk+tKxclTma47pZnNhnLXsp4butrP+tztbXGH/DsNWiyW0Orl692sq0V7DtLJtdJaZ6t2zonY967YqVuJuSLW4J8ybHafY3y1Rp77aSSc2+ASt9p5I1aEpm5N7r2BhCu6JlaLWsnsOwda7lOsBsR70WRZvXzT7K61gmU1vrVGyuveVeGyPptfNHURNCCCGEEEIIIYQwE/KHmhBCCCGEEEIIIYSZsFZzM0XG2yv9olSKsrRXX321lf/oj/6olb/5zW+2Mi04/C3lWmZZMqm+ZWIxuTHPpyyLv2WZcifKVmmhoiVqGLZma7JMG7bbNq/F8yljo53jgQceaGVaMJhxh+3Lc2g/sww6JgmrsKkd0klF2jsnTJY8BbPgUCZtNjuzAvTKje1ZKGmkFJrSywMHDqy8F2OFFhLaK2iDYExwXKKUdFxPthHPY1zYLvwWC4wvWp94fZO9cky5du1aK1uGJmLvg89o1pop8lFi2ab47HOlkmHg5MmTK48zy4H1Ecr/LWtfJSNBxTpgx3lfez92X7MYmxWRliiTRa+Tu/MenNcYXzaHssy5jLFs8ct6mAV0iiVqU/NphV5LwFyxfmL90OwDPJ9js9lsaQtg3zEq8ybryXg06y77L5+Llgdb93I+YTxatkCbN8f99PDhw61MSycz4dH2zPme5U19n0xZW9p1ejM0bcqytIR4JFZf9ltaXPmtZFYmi/E5tE1vP7LjjCmuN8yCb+s+jhvDsPV70MYsW0PYd7JlkeQYxPuO6/QRtMDZmtYyh1ayO1Uy5hI7zrHPtlNhnzaiqAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMKFufKudsKusT5UuUt/3O7/xOK1+5cmXl+ZR4UVplNiuTqlYyJBiWKYJlPpdJosYyfz4Py5bZgdelLJ7WEcrHWSfuzk+pK2VmlJHTOvL1r3+9lc+dO7fyt5TSTZF6TtkJv5LJbMn0yvcs4xD7EeOL/chsGpUsJRUovaZEmtZISiYtDvhcjAlaTg4dOtTK169fb+XxrvjEsklZhhTLmsOxac+ePa28f//+lfXmM1MKTjklZfcViTDhcY45lQwfZpdg2WwG/K1JeJcG+wLl/I888kgrMwaPHDnSyq+//vrKcziOMoMK28lky2x7kw/zt4wdvivaYZm9gRYtsxVfuHChlRnj7NeMO16fcxTjlHEwrjfnLJYrlg/OjxW7E5ky9m0qq5Qd780aY+VNWXC3k8rcRPh8Nj5xfVSxmFdsc4ZZZDg2mx2B9WF8VWxAlgXU1lCMOdaH681h2BprtINy7PjlX/7llfemxZ6xyTmUbMoeZedXrnMn15ZLXsfyHTJeaHnhOTa+boftrBIvleyyvbY5y9TG2Cdcb1hGTcbvOCMbY57XsiyiXHPaN6mNKdzWg3M8z+f1Kxa4ShZFsqltMex9c0y09jHmP7OGEEIIIYQQQgghfELIH2pCCCGEEEIIIYQQZsJaHfl274xdkZxRIvTKK6+0su1yT4kXy73WDFLJrmC2EdahYlHicWYTGF+LUlrCe1OSazIw2rEs8xahpH7v3r2tTLkaJcLMzkUb1DvvvLPyvrYj+RQqMkQ7/26kN6OE2RDYp2g3YJ+y91mREJpdgpmbaAmhJchikLFGu9NTTz3Vyt/4xjda2STfY0xWbvJcHrfMSrQ+sa6Ma9aJEmHanShPtbg2OTvbi2XGu41fFRuUtanZ7dbZz+aCZQ9g2eLIxir2Z8uIZVmZDN6X8wntGxUbH/smrQ2cB2xM4HHOCZz7KIumXYmWK8YE5/ph2BrDbHdbK1BWzXaxZ9iUjcjOL0mjO21HvXOczRlLsDuRSoZBO9/GNvYvjruMQcZsJYtXpQ5mReW9bCxnnPL8iq2J2PhgtqzxdRjnnNePHTvWyox/zq0854033mhlrjMZs+NxYVWdKraITWXr6aV3nKn0rTnBOlpfZZ+0Mdiuad9fNg5MydxFKtc3qzfLnLtsPcDMp7QD27YebGeOY+Pz+HuuITneWXyZfYvfj8ePH29lrnv5bGwjjhWW6djWrnZNG0Mt021lHrcMrbwmrVvGsmbZEEIIIYQQQgghhLuY/KEmhBBCCCGEEEIIYSZsNOvTlOMmU6JUyiRIhPIrWgEoOzLJXO8u0YTyNkrIKJ2u2B14X8q5h2GrjIp1ovzMZGO8Fo/zmpVn5vPwfF6H2UpMRs+2oDWjYkXrxeSgvTK2OVGR61asfCYNNZke+xH7OSXMzNjArCnsO9bGJp/ks/CalEAy6w0zN1nmGlonGDes2x//8R+3smVdGwa3EHKHfD5DJTYfeuihVmZWNZ5j97p69WorV9q9InmvSElJr92D74aYbWCuWGzy+Pe///1W5tjJ2GF7MLsZY8QsvfYObcwzqxxlubQgWCYlSpgpvTZJMvvsjRs3WpljC98/78X6MN7HUnP+xuyRFevmpqT2dv52Z3fqpdcavIR506w6trbk+ewvnFPYbxlHXNexf1X6kcG+zTmI9hAbfxhHfBZ7n4wDPguPc+wyqxfbajxXcC63LDNHjx5tZT7/iRMnWvn06dOt/L3vfa+VOW4yW6Rl3qpYn8zKUsmGNiVLbi9LW9Na3DGmKmuZCr1W7Mr5vVYpYr9lfHGNzTUjLVEcB3gOY5ZjHeNxnJGN8PfMWMk1N88h9m18+PDhVuY3I5+H16cl2b7zLX4rdiejYvu1LR6s3YkdJ1HUhBBCCCGEEEIIIcyE/KEmhBBCCCGEEEIIYSastT6RXlluZWd7Sod4vu16TfmSyeEppa5Id3vtIYbVrZJlwiRU47rxPMpMTdJJuwSlrpSM0yLB5+R1KDOj9JD14278lNBxF3LWme+A8lTLmmAWAtK70/6Ss1eQTWWpYntQjsf3QJk3M/8w8wstRdeuXWtl2pR4zUpGNhsrWGfKDNl/+SyUWlsGGfZBWjloAxn3QT4Dz6P1z2yNtsM845fjCO/F57HnN1mmybnNlsU6UIZrWRmIjaeU9vId8BnXjYlzxOKRz8E+8t3vfreV2QYcpxl3vZlZbP61+jD7EvsRyyZn5njP+KL1w2L28uXLrUyLEq/JPkjpNC1jYwm2ZYfiHMz5i32M8WvZCafYjjZlT9iOOcCuP0XiPydszCO0F+3fv7+VOe5+7nOfa+U//MM/bGWbv3rbz96J1Zl9mXBuMStiJeMb15K2pmMM8tk5hox/w/odPHhw5TMw5lk/jhEcj5hZ5plnnmllrpl7bWm2btxULEzJ1tRrrZoTtsZjn9wOC9emvicMi/eKJc7GKK4N2Wdp4bdsQmZR5Fps/G9+V9u3q9nheQ7j8YknnmhlrnXsO5fPY1mfKu1YyeRnGS4r8W5zOscZPlelTy/36zSEEEIIIYQQQgjhLiN/qAkhhBBCCCGEEEKYCWutT2YxMHtCRR5bkSYRyrooh6e0yjLU2G7KJm/c1A78lHyzzpRkUj5KmRVlXOMMONYWlKrzHN6P9gSTsfJ5KHszS4xJRvlb3pdyVr4/PsuFCxdamdlHTHa+KZa2Qz7jztqjksmiIsPmdWwHfr6fXbt2tTItMiaZ5nvmNQnfCaWXfBb2R8okaZdgHeydM35Zpm1iLBPl/RhHlIxyjKBElTBemMmGsWwZaizDFrF3zDGB0nk+P+vMd0CbisU1YfvweWktoDSd2DXnRMUOzP7C90lJL8t8tyyTypxLTFZ86dKlVqZUmXHELA1mq6UdwayIfJ+MFdaNscbrs49QCj5+Xo5HtGgypjiOmO3XrCPWvpUMMr1Uflt59xVreuX6S7NXVLLxmLz92LFjrUzLOOcvk+Gz7/S2MTGrwjhD6Kp7WX+0rCn8LecEs0Tx2W29MbZr8X60UvNalqHKtj+gXZm/Zfm5555r5TfeeKOVmVmm1wZVyfo0JTOf3ddYwjqW2Ps0G7fF6XZkyqqsn4ltZ9H7bi0eOZ5wjU0413GssPgdX4drPJ7HtQLXtLwHxwuuG774xS+28qOPPtrKXGdyPOWagLFp1qpKmVQy5rLMdmebcJ1gFlCbGyrfs1HUhBBCCCGEEEIIIcyE/KEmhBBCCCGEEEIIYSZMzvpk5/TS+9uK/aoiP6tkfTIofaJsn3JxyjkpBzMJHGXt47qZJM7sUhV5NtvFMjrx+jyfu7FTEkZJOSVqlLdRhkrpP9/ZuXPnWvndd99d+SzbIe9cspybVPq29RGLEcsGxb5DK55lCqKNhu/cbDQW77QHmfyb9TQJJPsjn/Hhhx9uZT7Xun5nsmfLcGQWRT6P2TsZO7Slme3Nnp9jmWVt41jGuvFZ+Izj7Dur7sXrU6rLeOc4w7rNFWtjk0/b+ZZ1oWJdtBg3OT/nHfYpypCZWeno0aOtTDsS60kLws2bN1den33k+vXrrcx5jBJsSq3ZF8wWPf63ZV5kDFqmSdIrW++1LFUyVlgdzFJhEutKxkMb0xjLS8vIZjYaPivnBY5DfFZaBadkcarA9uZ4zOPsv5V1smVgtOxRlXWlZZYZn894JpxfrO/ZdVlv2u15L7YR3/FLL73UyhUb1JS14qa+qWyttrRMpuzDZlG1rRrIpmxQpHKditWVZT4vj7Ofsi+bFYm/5bcn51bLREzG8c61OGOBscn53mzyn/3sZ1v5ySefbGVaSe1bomLzr3z/2xxayVJK7Hwbi+xvEGZjM5YVySGEEEIIIYQQQgh3MflDTQghhBBCCCGEEMJMWGt9quxoXtkluyLJppSLMijDdlKvyLx7d3C3+1JCduLEiVamDYrybErZTTJsFodxnUx+zN+zHe23ltWCO61Tikf5Gc/hTuC0uPC3bC/K7JiVg1I3yuoodavYuyqZxowl7JbP92ySS8uQ05uxxOSaPIf3Ypnvzd4nZa7sO7TUmD3OrDmWfYj9zixd7NeUm1LyOZaJmt2AMk6OBZSV8pn5DCZtJ7w+y7bDfKX/VzLC8HmtjcxKaRJewrGL78YyHs2JyvximVYsjirZW3ol3zYOsG6MOxtPKHlmv3vsscda+a233lpZtvGBNivCGGJ8EMrjh2Hr/MIy5ybaBtkulmVnp+aR3mya9ls7buNY5TpLwKxg1n6MBfbPGzdutDL7vMnYK3OuwXfCvs05yKwQ7LOWAYnPSPhbxoqtz3mcdbM15jB4pijem/MI68p2ZJzy2cw+zXWD2fkvXrzYyhwfSCWbV+UbaTuOL8GKSOwdWrZb0ts2m6Kyfq5sKWB2W7MfMm645uL17buK8ybPt3uN78GxgPYl1unTn/70yvLp06dbmZY2rgN4HY65Zm82W1MlM25lSxCbMyp/g7B47LUlRlETQgghhBBCCCGEMBPyh5oQQgghhBBCCCGEmfCxsj5VzjFZ0JQMA5Xds/lbswTZTswVKFGjtIwZLsziwPua3JTSS5aHwXfr5v0sYwftJRWZO+Vnlh2DclDuCs4yn9+krTyHGUQsm5XZrzYlbVyytJtUZJkVeWwlpsyKZbYOvkPa5nh99gXaK9h39u3bt7KehO/TslYx1tinGFt8xrFMlHU1CbhlpbJ6s70oBaZMlGXet5IZyMZW1pn3Zf1ZZhtxjOJ7Zbvzt7y+7fzPvrKETBZmQ+Bxs65S0luR1RsVC4vZ11gHvgdmZbp8+XIrM8MD+w4l1nzPlrmL57A+hH2HsmvOxZz3xnWizZD14P16ZdK91gZSsSNVzmEfMnuqWUXYPjaf2niyNCrvhG3GMYn9n+3EOLW4610/V94548XWVpZdxNZ9ZtW1+jATolmP2R95r2Fwqz77JOOZljPbVsAyHvJeHC94PrPS8BnOnj3bypxzp8T+prI+bcpeMSdse4be77U7yZR3aHZbxoFlIGR/ZKxYX7AMU+Prc83NcYFrPMYgz+e2BcxEZVthcFywbS4qttXebVkqGRUr20BYf7Xrk0qcLjeSQwghhBBCCCGEEO4y8oeaEEIIIYQQQgghhJmw1vpkWZkqO4vb8YqtidjxisyssvtyRcbLZ6f0+vDhw61MSZfZvlgHk/NRYja2PpkViJJRSt94P1qfLOsKJaCUtFLexjrx+teuXWtls47wOKWnfH5aq2hrYTveunWrld99992V9e+VwJElZH0ilWftPb9SZj+nbNIsUfwt+yzfId8J+86hQ4dauSJzNsmz9Xd7FvY7Ss1poRiGrf3WZNuV3fwtM5zZFSkTZXtVMvARe36zh/AcPjvlr9yxn++b53NMY1zTVmmZHpaAWSHsndj7Mdkzr2l9h+/Nxkiew+uwzHMYs+yPlpWGUmjWgXYJXt+sJZRLs004n4yz0jDDi2Wv4D1s3WNZdipWqd7sI/Zbk1vb+yOV5+J75Vqksn5awrxpmUBsvWrWnEpGxcqattJmZlUwbI7mWMt5ieOuxQGP06bAcdoyKrLdmPFtGLa2r4077Ie01fO42SZtnW1rYz4n68Dn5DOwDpW1SOV7Y1MZ5ZYQj4R9hv2T79wy2c6NitXVtghgv+N8xy0izGLMeZNzrsH7cl02DFvXuIwvs7HT4sQ6ccyyMcXsTvatyraozMWk8m6sXLEW2lzC81m2+XrLb297RgghhBBCCCGEEEK4I+QPNSGEEEIIIYQQQggzYa31qddSQUzeWZEXVbKUWCaaivXJpEx2jkmsaX2iTMwyelDiZPelrHQs46KVgLIxSgP5G8oHaWWiRI2WkldffXXlvWhr4vXffvvtVr569WorU0rLtqOsmm1HixOlbpTPsb34Dig9Zbl3V/ClUZHdWT8n22GDsvpYe7Mvs49cunSpldkXKPs0+T8lmSZnpq2H16R9h23IGBo/CyWqjHnGkWUDMnsJ68TjNvZVsviY3YvyVI4PzOjDe/F5eQ7HnJs3b7YypeOU57LMtqJMn89bkf7vNGz7XnuvZUupzKcVybRJj63vMJsZ44Uyaf6W53BOZFZEWpEuXrzYyrTVmuXEoHR6bEvk7y0jEvsVxw6LTYupKTaoyrrBrGWWTcMyirGezM5WsQP12irnhMWjZQLdlH2e9GaHsT5iWZ/M9sjn4hqN8xrXYuxTrAPP55rLbFZcJ/K+w7C1T3Ie4f0s+xTjjtmgWG+zPdtWBZz72b6nT58eVkEbFNfule8Kw9ZSUzLvLg2+H45/7C9Leb6K3dzi2jJqco4yGw3PsfGB8chYHteD629+b1pdzW7NcYH14BjBNWFvlq9K/6+smVlnwvrYmrzyXi17n7GMnh5CCCGEEEIIIYTwCSB/qAkhhBBCCCGEEEKYCWutT6SSyaj3eEXiV5EN9u7kX9n1mXWj5Gz//v2tPJZYr6oDr8PdrCnho+SbdaBMbBi2Pg9/QykXZWO8H6/Fe1MWT0uRZWChRI02h+vXr2u9P4LtbtL2o0ePtjJlfJR5s90pw6X83e5ru3YvzQbVa2Wyc2zn+U2db9J4qxv7LPsU5YFmtaBlh33cdp1n3LBM+TPjbJ3thv9nGZEYF2wLnsPrsB6WXYJwnOI12UaMEbM+MdYYgza2mESWv+X5LHNsMZk+6ZXC7gRmYemVvdt8ZHHH89mWfD+sD/u22WhojWV2FPZxxjL7F8d1Wl1Zf86nX//611uZ8mobs82iNLZKcb5gu7C9WG+zjvA6jLXKmsOwvmI2M1pT+D74zngdtgXLfPdmS+Rz9Y7jc6WyLq1Yn7bDQl25DuPO+nLFEkKLscWy9SP2F85FlqGF8x7tsMOwNaY4BnHM4nzB82mNZvzSyse24DMwvngvyzzFcZDX57OZpbe331TWqBXL4dJi02yatubkOZXsXjtF5T2zzuzLXPdZhkReh8c5R7GPWMa68brS1sqcdzg3mZ2HcW3vjM/M9mLmKtaBv61k0rKsmbbeqoyntiYz+zrHHLZ1rE8hhBBCCCGEEEIICyJ/qAkhhBBCCCGEEEKYCWXrk0n2TOpbOW477dvO7iYjr8jCjUoWG0rOjh07tvK42Ywoa+Izcod4PiMtR5SxDYPv3G2yOcpMaWuifJpyLNu1n/YiXpPHTWLNetIqZe1FCfeRI0da2bI+sQ6Uy5s9hMxBFvlxqUjRK1lmjIpEvDd7RS+UD1++fLmVKaWkNJKyaB5nHDHueH3LrMJrsv+ue0bGEevKdqR8mrFgdg7er7IrPi0lrA8zKzGOaDmkzJvnWCYaYuM168/xgW1tz26ZO+aKZRUwCa3NZZVMNCzbmEr4HiiN5lzG+YEZmmiTtYx8Zq/hPHPw4MGVdaPVkfMMY5bzg80VzFI4xmxNzG7FGGH801pJSTqlzhwjKplfLMsh78X3wXfG2OS7f/PNN1v5ypUrrWw2YbNVViziS8j0RCpSd1LJnNhL7/xo/cWsu8TWhixzPuH6lr9lv2B8MQYZ75x/+VvGx/g3jGGzQfG49XnWyTIx8dk473CM43HGJudWjmt8r7SWsX2tDpVvqt5tI5aSFWkV7Oecy+ZscerF3rlZkyyjIteSlbUHrUv83mSsDMPWTGqcd1hXxgjHFLNVM5Y5bzJG+L5Zb853nKPNutmbXdHsUfZ3h4o9iuMJ1xgcB9m2xnIjOYQQQgghhBBCCOEuI3+oCSGEEEIIIYQQQpgJa61PJs3qzbxhEm5imZLMEmXY7v12jsmXKNEyqSNl3pRiWUYUStQoB6Nlh5IxytKGYesO2yZxs6wevJZZoijvpAzMZF3sE2bLMssDn5nvibI8yyBj1hTKX3mvyq77S5NOVmR3fA+V+K1kd+ptsyntyt+yL1POv2fPnla2rEeUVFucmv3OrCLjDGO8ltkrKpYl3pu/5f04dvActgWtE+wrr7/+eiufOHGilSnL5DMz1nicdgmOLcwKx/HOxgeT+dr4ZvLUudKbkaMSdzxOWwHficUp288yazDbmGUhM+sE5dMcj2mt47ulNJhjPOdZs2BYZquxhLsiXa7IpxlfLHPseOutt1qZ8mbLzEhbE5+BWbIsKw3fGed0ZsO5ePFiK7N/TBnTp1hqd5re5zOrlNkuptiBK+tSWg3M2mBrYPZTjs2Ma8vKwjGeMWhZlQivOV7T8t6WKYm2Z8a2ZSBl/WjfsGxVrB/HHcYg453zL9eojK+rV6+2Mtud9eeapmKPMu7GjGzsJ+yHFWvm0p57HXz/bAf7DiWWhcmypo7XtGxr/h/XBGbJZqwxxvkM9p54X8vORns+1/pmdeS9bPyy7yiLQbObst05PvBbm3XjWt2IoiaEEEIIIYQQQghhJuQPNSGEEEIIIYQQQggzYa2OvDebDM8ZZyy63fkm17Qd0ClT4r1MJl2Rp1qmJ9oCKJOkzMpkzrTyEJOOMzMD6zA+j//H5zFpLDNq8Hlo52Db8Tkpk7XMASZPJCbj43FaMyixo0Scz0hZHZ+FctOKXJIsQcJt0mjb3byyGzrZDrvYpmxQjDtKZBmD7ON8/+xTtM3xOOPM7GOUYQ7DVksCY4d9lbYryrYrNjbbtZ9lnsN4ob2Edidm5uBvmbGCUM7KZzl//nwrMyMIz7GYsoxUbGuzuMyVXmtIJR7NamGyXMsqyHuxz1I+zOPsXzzO+YdxxNixMmOCcffwww+38pkzZ1qZY7nZbWlPpg1oGNwux77H56dEmf2N8wvjiFms2O6c48zqa5Zem09pr2CsvfDCC638xhtvrDx/Stai3rXgXOnNwlaxCW8Ks7AwRhiPtOCYvY/9y+wkloXPspFyHjh+/PjKe9kakGPFMGyNO8YpbUGMHa4PaS+iPYr1Y73NXkTYJ3h9xjvHqSeeeKKV+Q4ee+yxVua8RmskbVm8F+ffSrY/6zdLyJBoWHavStaspWDrPj4744M2IMsmals+sO8zBi1D7zBsbV/rhzzOe1gmZltPc43HZ+PYx/nXskHxW7WS+dLmMsuoZ1uxWKzZuorPxfWQEUVNCCGEEEIIIYQQwkzIH2pCCCGEEEIIIYQQZkL+UBNCCCGEEEIIIYQwE9buUWPest59MCr+NmKpuumBo6fN0nDR22heavpi6Y07duxYK3O/B3pv6Z2lN858xIR1HqdFW3XOMGz1uNF/Zyl0uY8APb+21wQ9kNzXgj47889OSVdpbcrUoqyD+RZZZ9vvYopPfwmY77WS5rH3ve2UL5jjAFMAHzhwoJUtPaD5uenbpV+c4wyfl+kBh8HTCHJc4LUsTTKvw37OuONxxgXjndfhcRs3LD0560+//8svv9zK3DeAe2xxfwzbD4KwPktOOVqJNRuHbA6tpOq2a9KHzmuyP9q+RLwX5zXOrZauk32QMUsslSXjkfHBfsrrW38fBt8Hg1g8cu7nvbknDud4lhkvPJ/72FgaesL3x/f0/e9/v5W5pw/n+u2OlyXEI5my35rFoF3fjlf29WG/YJ+y/Z1sbmE88pqMXztObO9Errn4jOynnEO4hh3/3vZX5PqY+9DZXjS8N+egyn5DfDeMO45fbHfu0cN03pW9Inn9s2fPtvI3v/nNlc9i+48YS9tLylLD8/3bt+ESnm+MzeO2pyb7oLUJYXtW1gzj9QP7uY2VrIftBWn7tDB+OQYxdjg+cBy0dYPtuWr7HNnfMlgfawfbS4hjMZ/X9u0dj4mriKImhBBCCCGEEEIIYSbkDzUhhBBCCCGEEEIIM6GcntuOm9WCsiuTqPXaZSp1M+yaloqU6fgop6KsmHJQSsD27Nmz8reUU1HSaBaqsVyc0mvKw0wSyfNZpvySsjG2qUnBKym2LYVZJfUsn5lyVlpcKDHl+6O8nJJXpmvl9U32tgQZpdXR0t9VLIebSsO93fBZGI8mi2U/ZV+mJYr9aO/evSvvxbim1WIYtlo1+A5o52F/tnSEZv9h/fg8/K1JLikxpXSc9kDKVk1Sfu7cuVZ+5ZVXWpnjoKVErKTnZp17rQVzwmTGlRTHlePE2tVi3MYEzkEcazkf0Yo6TrN7u3uZjYv1ZP9l37RzWObYz1S9w7B1jOB1zUpssmfaHSl1Zpp7zjVcT5htm/UxuT/n6+985zutTLsT7VSbihHrf3x/S5s3yaZsSptqb7Yl+x3td5x3zOrIvsy+zz5idkJL2815hnHDOZH9mv2d8cT18PgZLDYZa4TPxmeo2EIq75514zj42muvtTLXz7ReM4W3fRfxub74xS+2Mt8B7Y0cBzbVd+eE9X+u5dknK1bEOWN15jPa+Yxl9heuH22daNtIjGOF/YdzmVl4uLbkfGx2TcY4780YYVuYVZ/PQ6sU4frG2rey1QvrzPocOXJkZf05PpIrV660sq2ZSRQ1IYQQQgghhBBCCDMhf6gJIYQQQgghhBBCmAlrrU9T5Oe2gzLlVDzea52xTFJ2jknsaX/gDu6UdlPGee3atVam1ItQ+kSpF+VqtBfQBsV7UW45DFslW5QDsh0po2K78Lr8LZ+H8jZaHuydVTK5mPzd3istGGyvt99+u5UpnzWJHWXqlADynVk/WxomP7cYtPPvpMx7CqwD5c98tzyHUk3amojJMCkZtYxnY8wqyL5NuabJSvnOCOXWfE7GhVm/CGOT4wZlom+88cbKMu0xJt20fmbxbtmJ7Py5Yn2jYmXqtf32Zl20tjSLE+cHns93zhjZvXt3K7N/cSzne+aYbfJsszeaxXCckY19lb9hPRh3vAdjk23HcYS/5fm0YHAdwHjkXMznpM3h2WefXVlmm+5UNsM5W2RXUbEibuqZeu0pjGWuPymrZz/nnGXZUbmOY1/jOZyvaBukjYBz3zi+PoJxw/XturnSrNqWPc6sB5X1TcUWZO+e9eE648UXX2xly2zHMY5jAsc7zum09jMDJd9lxR6zZBsU5yPWnW1p59v2BnOm8q4ss5tdh+ew3Rg3jC2OD8OwtU9yPmZ83bhxo5VtPGKZ6wazsZnFiddhvWk95hrF+grXt5yLWWY7cmzhO9i1a1crM0s0z2eZ/ZJtNd5GYRVR1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEmlLM+mf2l9xxiMlSrQ+W4QRkYJZ2nT59uZdpoaCOg/JDSUO5Sb9Iyk0/yt5Q0MmsEd5Efhq3SNMrSeJxtSmmZydwpYzUpODH5Xe/7qEhPzbLE9rKMCGxryogtI0LFljBXzIJWsThZNpalSNr5ns1ewXhkn6U8m9Y6xhZhe45lopUxkbJn9lXaIohJMS07gslN2S4sW6anF154oZXPnj3byhyb+CzEJOiV7DD2vDavzJXerE+VtrE+xf7ce1+zQfHdsl9w7KTFifOmZSdjfL311lutzLmY4zTnPo79jDvWme3Aug3D1hgxaTjfAW1NlHZzXOD5HF84pxiW3enSpUutTIsTM79w7t6O7E5TzpnzPLGKijVpyjzYm7WN/ZT2F8rqKZ+3DJyMF5sHOI5aTNGaw3pybmXZ7La85tiix+dhvc3iZVapO2n54TNzXLN1P78NGL9sL66rmUWR3xtmYd7UN9JOY99KNlea5Xpp49AwuI3Xsu/yHM4h/K5kmbHMeGT8jbOrcY3KOZVzItcHdi2OL7YVgNmd2Ict4x23LFmXxeoj2D9YfzvHxlmew/tyDcDYtz5tNjYSRU0IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmwu01NyuoSMtMIlSRK/bKTe2alJNRinXq1KlWpmyKEiRKGl966aVWZkYMyrJMrkbpE2WMlEeZZWNsr6A8knI3y4LD821Xbd6D51MSRokay2a5qchQTc5ofYXPRSsapfMm7yOWCWkpVp+PMFlrxQZllrWlSWWHYWsfodTT+jv7C2XIZj9i/FJ6yewu4/uxrSl35BjEtqbNkljmHl7H7su4pmXp3Llzrcz24th04cKFlb+t7IpfydZk2T1sbFlavzTbkc1Tho2LPG7ZfnrbjG3PDC9XrlxpZWZX4BhC+yxtCpxbOZ9y7mI/5fhNuwdh/6UcmzExjmX+27K7cYxgW9CCwkxMtEGZrZrvgHM8pd20gdHi9N3vfreVGac7NTdV5vElsKk1Z++9DLalZSNlvFumFGYyYd802b7ZRrjuO3jwYCtzbch451jBvs9Y4W/HmZFYV86DPI/PxnpXtlfYDixbIrPLcb1qtg6+D74njokcKzkuWbYwsrTY5DPZWsPWPsT69pypZGzk+MBYMeut2eIZN4y/8XYXzGrEudks7Vwrs35m1eb74295Pu9r1i/2CY6bjB2u12ktJIwvi02Ov/x+4LthmTZqZtBct15ZRRQ1IYQQQgghhBBCCDMhf6gJIYQQQgghhBBCmAlrrU8mcbJzCOU/Jmk3ualJ2nrlt5RHUa5JyTRlR5QyUaZEu5PJnSqyKdbTMrFQ5knJ8/jflV21WQ/K2ng+Jaa0Odh7NbmpnV/Zkb4i62f7so1og6K8jfJHltk+LC/NAmR9vmKFMFtJJQvG3LBxw7JjsC+YVY6ST7aPZUgbhq2yTJMoc7zguMO6mkycMk5ek/diXNOy8txzz7Xy888/38qUuVcy6xCOAxUrXWWstwxGS6bXamHz45TMHmbxNFsW3/+ZM2damZmYaAOk3Jr3ohWC0mbaJfhbjt+0PjEmOEdZFkTWbRi29ivOoWYNZmxSwn3kyJFWNiupZaVhXbme+LM/+7NW/s53vrOynjam30nulswyZFNZnKYcZ3/Zs2dPKzMDGtd6XPvYOs7WiZwH2ae4/rR13OOPP97KjF/GB9fGfEZm6RyvablG5/hilli2I3/LmL2TfZL15BzNdQbryXWDrUXtPfVa6WzcnyusO213HM/ZPzl3jNdjS4PPxZjls1smU/YR/pbff7Y25pp0PM9wXLC1Ge3Q/D3HBdaJccGY5bNxLmdd2T94nP2c1+d4xNhkPc2Gb2tUnsNx8Pz5863MsZv2b66BOHZbNjcSRU0IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmwlrrU0UmbRJuyhUpF7LrV+5bOYcyKMqyuPsyZWOU/9NGc/bs2ZXn8FlsJ22TvJo8lbYDSrcocx1fi1Iu1oO/N4kXJd8mY2VdaRHhb61smQnsWXrtUbw+LWpsL7O78LmWnMmikunM+ifljhV5pN13DlTshMzGQPkhJYpsE/YXSk85boztFZZ9ie3IHek5PlJWWhlfLMvbjRs3Wpk2ih/84AetTEsU62ZZFmzH/krGjd6MfZWsFjaXzJWKpbJiG+3Nnmfvx+w+LLMvcG7ivWhr2rdvXytzruQ5zJ7EujEbFOXu7Gucu21esnYYBn8HlB8ztgll27wuZdu8t8WyZXd69tlnW5nz19zGWbJkG9Sm5vze31ofZL+j5ZZrV7PXcCxnTDEuaCey9R3HXcsayvvSAszrsO9zLmKcMaPguN779+9feV1aGGy9Ypn2prwnUvmt2YRtrWb1t3tVnsuss0uDdefa7OTJk61MG+zdZH3iGtXW8+xrjFP7TrdvMv52vLZi3LJOjHOOWYxNns/7cd1sGYc51rBOXNPzOfls7De8Ps+pZAS2NqpkJaZ1i2Mx+7FZW40oakIIIYQQQgghhBBmQv5QE0IIIYQQQgghhDATPlbWp4r01WRElUwgJgUnJuszeRHLlGhZNgZKvk2GbBIwyzJBSRelWJahiOVh2CoBpY2Cz2AWIT4zj7O9KN8ym4NleCEm0azYACrnU7rGNjL5Y8WWtjTrk7WNZSMhPM72q2Qum3M7Wb+wcYZScFoZbEd9xso6ewXjiG1H2Seva1nJbJd7ZtFgRqcXX3yxlWmvoL1xPKasupeN++w3NkZXJOgVi4T1rcrcsNNUrExT2qZiJ61Yg82mw9+aFffy5cutTGsS7Qtm6zDrB+9LuTHr/NBDD608vq5fWFYIk4lXskFV1jGWFeLb3/52K1fWGdvBFJtS71ptTvTatrbDzmVWRM5HbGPaCd94441Wpu2bfZxrQ5Y5/1BuT0sB11C0lnB84JrW1glcq77zzjsrn2UYtm43QHsk24gWSo4jvBZj075VNvUuK5n5KvYlvrMKZnGfMpfMFfuO43uubK8xZ9iP+Iy0ErPvV7KBmYWX7cnzac1hzI7vwXmTY4fZmjiOmH2Y9k5aJflbjh28fsWSz75iVNZqFu+sJ22oPJ/f5nwHfBaO+1rP254RQgghhBBCCCGEEO4I+UNNCCGEEEIIIYQQwkwoZ30ilR3KbXf23l3VK+dT+kR5kWVyoQWJ0kvKryx7EmVNvD4lZ3x2SrdoWaBsk9JTsyiN783fUO7F39hu4LZjNnerNouIycAqmcCIWTxMGmr9gNdh2xGTxpl0fgkyyortyGR9lN2xT95///2tTMme7TY/NxjX169fb2XGmmVbYptY9hz2cbOVjf/P7By8FuvNdme9aZ145plnWplZY2hHoTy9kiHMpJ6VbH9TsFizcWYJsdlrceq1O1Wk95VMI2ZhqdigOK9xDj137lwr08pgGdYs8xhjyMqWjWHcnpZBhBZF3tts271Zspg58qtf/WorUya9U/25knWxcn7vdXaa3myTdrxiPyS2bmSmM9p6aBdgxjDakWhFZFyYdZfrO/ZZi0f+lv2UdWNGRbYP5x9aKpjlbVxXjimsK8cdW9OaDaY3m5JRsTXZd84UO/CUTIFLw7JZckxlf1t6pieuv/iNxbUorUk8n7Fv9mGWGe+WXXNsFbJvK7MlW2ZS3s+yJfIZ+F5ZB8v4aBmzOG5UbFA2v7P+LHOM47PwXlzb2/uuWCCjqAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMWGt9Mkx6XTnH5H5TMh7wOpRx8pq0EVBKx8wMJvus3ItSLJOlWVYdk1nRBjEMW2V/vB+vRRmVydX4/HweysyYvYPtYvK2XltE7zmVDB8Vub9RsVnNicrz8bhZeHj85MmTrUxLlEklrT47hckSzV5BCTflioxrkzyPLWBmP+TvLdscxybK3Gl3+tM//dNW/t73vtfKFbtmb3+eYoWYYvUxWbvZXeZKJevIlMxXdk5vFsVKZkazEVCazv5LawOP09bBuYsxyHtVZNfGeDysWBY5XlCWzHvTwsEY51jJrDx/+Id/2MovvfRSK1vmtTvJpsaEJcyVpNfmUpnvKtdkrLF/McPLnj17WpmSeWZ34nqVfdDWkGZdNLsE5yXOm1zTWqYyns86cBwYZ31inNO2cOrUqVbmeMEy25HjCOdis2rbO55i8eu1I02xQVWyrc05Q+cqWEfLkEt7nPXzOWNbO3DbAc5RBw4caGXOM4RzMePD5jq2J88Zz5uc+xjbnIMtoxN/a7Yr1oNluw7HCvtOtgyqxLY2IPxtxYbPOnB85Dl8N1y3M/uVEUVNCCGEEEIIIYQQwkzIH2pCCCGEEEIIIYQQZkI561PF2mKyoIoMv1dmWJEBUs5MySjLzJ5UkUlSKmXWCcpKKcWiRI0yarNmjKVulFTx2Sibo6TKdqum3I33owSLz/DAAw+0srV1RYJvVHbRr1jRTMpvTLEl7DQWX/ae7TizsfzWb/1WK7OvXbp0qZWZdYJYxq07SSXDGLNJsL9Y3zEr4RjLOsHjlPOyHRmzr776aiszu9O3v/3tVqb8l3Wq2FAr42YlfnvHZbMvsa1pOTNJakXyvdNMsYJNsawZvXO3jbs25rD/cm5lFrJDhw61stlYzVrIMu9rWZ/Gz2g2Y87NlC6b7YrPxvh9+eWXW/nP//zPW5kWRcsQcSf5pNqdtoOKzcWyCtLOcOTIkVam/J+Z1JgljH3W+hHHUa5R77333pW/5drV5jg+L9cMFls2B9JCNQxb1982HzMzlmVnM9ss6Y273vNt7K7YqSpMyRK1BNge7Cccm2kfWYrdybB1GS19jM3jx4+vPN/WqxxzCMcHwm++cf0Yd1zHMs55XftWtbmV38Z892aH43XGdsqP4LhjWz+Y3bryfcX24bhsVnBmwaxkoSLzX/WGEEIIIYQQQgghfELIH2pCCCGEEEIIIYQQZsLHyvpk8naTfW6HLcLkSLQUUVbJ8ymhsp3DTUJosm2T89PWRLk05XwmO6cUdhi2ZoR57LHHVj4Pr8v7sa5sI9qaKD87duxYK1PaXsn4NYVeC9WULDNLl07eDttJnVJEyhWZgeLf//t/38qvvPJKKzP70IULF1p5DtYnPiNlnJSaUw7KcywzDPsOY3xd1ieWeS1KIq9fv97Kr732Wis/99xzrXzmzJlWpu3C5OZT5NC9lpteS6Ndk+/A2p3taTv5z4mKbWtT0vjeDCQV61OlbpbBkP2U/Z2ZazjnUAJMS4W9cytX283qSjgPcm6lHeXcuXOt/PWvf72Vz54928p8/ilZLaewHXanpdmEyZS629rPsqtwrmFGo6NHj7Yy7UiUyXNurfQjs04wpmgbYewwXrhepZyfdWOZvzUbLtch4/Gbz8a1K9clbEdal2nV53NyTJmSYW1TY3Hv+tP6qM0fRu9WADsNn4nvmfFlsbYUbD3J7St4nP3avr34PccYN0sUsaxKw7A1bhmbLNu6kXOl3Y/n0+7E52E/YCzzOMcjjn18Zh7neMJvIXuWXsuhtTvfDc/ncSOKmhBCCCGEEEIIIYSZkD/UhBBCCCGEEEIIIcyEj6Ujs12TiUkfK7K+3jqYDNvkfib7JFZPSu8osbRrUtrJMiWmJuEety0lcZSBcWd/2p2487a9A8pHaRHhs1G2a+3SKw3ttU5U3pndqzfT2BIsUbZ7OmPBns+kpMwmxEwTn//851v5j/7oj1bed6ewMWTXrl2tzP67d+/eVrbxgW1o9iiTko5hnLJ933zzzVam9emFF15oZcpHacHo7as2vliWO6OSnc36nI3vbB+ObxzTlibhJhXpuo1zm8qQaNhve7OXsG+yzPGB8w9lzrR+MKY4/1j2OusX437KNuW8S4sT5dzk4sWLrfz666+38rPPPtvKzNRm2aPmTK9lY8nWp954sWelXJ0yfPb53bt3t7JlG2P/Yj+iNZZ91urGeGHdGDtml+C6lDHB/mtxbVsH2Pp8bEXiv3ke575HH320ldnWHC9olWK5Mnf0Wk83NW6SKXG0tBg0+Bxcd7FfsH8uYZ0+hvFIOw77tWXZ5XFuR0ErD9vQrIjcEsQyIw/D1jmb61Wu06wezBTL4xzLOE6xTpallfXhcWZH5pYdlUxwFVu1jSG8PuE75ljE971nz57b1o1EURNCCCGEEEIIIYQwE/KHmhBCCCGEEEIIIYSZsNb61CvbtixIttMzJUK2o3VFrshzKtL4XluM7fBP6SWf13bON8koZVbr7BX8Pa9LWZrJ2swSQ3gOpa68Jp+zYlebYpUivdmg7LdLtjsZJtMj7Le0Apn1gFknKKuem7TfdtGnrPLQoUMrz6EskX2fv7XxbTzOmKWI7UXppmXEoT2K40ilr06xJvVi9anEl8nFOb7x2fmelmB9srnSypuSzFesxJW+Y3Mxxwebf5mBge+Q51BizXMOHz7cyrS+8beVrIPjccn6GOORcxwtw88///zKMi0rlgVjzmwqu9PSbBeVzDkWd5w7aEM4fvx4K3Ou5HVoBWCZcwXHfq6/bJ619TZtv6wPz2eZMcgyY8Us/FxLsJ42Zo+fxdbBHCMYaxwXLEsQz2EsT7H4bYfd3sZoO96byXRpsWmZy9i3l7hON8sk45TjCeG63bayMKuj9X2ec/78+VZmXA/DVvshr8XvSsuqxlimjY1rCMYs+zzHDpuvad3kWMlnoOXKxiaWzXZeyWzNPmrbo3Cs4zd7pU9HURNCCCGEEEIIIYQwE/KHmhBCCCGEEEIIIYSZsG1ZnywrjUm+KYmqyOcrVoBe243Jv83iREmXSUkpGeOO5ZRBmfR9DKVclHi99dZbrcxsPZSo8dlYb8rG+AyUnvL92U7XU6wZvefY+b1Sz6VJQ4llwbK+RImiZWxh3/na177WypQes69tyvrUm32DULp43333tfJDDz3UyrajfsU6YRLusTzZdoxnzHMsoEWEknfb/X5Tkt/tjkE7bmMxx9ZKeQ52u9sxJbOMHa9Yk6Zk1TPLTuWaZv35/ve/38rM3GLZxpgNipYKy4plkupxe5rlkPfjccrBX3zxxZXHGadzsztNsXj0Xn9pc2hvvDDWKGPnPMJsmVw3MS44b1qWtIqF3yT5tPvQUmE2AtaNfZ/1IZZtrWK75jnj2Ld1I+OLcyWfjfM916W0zdCGYFkqp4yhletMyS7WS8V2O1fYfvyGYp+pZtucE2x7zmvM/GMZgYjNcZwHuc63rIaMd2YZpR1nfB6va1t12FYm/G6tZGcjNg4yljlmcS1NSxjbziygPIf35XXYL/nObF1i390cr/mejChqQgghhBBCCCGEEGZC/lATQgghhBBCCCGEMBPKWZ9MOkQsIxCla72ZLCpZnywbhcnn7ZpmbeBvKX+ldIuyL8pfaXeg/MzqaVaOYdgqiaOdg5Js2p0oCbPsBXxm20mcdTW52qYyKE2RaG5KqrqEneUr7cR3y2diP+T7fP3111uZsr59+/a1MrNE0TrQa0nZlDyf/fTUqVOtTGn63r17W9msTIwbnkNM8j2un1mWKOe+detWK1NiaraQKWzKykR6s05YhhJKQEllvpkrvZlzKhmxescnG5srY3alzmb1ozSYfZxzEeORVgb2C3texhAlwxyvKC8fhq2SY7NCMIsEM94xIxufoTemtmN+2ZStrrfcW4c5YbL3in2Y/YjrQEL7AMucK832blTannVj/7dshOzLlsmR7cP6M1Z6txcYP4udx7ry3hwjLMsjn5/xvh021N6se5VsMr0xa+P40uZNwviidebBBx9s5Zs3b7bynNfsfA9cP5vdic/Ifs04rfQFriu5vmU2J85146xP/B6sWEPtG5MxyLJR2VrF4toyrvJ7me+Az0jblNlKx9/kH2EZS3l9jrm0c7JuxnIjOYQQQgghhBBCCOEuI3+oCSGEEEIIIYQQQpgJa3VIZv8hlPzQbrB79+5WpqSKUmKzZphVqkJFWliRBPJ5bbdmyru4qz8lr9evX29lSrX57LwOZX6UvQ3DMNx///2tTAk425dyL8quCGVjPMcsWJZdY12mjVXcyaxPJgHtlerOFZMEmnXGZM987meffbaVb9y40cqHDx9uZetTU6jIhC1+Dx482MpHjx5t5RMnTrQy+y9jjbHC9uEO9/ztuj7O37ONGKeU6lLObZk/trtPTrn+lKxCtmM/3yvHH8v6M1cqlqLeLE4VG1TlfML7VuzAdk3LAsEx5PLly63MtYHJiu39E0qMOW+OsfGfcE5kn+Q9erOw3Um70HZYnHrLS5tDezOHEvZzWt25vuUYz35UGR8Ma3vafdhPORexzuzjrCfP5/VtDU8Yg5xDLYbG97CxhlYrtjXncta7YrWo2JemrEUr73U71sNLjkfWne/N1mZLgd9JnONoeWH80ppj227QykQYp7b2vHTp0srzx21r/ce+ARmPti2IWUYr4wDP4RrStnWw7Vc4TnF9b5ao/fv3r/wt3+XZs2dX3pfvgNe0rJZGFDUhhBBCCCGEEEIIMyF/qAkhhBBCCCGEEEKYCWutT5Q1mYSQEieW/92/+3etTJkSsyB9/etfb2VKuSiZplSSck1KmSw7VSWLhEm4TYZnkiXanWiDsh31iWVBYXaMYdj6bLRRUb7GtrbnoRSVUlLuem1WNKu3yct7JeKV324qW1Ov3HlOVOwMFVsE3y1teuwjlPWxP1cyVlidp9jRGI+MkUceeaSVKVfkLvq2M71JvqvSdMYmr2U2H7Yvy71tuhTs3VN62pvhb670ZvDozeJUuU6lDkbFomVzgsmWWaYc2KyFlEhTks1zaNngmDC2DFvMcy7nusQse1OYg93J+pAdt1ir2PbmSm9WK0rdmaGs0j97Mzr1Wp9sfc4y1+ScZxi/ZiMgjFmeb/2L9103ZlfWeFxzsK05z/Le1hZm9ZyS6exOWg7t+mRTc8BOYOP0umybc8VsiY8++mgr21YhjB3acfitxn5NWxPnMX5TM8sQr7Mu9q3/8N6Vb2y+M447lTVNBZuPbJsG1ofvhnVjRi7OAdxqgeMpbWzMdsn2IbbliBFFTQghhBBCCCGEEMJMyB9qQgghhBBCCCGEEGbCWuuTyego26Gc/+rVq63853/+563867/+66388MMPtzLlQm+88UYrP/PMM61MOdKVK1dW1s3kcJRBmUS3Ir+y31IOSruT7aJPKImiVJuWDUpth2GrTNzkoBX7ANuLdeXz0C5CKR4lvyxTDleR9VfsLpvawb43C8sSMOmuvf+KZNQk/5RKmuVhChXbHOOF2c+efvrpVmbWpz179rSySQsr9o2qDNOyalF+ascr0vOlU+mvJn3uzdi309h4sx2ZRnqZIre3rEc25rC/0xrM+eTkyZOtTJm3ZT+zMYHz7HisswyOnHdZ5jlm+Ta2O9NT5Tq9kvLefjDF5rzTWB3NjnnkyJFWfuihh1aeT8u42XF610QVy63Z+Cw2WTeuHxmntk4wqz3l/4xrzmkfJ4srz+O1aPPgGtXen80jdq8p9GZ6qsTyprKCLS02K3PQnJ+P8wa/6Y4dO9bKnO8Yv9z+wmxfjGXGI8cibmVw8eLFVqY9at16vrfvVWzPliHSysSsizbG2X0tyzLtZzyfawO2Hd8TM9Px3XPtwXtxLuHayJj/qjeEEEIIIYQQQgjhE0L+UBNCCCGEEEIIIYQwE8rWJ8qOaD2gJJISxW9961utzB2ULUsU5UWUNPKaZikya0NvlgNimXEoM+NxSp/MymASfj4724rXGYatsk/u4l2xTpgMl9JVPhttV7SomfR8SjaWXhvUlGxDZG5yyR4qfd6y5Vh70MrGvl3J/tFLb2YDjhUnTpxoZcpKOS5RZsj6mxyS7cZ+bc847oOW3YkSc5ODLyWTwaawDALWX/k+lpAV607aXCq/rWRWmXJNuw77NW21fLeMa8vQwvPvu+++Vubag+WxnNusT5xrK1bqXqZk/+q1UFXuZeP4lIwzS8v6ZHVk23Ae2bdvXysfPny4lZmZlOM6x3uurcgUe5ytG1k2ux7ryXjkWtrah+fwubjuZSzbt8O6tbfd2zJUsR60jjDGaU9gu0zJ+kSm2Am3I+vNkuFzsz8zOxLfLWPQtpi4k3AMOXDgQCt//vOfb+XHHnts5W9p1WeftW8sxhrnPn4jX7t2rZUt09M6erO0Vq5TiYXKeGHZnSzLHduR3zm0ovHvDmY/43Fud8I+yra2b3uz+RtR1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEmrLU+mQSY0inKCSk1ojXnd37nd1r5v//3/97KlB9S/mPSLF7fJPCWncrkoCZ55nUoLTMrg+1mbXUjZksZtwOlbMwaY7vqVyw/bFNKtiiNpdyL1/w4u/n3sCn5/hyyrWwak+6apYbHKeXjcfYpswhth92pIoekNPQzn/lMKx86dKiV2U8phTb4XDyf8smPI+1nPHO84Dhi8Xu3wrbj83Kc4RhN6xqPL7mtemXCvWMbqWT/s75t5YrtzOZTxgFjlrZaSoN5L8YT+wKlyrdu3Vp5zjC4fJp1tWw9m8oytqmMS71ZmSrHN3WdJcyhZndlG3AuoNWOayXL2mcZOCuxU1k3ss4cI1lnyw5DSy7LFeu8ZQrlcc5v9uzr4qmyXuW9+T7MKtub9aliiTJ6Lfa93wlT5oYlWIYJ624xtSmL8RTYv2h/+cIXvtDKp0+fbmXGLG0xXHPyGTlv8vuM22AwaxDLtIZVvp3XYX3JYtvG1soWDLaG4G/N6sbnNJskYfvSBsUtFTgHcNzkWtQyI3N9y7GLax1mkjKiqAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMWGt9IpQjcedtls1qQemaSfZ6sx+YhLKSfaiSscKyDJklxH5rx012brtZD4PbKNjWlZ20TdLJa1KORUtJRRa/KXvMlHPs/N4d+OcK+3klq1HlWTeVHYZsKnPNvffe28qUkjJDBzOVcVyqSCYtVioWs2HwDDeMWcpVKYPcbgvhnKE8lW3NsYiy1SXEaSVbwk5RGbOnZCOx8ZX3YnZB2pTYFxizXD/wOOPGMiqsg3LlSma73ufvzV5h15mSialyL2NTWWnmhPV/y9xkax/K281qU7HDE8tKxPvyHM5xnHMYL4TnmITfYPvQ9kXLIZ+dfceyuVUxKwifhxZK2kuYtev69eut3JuZtde2bWyH/ZXcLesHsyKaJfZOwv7MNecTTzzRyl/+8pdb+eTJk618/PjxVmaccn3L2LRvT55DSxT7uF2nyqbW7pU1UO86yezwthWLnc8xi+PaQw891Mr8xmB8cfzhWM/7Xr16deV1aEurjInzX/WGEEIIIYQQQgghfELIH2pCCCGEEEIIIYQQZsJa6xPlUrQM0BZDaeE777zTypQC8fwpWSTseK8Fya5TuZdJUitySLOrUJZl5wzDVrsE30fFvkUs2wUl6czaRckW5Xpmv9oOeiWmld/eLRmgKOGnpNeeqdLnSW97TJE38hzKEpn1ae/eva3MnfZpf+iVWLMNiT37+PomS2XMWla1pWVkmIqNpxU76N3YVr3ZQnrnrN4sIpsaK8zuxFizeYwyZLMD0/phWe2GwS0o/M2HH37YyozNTdkSK+/AjldsTbbOYJ3teCXuyMfJhDd32K9oUT1z5kwrc345d+7cyuuwv0yxZlhsmsWW8z6fhbE2pV8zbngdy2RosTnu7+xLZtVm/RinXKNyHWAWaJZpobLvB2OKRbyy5pxi7+0dZ+YE3wO/M/g++Ry0lWxq/W7vh2vRw4cPt/LnPve5VqbF6dSpU63MLIe0cXF8oMWSML7Y3/mtzXagpaa3X6/rI7Z2N3uvnW/rCbMvcdwxm3TvdQjXJXxPrD+zc3FusAzQhNZQvj9mrOSYZkRRE0IIIYQQQgghhDAT8oeaEEIIIYQQQgghhJlQzvpEaQ93vCfHjh1rZcquKPHidShvs4xRJsfiNXvlw3ZO5XglI0zFLmF1Y9vSNjEMWy0V3Fm6YgcwiSnbmpJW2jRYtsxTvTI7oyLR7JVeV7JvTLFW7QTs/+wzJh+lDPBOWr4qkkmrD7M3UFb68MMPt7JlbrH3zP5uskpeh+25TpLM31BO+dZbb7UyZZMV6+LdSiW+2HeXZrWwuak325o9d2W835Q91Ogdd03mTVttJaMHf2s25HHd+DwcLyhnZzxaJjKjYlPqHQdJb/YZ6zdmfapYMCp9dMm2RNadFp7nn3++ldkGZjHmfDHFGm8ZBtneXANyzqGsnv2a60meX8nYyXM4NnPNSGsY16psz/E6sdIPeW8+M+0ftD6xzBhn7FvfnpKxr7KWupPrzKXZ+VlHrv1+8zd/s5UPHjzYyq+//norsx9OsaDZPMVv2yeffLKVn3766VamRYYxyGexbGi25QW3DaHF6cKFC63MTE/8Jpu6ZUGvralCxUptdnhi2R/tfGtrHiccNzjmmNXTMu/ye5ltxd8y45cRRU0IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmwlrrk2UHovSREkeeT5khz6nIREklI0avXHc7JIe9dhI+O8uUp453g6YMrmJ9qrQdf8syd6t+9dVXW5mSX8q3NpUdo/ed9UpSl2BrqlDZPZ3PWpETTsEkw2ZHorSQv6V8lLuwf+lLX2rl++67r5VN2t9rRWRGCJN2cgwcY2MZd3qnbHLJNoGpVMYfwvdhu+vf7fRmd6pkfbLrmBXC3k9Fwsy+b+MALZyWPcfKjL9xH7GsUZQl05bIec2yS/SyKev1lPnL3mtlzWS2tIptZk7YPMjj6/rSR/TGXSUeK1mPWE/Lpsp1I+0bnIv4297sq4ybK1eurLwv16dvvvlmK/NbYHzdyhjHcYHPQBvM+B4fYZkWK32id51pbCobX+9vl4CN57Q70V7327/92638n//zf25l9nP2Q75bzjX8VqUV98iRI618+vTpVmamY9aHGZ3MOsN1Js+xfsdtJzhH8fiUdeW6b6OK3WmKVdBi0J6BNiXLhGdbrth6gmMC3439nYKWUY6DtqUC24S/pT3TtpIhUdSEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJpSzPpnsziwvVq5kapiSrakiv5qSEcPuZeebZNhkZZRZUYI9DFstZ2z3CpV3Y/JWuxdl5JuS3E3J4FU53ySGU3Yy3wlYR8qzTQZIKpLeXuuE2Z1st3WTfXIHdNqdmPWJ9ijKnClhJRZTJjmsyIcZi8OwVd5KiSrjiHVdmmXgTmDzxDrL2RypZPghlfHY5pTeOlRsgFY30jvecxyoZOHj+WYrNKuIZYwan8exgPHMcu9z2jhotsxK/5iSJarXMmf37c1oswSqWcNuR6WNe69TuSbnfbNCcE7kHMVyb904HjPzEqX9XDOus+lPaSOrB+OX64zKmtbYlF28km2qEne94/USYrNitWF/Zjaof/7P/3kr/97v/V4r/9Ef/VErs22YxYn2pf3797fyPffc08q0O9FO+NBDD7Uy5yxe07L62vMyXmgtZHxxa4reDKLVb69K1qfKNgd23LKwWXZCti/HEcY449q+B3ic75jWNWbqoiWKbc1x1uxt/FY5cOBAK9NyxXsZUdSEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJpStT7YLMpmSLWJTdiSTCU/ZMb13936TXptckXIqSt1ooRifV5E49rap7a5vEvOKfaMis+uVf/ce75WOLyEjT0WKXtlJ3a5px60tKUtk2aSelASy/IUvfKGVf+M3fqOV9+zZ08qML8oGK/HFfs379rbnWDpNG4W1i7VFbxwt3SrVmx1jyc9bGfN6rUyGSeN7rYsVa2RvVgdaM1555ZVW/uIXv9jKtD1arNDuwRik/HldXU26zPpRlmxrnSl2XRtD7R1v6l1uKqNi7/XnxBwy50yxp1SyiNJia1lZp4yvfOe0GZkVft29prwD3oPjAi0inH8tM8uUdf+U75beZ59iz19abPL90J5imXNojd+1a1crf+Yzn2nl8+fPtzKtT7yOZQTi8aNHj7Yys0TZus/sO/Z9ajZcK1foXcOP/202JcveyuP8rV3Tvh/GdVp1fTtOCxK/EzhW0tLG87n+4NjC75CLFy+2Mq1u7CsnTpxo5QcffLCV9+7d28qlOf22Z4QQQgghhBBCCCGEO0L+UBNCCCGEEEIIIYQwE9ZanyqWlErmnEoWgikWGTtOCRLlTiZLs/PtuEmWKrI3XpOSzPfee6+VKb1bd+/KLtwVy1JFxtybNaS3br1ZmSpluxfb3eT1c6Uig50ib+7d8Z2SQ7Y3JYSsA8+nDJBS1UceeaSVTQ5pcW3vnzv2c5f3SpYcSjXHmYjuu+++Vuaz7d69e+XvWafttg/MQfbca6+oZPeZK5blwPptJYPHpiT2lYwivXOFjdmE1kBany5cuNDKzKBhEmaz5NrYMgxbY5XZGa5fv97KzKLB7DC96xWb403Cbccr8529M/utvUvLsmHH70Z6s1pNscZX6jBlvOzNHlWp56bsquuuU81Gc7t7rLMof0RlTWM2lV56s7NV+pPFZiUL71yxOeXw4cOtbFm/uLaiDeXJJ59sZVqouOY0my1tVpyDuNbjNXvXovYOWX/arF5++eWV9SSVvmbfYeN5k89g63s7btmdeI7ZqdjWXK+zzN/yfJaZwYvnWz/je6Utmm3Kb0PLKkV4fdqvuMao2NiiqAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMKFufTIpesc707rBudSC2GzqpyBUrdpyKjM2k15Y1ghJFWpwogxrLNqfI2ir1tndmcvZeGbaVe99lpd/YdSoWmrGtZY6YdcZ2UjdJrGHyeZP7UZbI+phtgce5k/qhQ4dWntMr47U+y0xPtmO9sa4d2H94D7M/mJ2ycu9qRo1VzEECbX2L75vwPdG6sgQqGfMq9L7zKVYIG4/NrmXPaJksaH1iJo4DBw7ctg6MIcqQq5lYeL/vfve7rfzaa6+1MjPlVOY+k3xvKnuQSbXtfdg8bjYQe0abM2zusevPlU2Nnb2/7bUR3UlrVeV8G8cqfX/cVhULx6bmrMoWCVMyhFbapWLXqqyNLfYr48Bc4fhhmXNsvOEagVYm2llohaG9iNCeUrHXmB3exshK3HGOO3jwYCvzWUhlixKzK/F8ttv4N7Y2s6yrvJY9s2WGMosan58ZIu098buCx+098ZqWKZJ96MaNGyvrwLUOMz1Zv3zhhReG2xFFTQghhBBCCCGEEMJMyB9qQgghhBBCCCGEEGbCWuuTWQMqUj5KikivPHBTO6ZXbEBmdyK9dqKKHJQS7nXPXpHA9lrF7Dkprey1PlUyVpBKX6k8r/UJy8JFKRrfgbXJnDCLE6WIlA1yF3OWabszK4HtVG/SRTvOLEuU/jHbC+0PfBbbmb8ivSZ2HVKxA45/y/8b757/EbbLfWWctZ3nzZJKKvabXqn5piysfHbLyPX++++38hJik89E2ewUO0Mls5KdX7Fs2LxWsdxV3jl/ywxQzz77bCszu4dJ0Gl9Y7/g9SlhHoZhuHTpUit//etfb+XnnnuulTkmVqTqZp0wG0IlrisSdru+nWNjQsXKxOtYhkQer2TB2GkqcWFMGSN7j/dmgJpiy7JrViw4U7IzrbuH1aly3d4tAozKnF6xI5HKdwLpzVBrdnezrswJju22FuA74TrIti7gmEQrjK2naFtnm5nt3bIY8V1VLPy2XQDXw48//ngr/8mf/MnKOhDWmete9pF162G2hWVxIpUMWHzH9vy2HmZdrcw6V/7WwHtZRknW+cMPP1x5Pp/d1gO8zjvvvNPKN2/eHG5HFDUhhBBCCCGEEEIIMyF/qAkhhBBCCCGEEEKYCWXrE+VhFaZIQyvn9O6cb8dZtl3HTTZVsW6ZHI7XNyvDujavvA+ra8XOMcX+QCrHN2VvMxuIZbAye89YOj9HmB2JNoFTp0618smTJ1v52LFjrXzr1q1WPnfuXCt/61vfauV33323lWmPMtscrUyUbnJ3/QceeGBlPZ9++ulWPnLkSCtT0lixB5GK7aA3K9y6TGjc6d1sabZrvcW/xY7VySxOlr3Fzu/NQlUpsx3YPmyT48ePrzx+5cqVVmZfnCt8PrY935VJ4HuZYseoWKjsfZrc2vqvZVE4c+ZMK3Mc4xjFsYLyYY5RvCavMwzD8Pzzz7fyD37wg1Zmdicb1yrZDCu2MTIlW48dr2QF6+0rleuYdXGuTMmEaFTatbdfbEc/6rUZfRwr0+2uuV30fg9MycJFKjawKZm6rA6co1k2mzrtQ3OFYzjXjWZ35jqTbcDjHBc5L1S+Ayp2tEqMVKxJhGMq68zsV0ePHm1lZh+iNYfPaNluK89SZYrN256ZZbPD8RnM+sRvCdbTbOqcG2hNokWamJ2M74DvifZvvjMjipoQQgghhBBCCCGEmZA/1IQQQgghhBBCCCHMhB+bIvkMIYQQQgghhBBCCJsjipoQQgghhBBCCCGEmZA/1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEm5A81IYQQQgghhBBCCDMhf6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmQv5QE0IIIYQQQgghhDAT8oeaEEIIIYQQQgghhJmQP9SEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJuQPNSGEEEIIIYQQQggzIX+oCSGEEEIIIYQQQpgJ+UNNCCGEEEIIIYQQwkzIH2pCCCGEEEIIIYQQZkL+UBNCCCGEEEIIIYQwE/KHmhBCCCGEEEIIIYSZkD/UhBBCCCGEEEIIIcyE/KEmhBBCCCGEEEIIYSbkDzUhhBBCCCGEEEIIMyF/qAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMyB9qQgghhBBCCCGEEGZC/lATQgghhBBCCCGEMBPyh5oQQgghhBBCCCGEmZA/1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEm5A81IYQQQgghhBBCCDMhf6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmQv5QE0IIIYQQQgghhDAT8oeaEEIIIYQQQgghhJmQP9SEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJuQPNSGEEEIIIYQQQggzIX+oCSGEEEIIIYQQQpgJ+UNNCCGEEEIIIYQQwkzIH2pCCCGEEEIIIYQQZkL+UBNCCCGEEEIIIYQwE/KHmhBCCCGEEEIIIYSZkD/UhBBCCCGEEEIIIcyE/KEmhBBCCCGEEEIIYSb85Lr/fOCBB/5p1fF//Md/bOV/+qd/um2Z2PEf//Hb/83IfmvnsMw6s0x4nPX5sR/7sVb+6Z/+6VbevXt3K//bf/tvW/nhhx9u5aeeeqqVjxw50soPPPDAbe81FT7PX/zFX7Tyu+++28ovvPBCK/+v//W/WvlrX/taK9+6dauV/+7v/m7lvazePF55NnvHlevwtzzH+tZP/MRP3PZeN27c2NwL2SBf+MIX2sP+1V/91cpzePwnf/L/hbq1B8/5+7//+5XnsI15/j/8wz+sPE4YO+ybPJ/v5Od//udb+VOf+lQr79+/v5Utvu67775W3rVrVyv/wi/8Qiv/7M/+7Mr6sI9/8MEHrfz++++38tmzZwfyve99r5WfeeaZVr5582YrMwb5DmycImxf/pbns9/yuPVz6wc/9VM/tfKavA5/W+lbVgfe62//9m9XXoe/ZVs9//zzs4zNe++9t1WScWTvtjLm2fHKbyvz5qbqY8crcxzvy/MZ+4xrxjJ/+84772y5LuOWfczuvam2s+tYnFbmLMPmRyvb+NP7Wx7nOPDWW2/NMjaPHz++8oXamMqxpzIG8xyW7ZzKb4mtYyv91N7bz/zMz7Tyvn37Wvlf/st/2crHjx9v5d/4jd9oZcYj59O/+Zu/aWWudTmnj+tR+Wbg+Zyn2RaM/zfffLOV//f//t+t/Nxzz7XymTNnWplztN3X6kYsvuycyvrWjlt/tbn74sWLs4zNT33qUx973tzkd9Mq7PqVsZBtb2soHuc62c6pXNOw9ZrNjcOw9X3Yu7F5jUz51uVvOT5WvvOn/G3Cxih7Rpsr2e58x1wDnz17dmWjRFETQgghhBBCCCGEMBPyh5oQQgghhBBCCCGEmbDW+vTXf/3XrUypDqU9JtHslf2apKgiy61ImUyKaFKxinSRkuz33ntvZf0vXrzYyqdOnVp5TkWGPBW+J9o5fvjDH7byjRs3Wpn2KMpBrd4muaxIBnvfH7F+YDI5+61ZX+YKY5Ple++9t5X53iivM5sSJY08zuvzONup9zp8PzzOfsTj999/fyt/+OGHrfzggw+uPId2J0qyKb1mf+H4Rng+Y2XcZ1lXnme2C5NEmrWsV9pO2KZmObPj9i55nPflcbY7j1Nqz+OMR5Pasp3nSqWOvfai3uvYOb3zZuV4ZW6tyITNBsJ+R0sFrce0eY5tm4y7ytg+xXZkUvDKGohU1gG9VuJey3ClvOR5k2M+x6S//Mu/bGWzXVpf5Tm27qhsF9D7/s3+UlljMz5+9KMftTJtQ0ePHm1lrisOHz7cymxbPjvnw7H1idjz2PjCNQ3vfc8997QyrcdcH/A6HC84jlRsKhXrR+W4jXd2vPfbycaZObGp8aPXrjrlmpW51d4h+69dk32T/Y5tZf2rspXBOouZWQutTsTWrpU5yyymvK+1kbV7ZesTUvnbQWUNZ7+192FEURNCCCGEEEIIIYQwE/KHmhBCCCGEEEIIIYSZsNb6ZBIek3SSXvn0pnZoJr07dVdkWZbRhm1y5cqVVqZklBJTk72ZxHId1l6Url29erWVX3rppVY+d+5cK9NSUnnHm6JX5rupLCZ8xt5+sNPQVsL3bDJLywDQa1UglXaqWAvtmnZ9ywa1Z8+eVuYzMjsMrRM8xyw7lMFTHj/uU/w/1slkqZWMHZXze6XOlfHUpN0mk63IaiuWALMQmB1srlTmr8pvezMhVsbI3n5B7Pq9v52S6YVZZg4cONDKnE8Zf8MwDC+//HIr0/a7qSxcm7Ir98qqp7yzyvm9mWh6LWM7AfsJx3myqWw8U/pCrzW8105n4zEtRG+//XYrX7t2rZW5juX8SMsR15LrrKt8B71jllkaadu3+ZFZrM6fP9/KZvPvfce9a1rrc5V1UuW+S4jNKd96U+bcTVG5r9l6CPuyWX/MJm5rWouDdfZ6s3eSTY1BlcxK9gxmcepdf26K3q0/KrE5/+gNIYQQQgghhBBC+ISQP9SEEEIIIYQQQgghzIS1OvIpUvopVhW7fkVaZXWoYDvNE0pnmWGH9fzFX/zFledUsql8HKx9bdduSlq5yz3lqr2ZCXozFvRK4Oy3U+T4ZAnSUGKZASo7plfklNaWFneV7ASUZVqfZyYOlpmxgZmeWKblgXFqGcmY4YKybUKbFTM4McaHYRh+7ud+bmU9LLNDZRf6SvaO3hisxJRJRnutW6QiASV8drYbLWZLYIpFqCK935QNdFOZoSrZTgzrU+wLtD4x9mlvHGdwe+utt1rZrA0mjZ5ia+k9x2Kt9zq91oleu13lOnPF7OQVuXpv1h1SGaft/EqGqd44td9y7KdNmDYjZnGi9YkxyPlwXT15XbNkV7LXcC7n3M/MVbYe5nhRsU5U+hDptUb2vjM7v2KfmxNTrE87Re9WHqQydlYyAtt2GTaW025ome+GYRhu3brVyrQsclywe9j6vtfOXbFrVspT3kdvVuaKdda+SYxlfZ2GEEIIIYQQQggh3MXkDzUhhBBCCCGEEEIIM2Gt56Z3x3GjV0pdkZVWpMG99e+VOFHeefDgwVb+/Oc/38rMTFGxMqyThlXsKL1tTbsTJa2UiW4qq4XVYYrUs1eCT0ziPmep5UdYX+2V1Jk1h5g9im1s8mTKkNmnbNd6xhSfxTI98be8PiWdbCuTbbLM3zImKK8ey5/N+mX0Wi2mWFxs93+T6dsYZLJzs9v1yoKtTe7kjv2bYIolYTvqMMWm05uFr3d+6G0HjgMcW2hFHPdfzs3vvPNOK5u1weq3qSySrDfHoykWQmPKc9lxs4gvIVsiMfuAlW3snJJJzerTy6bsMjzOeZBzK+1OBu0VnA/XZTKlDYo2DLYLY4ftTusyM7vRjmXWA2LWiUqGpop9tNde3ruNgLGENe0ngcp3W2UdbuNSJasU44xxM86Cx38zpsxSZHWyZ+vN9ETYFpUtBaZY9e1Zeq2OFTurEUVNCCGEEEIIIYQQwkzIH2pCCCGEEEIIIYQQZsJajf4USWdFTlvJBNEr1zTpvcmy7Lhd3+T/lDCbrJLnMIPMvn37Vt5rbKEwiRd35KZclRku3nvvvVa+ceNGK5u1oyIL347MXr12iSk2vMr1lwD7BfuYvUPL+mTPbX3epHyWsYdU5I20OVDCzMwvJqs064xZw2i54nHG0zqJIu1YlJb2ZmsivZm3KljssEyZu/WVSnYBG2etDibbrVjD5oS1a+98t91sKsNe73UqY7wdZ2xRmr3OPkx5N+OU82OvxcDeMeds2jdo2eDxmzdvtnJvRp8Km7JKVSTfS6BirzRZusWyWUvtuK3jSEXOvyn7O39r6wdaC7netMyJlsFp/Lz2DpiNlHO/rY8Zy5yz2RaMfc73lknQ5vveDGukd+6z3y5tjfpJY4rdza5jW2dYH6ysNxhDXG8Pw9ZvQxvXLBYqc2XF7lSxPk2xoW7Ht2TFGmnv1YiiJoQQQgghhBBCCGEm5A81IYQQQgghhBBCCDNhrfWpNxtALxVZUK/EryK3J70ybMvucurUqVZ+8MEHW5lyS9qPbt261cq0clDmOa4D60p7AuXgFUkrj1My2mt32lSmkLmxBGl3JWOFSSWNilXQ+pdZVRgjlZiixJoZ0x566KFWPnbsWCszXtjHaYswa5g9C+vM31JSPZYrmiS7N4MIMVl4L1OsqqwzxxxaOXh9O27yTrNWWeasuyXrk52/3WPPpuS9lfOt75utw9qK/c4yX4xl2+Tee+9tZY4LFYsBsbagdYLj0Z49e1qZ6wCuD775zW+2MsemXqZYk6bYo3qtHzsN+56NSZUsc722hYoFtvLbyjw+xWJplnrGINuE1if+lv19nRXa/s+yO1kfY9y9++67rczYZ50eeOCBlXWoZDGrjHF2vtFrtzR2KsvgJljK90GFTX07W5uYtdCwMYfzJte3wzAM999/fyu//fbbrcysb73bkVTqZzYrUrEJ9/ahTfW57bAozn9mDSGEEEIIIYQQQviEkD/UhBBCCCGEEEIIIcyEtdan7cjgUMmCUZHx9kpG7Ryrj13fZJ+WQYLSLZ5P69Ojjz562/uO/49yMu6Qz2dgZine74MPPmjlDz/8sJVpoaow5d1sh8ysVxq6BIuTQWsI+xjLlgWpYomq2J2sn5tdphKbtCYcPXp0ZfnQoUMrr8l7sV/zXibbpP3QMnTwuXid8f0oGSe9/fNOypgr47iNlWYPW2cV+wj244rcfyzPXSq9cuUKlawLvef32uZYZiyTSmY6wv7Fedbk3+PnNVvilPHfnpN2J45TzDLDMi0bXB9ULH7W7hU70hSb0nZc805hc2JvVsnKdWxeNmuVZQGakpGyd5zhfblO5NqQ60qewzmRdkD+dtyvOZ7TmlQZC4jZZlk/jjtcKzAeKxlbKtmgbK1emWenbNnQe07YHJV5tvLNZOugynxnYz/Ppx2QmdrG8zXj2azolWxzlT5v42kla+xO9fPeNfOU79/5z6whhBBCCCGEEEIInxDyh5oQQgghhBBCCCGEmbDW+lTZxXxKhh+7jkmHjIqMqGKDsrLVgXJLyjspIaO0k3LQvXv3tjJ3uGd5DKVvlG5SvkZ5J+9NCRmtGZSxWhvZzva9u3lXjpPe3fKnZK9YGuwnJnes9HnLutMr1zU7FY/b9a1MWwAzpbC/0/bHvs/d7HmOZTkz21/FVjb+P0qpORaY5aPCHPqqyb/NpsRzOPZV7AS9svM5UZG4TskEUrnvpjL/9NaT4xKtDGY5YhxUsp/xfM6B6/qXxeMUqw7Htd27d7cyM9Xt27dvZV0tS+Om4PNXsq31ruFsfF+C9Wm7LYeVjECVtqxYArcbxrJlJGNc83yz5jMOxr+xccTa1+xOltWGsc8yxweumS1TKpmS+bRynEzJIDiH9cPt2JQVdw7YOGDjca9tyqxI9luez3nZLP/DsNUiZTZ2e088x74NKnMQ2Y6tM7abyt8XKs8y/5k1hBBCCCGEEEII4RNC/lATQgghhBBCCCGEMBO2LetT73WmSJ96r99rx6FEi7Kx+++//7b3ouyLcsuKjG1d9grLEEBpKSWnzPrE3bxZrsg7K7viW50rxytMsQ1Udl23dpgTlAZXrAHW3pVsFBXriWVHos3OfstnsQw/fBbGlGWzosXJMrX94i/+4srfWpaod955p5Vv3ry55RlM2s5nq8hBlyLvtHpOkez3ZuCbKyZXnpKxZVM2qCnZoMxWyb7MuYyyal6TsTzOnrbqvpWsbbQTjW2MNqZsKvMRr0m7Jo/z+d96661W3lSGuF56s3X22lnnSm9GFZPqE8v0ZDZQu/6mxr8p2cx4X86h7Kc2Jlgd1tnlbY1SWTeavcrGGs73XA8fPHiwlWmD4lhjayzWp2IztPOnjNfG3TKHzs0G1WtTqtj8K9mNevuLzcuMg3VbR/TGeYVKG/VmE54bvX83qXxvzn9mDSGEEEIIIYQQQviEkD/UhBBCCCGEEEIIIcyEtdan3ow6vZKwigyq11pVydzUa8fhb/fs2dPKR48ebeVHHnmklbnTvNk3Pvjgg5XHTT45xmS1lt2JMlazPpnUjbI5k6j1ZtUyKv2DVOTWFSld7w7kO03lmaZkxKq0t9mdLCMQsyhY9gbaFihn/uEPf9h1HdbhzTffXPkslZ3zP/zww1ambWr8W9o8WH7vvfda2aSoJotfIjYOWFYtwvapZK5ZGr2y7U3F7JRzbFw06y6tP8yGxHmQccqYsj7CPsVzeB3OueO2NQvSFIsaLY3MSEfrBNuCVknOuRzjzKqwKVt47/qscq8lzJVkyjs324KNTxWbC8u7du1q5evXr7cy+3xv9qEp8L5cS5qdl23CNS2Pj7Oamq2a51l/s8yJzGRqdmPGLOfoQ4cOtTLnfrO0VWxsFSoxVfk+qVj15soUi679druz6pGKPYh9kJkK7XvOrm/3snazrE2swzieuFUH53jLsNZr9+K9uaZn2dbGS18n99Z/WZEcQgghhBBCCCGEcBeTP9SEEEIIIYQQQgghzITba////2yHbNasJ1OyTU3JBkV4nDJMyrlpcTAJqGVEuXHjRiufOnWqlU2iNr6WyVIpq2Z2CUqvKTenzGxTkuaKDLtX+r8du+LfSbnkprHMRxXZZK982uTGZkkg7F/2W0osWX/aCExuzP7OelK2TNsU24Hxa5JhWiosg9swbI1bZoazLDMmnV9CxrEqJgVnPzBLwKayDOwEFUn2prIl9NKbTcWsT3yHJu3ev39/K1PmzIwrlFFXrCg2PnCOHvcdXov16IX1Y+YMWlb27t172+twPJoi7Z6y3iKMU8syUrF1LGHssmetrD9tzLa52NrJ1opPPvlkKx85cqSVn3/++VamrWeKVa6CWYssU1klg9M4NtlenCtt3qzY/DkWWDYo1unAgQOtfOzYsVamZZrXsQxQvZlrercOqPTRJWfMqdh5Kr/djkyzFSqWKM53nDeIfc8xviw2zW7J9SrXvbatxfgetk1AZX5hPe69995WZtZkwm9Vy2J8N1EZr6OoCSGEEEIIIYQQQpgJ+UNNCCGEEEIIIYQQwkxYa32qSPmmyP16M9SYvM12Xrc6VI4TyqWZyYHSLUq6KBOzTC+W3YbXH2PPz2emrYm72V+9erWVTdLZu4M3qdiITKpr1+ktk95sYUvL+mR9wWTClSw6lDpWpMsm2+d1rMzzKW+k7JP2pX379rWyZX7hcdoiaL/icWZC4315DtuKx8dWL7YLbREcO8ziVdnxf+nYM/LdmxWhkuljTkwZnzaVXbEX9nPaDth/zXZgcy5tg1auyN1tbGEdrP7jf1vGmgo8n+MRsz9yHcC5mHYnjjV3MuNb73qrsmYy6+JcmWI5tOxFXNcxXji2WdYUXv8//sf/2MqMkVdffbWV/8N/+A+t/O6777Zyb6avSl9gPc2uSmxeZvmee+7Z8hs+A8cR2oftfmxfex/cqsAyrPG9njx5spVfeeWVVuZa2izcZg+0Od3Ww73fNsTWakuwJdp7rlhiK2N575YM2zGesW/SgkQbFNelb7/9diszVmzdZHXmvRhbNl8Nw9b16pTMzZx/uTamNdrOp036brI+9VrZo6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTChnfTJ6Mw/Y8YqcqpKZgudMkRVTonbw4MFWfvDBB1vZbErWJrROUCJr2RXWZX1i/fgb2jx4DqVylqHH7AabylximLyzIqsjn6SsTyZ35HGziZiVxLIZ2Dl2vtmaKllHbHd6SjQtI8TY8rCqnpa5hXJQnsM6UF49lnCz3izzPEpaCZ+f7XU3YeOyxSzPWZeZYO5sSn7eO7b12lYYO+zztGCY1YJ9llkqOM/QJmyxUpED27jHOoxjiH2J97NMFsSyP1rGCs7rlK1/8MEHrUwb1JQ+McViTCz7TGWetaw3c6XSZjaH8v0TtgffP/sX12V2PvsmLTvM9MQ5i33KxtfeDI+Ev+X4ULHn2nzK48Ow9ZkrdlDWie+DdkKOWbRL0Gpx8eLFVmZb8z098cQTK69/7dq1VuacXtl2oWJFm5IJsbcfzInK92BlDVmZRzaVMc/Or9yX8ywzj5k1llsBsF9zvrPvJNu+Y52l0dZgpLJFAr97LWsy70ULlq3p7yZifQohhBBCCCGEEEJYEPlDTQghhBBCCCGEEMJMWKv9rci3zHa0qd31K9Iq2/GbMsZeOTClXnv37m1lStR4DiWphHWj7PPQoUO3rcNYrmgSUMrDKIOjnIzyWUrSKzaEivSQbMo6ZH1iirRxStaxOUHJrbW3ZUXplX+bhNbsTmY5rGT1oZzZMjpR8s3noryTv71x40YrU/Zpz8g6UGLK42P7IC1OJg1nXSvZbnrjbonYO+jNMDQnNmUVrYxhU8Zs9kH23+PHj7cyrb4vvvhiKzMGGWucc2n9MasvZdGMr8p7Zh3WybTNcsx509qRdaVU+4EHHmhljilmfeF4beMm2ZTVza5ZscZNyZS5NKZk3WH/+vSnP93KXO9dvny5ldnvOI+wT1lmIcaXrYF5zpR3aOsBs9SzzuxrtDeNsTV6ZS1itg1e0+Z7ruOZ0Yn2KK77H3744ZV1YDZVWlYq3xtTMtfavGK/XcK8Sexbb0rGOVtzWl+r1I1U5mLLQEi7HscNxhczINEGZf3C1rSMD24pMN4qge1r34mVeZP34HqC4x2/TyuZZZdOZSsPEkVNCCGEEEIIIYQQwkzIH2pCCCGEEEIIIYQQZsJa61Ov1GiKlK+yy7fJCU0CaTK5yq71PN9kcryOWVFYpqSNclDK4Uxiuq5+JnW9efPmynvwtyybJLtiXyEVWVelf5DKfY270UJiO8NPkdVbPzc7nVlSKjFrclNajSgLtz5r9i7KmRmbvCb7kWW5YpxSProuIxul8JS0UobN91fJBHE30Wu9Y/uYzXWubIeFpff8Xlk4+ynlyezLlbHC7FGWgYLHbY62sd+y6ozrN8X6xExPe/bsWflb1puWS87FrCuZYpmryNF77T2VzFtLsAkTG2PMMsCy9T3a3o8cOdLKhw8fXnn+448/vvK+nF94nHOWZVMiU2zc9oxci3KOZl+2dmP9x2s9y3LI6zJOeW+zSPA4r2+xT0sjxyluT8BMNGxTZrmj1dOeecp80Ds39G73MCcsqy/LjBebLypjXu9ve6lkYiJcP3L+pYXo+vXrrVyxJZnd2NbPw7A1FnozJHKcYqYnljlu2pYKlW/1pWD9oNK2UdSEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJpSzPlVkub2ZeUjFpkGJUG/mpl47lVmr+IyUTFrGCstowx3l7fxxu9n/sX62MzjLlffam/2h0icMO8dsDlOyUG2HXHgnMPk8qdjL2MaWccmsRlOkodZHKFVmmXJNypbN9sXf0gbF82nNYJnXJ7Q+UPI8DFtlrJSossx3wF3u70ZrXpWKBcNsaXNlU3bP7cDam7HPPkvpNWXLFy9ebGXGmtkJeX1mmOI8yBg0aTqtUpzfLXvUMGydp2lHojzbbBS8Fp//4MGDrUwbFOdfPs8Pf/jDldc3eucjO78309OULGJLGLtsjVrBbD68zqVLl1rZ3j9jhxaZP/7jP27lK1eutPKzzz7bypx3Kmtmy5hD7P2b1dfswFYHjg/juZXPzzKtRpxbK3ZowuNme+b1OcczQw0tbXwGWhr5jvnMUzIxVd5Z7zueK71jjNmgOEdwDrLMe8S+xSrfOobV2eYvswBzXratOWze5FzH+7KtaCscn1f5vmOZY4TN2Xxn/K1ZK5fQh9dh/dUscFt+uy01CiGEEEIIIYQQQgjd5A81IYQQQgghhBBCCDPh9tsN34ZKRiAer2Rfsh3c7ThlRMxMYXYGyirNykGpGOWQPJ8yLkrpTLZvcksepzzTZKXje9NGYVmjTpw40crMOENpmVlHrI0qtqZeyWDFHtArWa6cv7Qd8vneLJNFJSsT5b2UKLJPvfXWW63MflHJFjIlK42NJ4xNyo15Pvs444h1s4wzlsGJsnOOCcOw1V5Fu4hlr7h27dqwiiX0ve3Cnr03y9vS6LWZbiqTlGVbY5lzAvsv51nGBa/JuYxwzGHcMYY4zjCWGfv87bqsgCYrZ9myRfIcy7jDGOeag5k5+AzbYXvrHWcrmTh7swbulJ2vh95MT2aRYP/k+6dN6emnn25lZgTiuuzdd99t5VdffbWVX3vttVa2+DJ7Pqn0i0qmGFoZeJyxVrFvjPsOY6qSIZJtzTHInsesUoTjGs/n8/CdMVsNrZs2JpJKBqhe+9KmMv/tNJV5iliWoePHj7cy+96FCxdameN0b2ahKd8fFgu2RiWMKcu6SGx8YL8m43awzLIWp7ZG51qZMWjfLeuyxC2NSqanWJ9CCCGEEEIIIYQQFkT+UBNCCCGEEEIIIYQwEz6W9clk2LYTtUl+KlYFk1bxfF6T2Y1YH0q/rA68/q5du1aWmUGCEnE+L49TDmm735vsayxFo+SS/8esE2fOnGnlw4cPt/I777yz8jjbkXJNtlevfHZKBqjejAWV6xi9Nq45YdY0sz6ZNY+yu6eeeqqVz507t/Kcq1evtjJtR7Y7e+Ud2jtn/WnFMgkzr8/2oezcMtRwTLBMEZSMUrI+DFvjnOMXf8P2mpIx65OA2Uf5/uZKb5Ye0ms36cUsBZyzmLlo3759rcy5j5mbGAu8Pi3GnFtoDWTcMZMS5yVaong+zzGbxjBsjUHaHS0TBuGcy7YwGxQl9Rw7NjV/bcc8ayxtTqxgNh97VrMtEI5P7OfMCMT4oq2J2Z04tvE67NtcN9oakvWZklHQ5ke2A2OQa2/GDeOA5w/D1ixsXJdyzcHfmA2Scy7bjusStgXHCMusw3UDn4fX5NqbawCOidZvtnveX5ptpDK2EfbJQ4cOtfJnPvOZVjZbyeXLl1uZa0vL1lWpW2VOt+vYVh72TW3HzU7EazJurF+P72Hfg1Yn+2bmuoFwjLBtHZZIJYveui1OPuLum4lDCCGEEEIIIYQQFkr+UBNCCCGEEEIIIYQwE9Zan0xGZRKvSkYnSg4pY6QkmfIolimPojXDJFqsg9klKJ+jBIlyLdvNnbIxtgnldrbrvNWN54/luGw71ptSNmYaYLaeL3/5yyuvw7LJdk32NsW+UdnBvlf21msPWLK026xM1mZmj2IfZp8/efLkyt+avcgyvFTeoVkwTM5MeTLl38Ssjqwz49r6gkm+OV4Nw1apM/+Pv+GzcSd8ZofZlMVlKVRkxHwHS2ufKdaDitx6U5Yai3HOv4yX3bt3tzJl5HYd3pfX4fm8po0tFdvjOJY5P/J5OI5Y9hlmEOGYyHmT1izGMq2O1i6kYney4xUJfiVTiDEl69ic6F2/VDKq8Bzaf7iG4nH2f84JlSyKFguVelbgWMt5jPMVz7HsRqwnn51Wp2Go9VtaKK2ujHleh+MI1zpmobXMr7a+ZxsdO3aslfnubW1k9Gb+u1ti07ahsPbgmGoWN64PmaGLfYprRcsIPOVbpNJP2Uc4L/Ebmf23kiXK7FHss+uyJbJNLQOUZUikvfnAgQOtzLjj2Mf1M63XvRm55gz7AfulZeEiy/1SDSGEEEIIIYQQQrjLyB9qQgghhBBCCCGEEGZC2fpkEiTKqyh9orTHMjqZ7NNsBJSo8V6WsYF1qFhF+Cy0gfD6lM8dOXJk5XGTorEOFbvWWPLH3/D/KJ2iJJs70rNNKefm+ZYdxzJZVOSAJvWbskP6dmDZhuYK34+VzUbH/nbhwoVWZlYTxintAjxOaT8l0BVZscGxghJIs2hRnmzyTEqvKxnWLPsGGT+jZdqwMYVtapmhPglYjJsNYAlZAGycs/Hb4sKkyxX7Uq8VwiyNnEM5D3Ju4XHGAaXTLJstkfYKxqxlaKHl6C/+4i9a2TJLDMNW2wnjjr/hPZiJyrJOUi5P61Mle0WvZakic+c7q1h9WDZLNuu/ZKtFr12MbVDJOMe+zfnLshhZG/M4+13vGEIq4wxjjZYFWhmsnpaJ8uLFiyuPD8PW+XX//v2tzLbjdwJ58MEHV16X8zrfh2WTNWst52uOd5YJjN8AXK9w/bypdexOrZO3k8q3gmUy5RhMex3He84vp0+fXnkO18Psz71tbNl+eC/GDo/bXGRzl7WVWZgJ23xsfarYjG3soA2Q3/B8T4xrxsg4M9zSsGyC7AeVTE8kipoQQgghhBBCCCGEmZA/1IQQQgghhBBCCCHMhI+V9cmsIZT5UCr4yiuvtDLlhJQGUx71/vvvtzJ3T6e8mfeiRI31pMyKUiPW33ZzJyYpt928KQ1jnXk+5ZmUsbFNaOsYhq0yUdaVv+G1+PyU/b3zzjut/PDDD7cy5aas69mzZ1ee05sNyjLr9GbB6D2n8tspGax2ApOiVySx/C1jjXH6xBNPtDLljbt27WrlN998s5UZp2ajsHdltgAe530pw+ZxxhTl/zyHkmSOOZZ5jXFAqeZYFsrfUALK45Ud/E3+u4Q+ORWTjPJdLsH6RCrZOazM52Z/4xjP/sV5wOT/Vh/OcZxn+Fuz2BJeh/2dcnRmT2Ic8BkZ4yyzbuwjtPaOZd5mF+F5tFGwj9HOwPtxbmXWK9qHWdfe8dqoWNd6+xnpzSZjltq5Ymtaez8VG7TNd+yT1vaWEWhTmX8q742xfOjQoVZ+6KGHWplrUZa5rmS2GsswNt6mwOKOcFwzK6bNm3x/PN/ai+/DMsFxzOKagN88tHEx++p2zF93iw2q8q1gWxRwHfvaa6+1MvsLx3ubv2i5tXnQ6lzBtrawbTEsTtkHeQ77F5+dfZnf4LTaM87G/7Z3Y1ZBbqPAMYL34/qAbW33nRuVWOO7ZDvYezWiqAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMWGt9ojyHskHKqyj/+dKXvtTKTz31VCv/7u/+bitT/kMpGq9p0qrdu3e3MqVSrBulx/xtRcZFOxFlXNxtm+cz64RlvzLrBGXklMtSojbe7Z73oKWKxymtY/vyfGZ94j0++9nPtrJJ61566aVWXieb+4iKfHpT9qXe45a9YAmZLMzKZLvimzzS5IeUTT722GOtTIsT3z8lo5R88/q98mzKkHlN9lk+L5+R/Z3nMO5Mtm/yZFqlxv2d45rZGnmc57PM9uU9lpCJbBjcAkrsuM03ZAnWp4rdpNdSwX5kmYhoaaUUnPFiNmHWh7Ye1pkWwkceeaSVv/71r7cy453X533Zr/meOebweWl94vXN6jWGbcS5nM/DNuU9WCfej2Ml27cyjkzJ7mRya85fXEPQVsk5nWsXe/dcP7BNrK2XMG8a1vY2b9oa1ca/7Zbw99rEGXeML9qdaIvns9v8y77D/sI5jXPd+Dxah4jZh4mtgRmzrLdZa3gdxs7hw4dbmese2hZ4nBlhaSm37QI2xZIzspnlx9bsLHM8vnr1aitzDPv0pz/dyhzv+a1n9+I1ubbs3bbBMrhxbck5h9+SnBMtK7FZq3hNy0g1zkRkNkP+nv3frE9mDeV4we8HWxvdSVufjemV9Zxtp8Jxlt8z69YurQ6VSocQQgghhBBCCCGE7Sd/qAkhhBBCCCGEEEKYCWutT5QXUU5LaQ+lZb/8y7/cyr/2a7+28nzKKSmJpPTr4sWLrUyJLqXdlKIx+4zt2E+ZmWXQ4E7tlCyNM7x8BKWUlGSarJJQPkfJ2brMCfyNSbNYV8syY1Jw213fJL8vvvhiK/NdUt5m72NTGZ02JYeb8+7it8PaoCLZY3+jXYJ9jfJGykfZv2g55FhBObBZAUwiTjkr72V2KrMdMK5t53/2TcowGR8mux0Gt/6xrS0eOfZRGm474c/B/mOZwPju2YfYD2wc4PtgmzAzCOeAuVKxPNgcYX3M7LHsR5yzOKcw6wjrQ8mtZdB4/fXXW5nvgdeh5JlzIutTsY2wzAwyvK+tPVifsT2CfZX1MCk5YZ9kDPIelDFbppDtiFmzsrBP0IJBWwvHOHLt2rVWZv15nP3DMunMFVsTTsmiWMmu2MumMnTZcY4hHL85V1bWgGZrYN8xm/743pWsT/w972frXt6b493Y5rHqXox9ywDF63MMYTvS0sW6sf7bwdJsUDZ+2FYbZt3lGMxvw9OnT7cy3y3XXOwXXPudOXOmlZlViu/T1jVmn7RvI9aB/Y7xyDrzHF6T84BhWbTGz2BzDevKWLYtCdjnuSakDapiGbb+3Jstz2xKbDu2tW2jwL9HcJxhm/BvH1xXVWzwUdSEEEIIIYQQQgghzIT8oSaEEEIIIYQQQghhJpSzPpnckRLaP/iDP2hlypJfffXVVqacjDIoSmuvX7/eyh988EErW6YFk58R2wGbEmvuVM0dmk0WzXuxDnxGSkBZf0rG2La8zlgmSskZ5VV8HrYp24jns8xrssz3d+LEiZXPY3YUSqNtF3LDLAEm552SWaEiF54rm8pqxTL7xZUrV1r55MmTrcx+wZ3zn3zyyVbmO7906VIrs/9bPDKz2zhDxEdQ6sl7mWSSMkazN1LybNYwMo5NSmkpiWRM8fnZjrw3n5/1u3z5citTJrrdfdVsorS2MivY448/3spf+cpXWvlb3/pWK9MqUrkvsWxQc6KS8aFitbCx9tatW61MaS3nHc5ZvO+NGzdamfHO+1LOb/My5fwHDhxoZcuARGhfY2zavMlnsYxMfEbG2TBs7Uv8ja0D+AwWv5xnK5JsUhm7K/OgZe+gVYxrGstcY5lFCK3NZrVeAr0WkEoGt4rVnVRk+JVzpmR6orX00KFDrcx1L/uFZXMz6yXnZfY1xtkwbP1+2Lt3bytzjGM88t4cIxiPLDNmK98GvJdlUrPsrZY57oknnmhlzn3c1mG7WfKa1uZNsy6yzO9H2qD4TcO1G+c1zkfWtzk/WjYoXp9l24KC8xKf0a5j2ZNtXGfdzOo1DFv7PO9nNlvGNtuI78Di17K5TRlbDbOA0ibMzMjsK4xfe0azBnNM45p/3XYnHxFFTQghhBBCCCGEEMJMyB9qQgghhBBCCCGEEGZCOesTJVKWpYjnUwZFCRbPYTaKCxcutPLLL7+88vqU/FMSZVYbk+hSKnb06NFWpmSYElD+ltekfInSMtuBnjJMy6Jl2RiGYaskjthO2jxOqatJrdh2rB+l55RScxdrk6qabJVUJL9mvavIfytyOLMizBWT8Vo8VjJQ8LeU8nFHc8YLpZLMKEIpNfsjZaI8Tnkgs0rx+ux3jDXLzkYZsmVjMBsN44bSTp5PKegYxhrrx+dhv+U9KJM2uSmtpLSv9GYZsR3v2V7Hjh1rZcpBn3766VbmuGRZefiMlomDMc6+aOPvXLEsFb02TbPWMsMa25jSXc5flHOzXTnX2HjCOOX8xWdk7PNd0S5TsSmxv1t8WNYeu/6qf6+6n2WD4705LnDNYZlcpswplWxhFr9m72J9uIYzKyKtbjavVKync8IsEjZXVjIV9lKxeFSsT5Vrmn2HNjiWab21+/IcznWMG44bjK2xVY5zis0jHKc497MPmw2GmI2XMct1D+cptl3FRsIx2r4x2EZLWHNuN5Xxo7Ltgb1P2sfZ79iHCddBXNOyX5g93bKAErMBWV/gOayzWZ8Yp4wt9lOO3+PvQsaz2aq5LufamvMm3wEZW5RX0Wv1tHGT62e+M66ZuKal3YnPwjZl5ia+D64N2A9o+eZ3cbI+hRBCCCGEEEIIISyI/KEmhBBCCCGEEEIIYSastT7Zjv6URFFmRukT7RKUBlMeRtk7z6e0jNfn+ZRpmXSIUlLKnWjLoiyccnGew3uZpJMyLkojKSumJIptRVklJVrcpXz8PJRg8T2xfmYx4P3sHMrj2C58TmYD4rNxN3te0zJA9cp5ezM3GL0Wqjlhcn4er2Q5IOznlOm99NJLK69P+Sj7CGWSn/nMZ1r5V37lV1qZ/YW2OUopbZd7lin15H3NJsn44vNathqTNrNfD8PWuDCZJeWRrDelpIxNG4MYs5RY8zix5+d9P/e5z7Uy7U7/7J/9s5XXZ0auN954Y+W9zp8/38omBTZbE9vaLB5zxexOUzIYMJZpBaCdkPMO5fZ8V5yLOeeaDYTzL+OU8yb7tWVoIrwmYVzb++ez8zo8f2wRZkwRy7xYsVLzHpRGm32jMpf1ZhiybHnMwsU2tXbgWM/+xLWLjY8Vm9CS2VQs99q7p2AZFTkOMFscY5ljiMUvx2CWOT+wT3GcoYVkGLb2K853lkGH8W+ZLC1rHS1eFgtcN7CfWwZKy2LLZ2Fbs3zu3LmV19wOlrC+nZIxr2KD4vzFfkRrjq1j2RfYh22c5tjJcZHrL7M6cq3E+GAsc1xntjRek32Q36q2hhpn/OO/OUbwOTnX0NbHeZNliy/GMsuVbzTLBMa2tuzOp0+fbmVuO8BnYTvQDsx3YxZxfidwXOod66OoCSGEEEIIIYQQQpgJ+UNNCCGEEEIIIYQQwkxYa32iZIkSMitT4khZE6VclCZRHma7rZv1qZJtgFIxSrcogeRxSt14fUrmKFmi9Il1o2WJbULZF6WUfEZKvSgfHdePcmtKwm7cuNHKJl3lPVgnvidekzI7yuYopzt16lQrM5uXvVeTTFcyIlQwe4/Jl5cgDSWWucva0qwNZkejfY39k32KNgfKL3k+JYSWOY51o8yQdaOMkcfNrse6mS3CrGGURTPmLLPKuH58BsYOZbUV6xPvzbGS9lGzgHKcpS2C7+mpp55q5c9//vMr60PJKGWfHONYH+6Ez7GFz8u2o0yU8cg+ZHLWuVIZe0jFIsP2Y9twjjDJN9ubNiWLQR63sYJSX/ZT9hfGptmU7D2b9YnzHvsOzx9nZLMsF5aFzTLlMNY491mWN17HxuveTGC8po0tHHMZy4TPy/fEcebKlSutbBnCzNIzVypZY6ac32t3szVIr8XDrs8+zj5imW4qGcxYZ47xXDNcunTptucPw1abLS2HjG3ONTzfLCVclxNe06wZPIfPz7i2bLIWm2xrjl8Vm/onicr40RuzbFf2z7Nnz7ayZS6ztR/XUJaZkedzrmSfZSyw7/Pb0NarvD7jmvMVj9v307o5ivfmvM71La18rBPnFMaU2WZZb5uvK+OprXX4fcosldy+gZY2zu/8hmV9OFfaWMnjZluuWIajqAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMWKsjNyk6LTKU7TA7DOWKjz/+eCtTlsaMJZSBmR2DZbNyUAZFORUtTpRrUWZFKEWjdI1SsUcffbSVKfWiBI42ILM7VbJfjWG9eT+2BSVnttu2ZRNh+1IOyOtTGkg5INuF75hyWJN79UqNjSkZo5Yg4abUl8/E4+xXlewV1t7sRxcvXmzlM2fOrLwv44tjhWVaYB1YZ/YR9lnGTkUuTpkh68O4piyW/Z3WAZPRjq9rGdYop2R7caxhTPF87khPC5JZR3gdyj4PHjzYyg8//HArM0sQf8vn4pj+3HPPtfJrr73WyjYuUfJt2Xb4niivXWdrmSMV+6ZZFK1scx/fD22vHO8pgWZ/Zh80+y3vZRJmSp75ntl/bQ5lHfhueZz9wuY6nrMuMxj/z8ZQs44wrnk/SqNPnDjRypVMSYbZY1h/WhopTec7oPyb12S/oYSbfYjrAbNuLc0yTHptRHbcrlNpmynWp8oa2NZoXIvavMz5juMx+w7Ltp5nfJgVbxi2jgtcN3MdzPuZxcXi2tY0Zv3jOsa+fxgXnKf4LBwHOc9yvGN9NrX+XFps9s6bxNa0toakZZhbW9A2amsWvk/2TY7HZhXkvfjOWeYcx7jj2M+2Yn2I2bhsThtnfeLvOV6wHfnMPN+sxGYr5jzFudXmTesrfE+MX1omue5lBiiuk9ifuD6ntf/ChQutbN/Otv2ErbeMKGpCCCGEEEIIIYQQZkL+UBNCCCGEEEIIIYQwE8pZnyhZMvklZV2Ub1G+RAsSs4Xw/Ir9wXaDpsyMMktKnCwjDK9vGZ0oH6U0jnKya9euDatg3SizMovKGNbVMlRZtgxKzymVo4yT16Fcle/GMvfweSgz4315Hcpk+fy9VjeTDlekzNanl2B9Mim6ZQ+o2J3YNmY/5Ls6f/58KzOTGvsF447vnxJTyj7NusV+av3RssZQYmm731sGHJMujiW4rDfvx3bkuMN68N58Tkpd2b6/9mu/1sqUiVpWPFqfeF/ucs+xjHCM/r//9/+2Mm2ulP9aZjo+I+9LO6S9J5aXlvWpMiZV7BKWIcRik+MD38/NmzdbmfJbYlmf2PaMQcukxPdJWfTYNrjqmryOZc3gM7KvjfsI44iWCtaPbcc1CuvN+nF9wLjmbymv53xq85rJ+vnuWWfKzjmeUsLOdmQd2A/OnTvXypbtj1RsP3PF2ruy1ujN5kZ6bSiVMcHmdPZ/rvW4RjMbLvu4vWfOs+xHjC1aiHjf8bPQ8sBrmW2QfdvWMTzO8zlGWDYdnm82Dfs2sEy0LLMtaM3glgef1AxQFkcWj6QSX+xH/Fbl+GdZN2kt5fxoWXBZH65vzcbLOY7nsw5mp7O5iHXm+bY+HbetZfvlvENLFM+3PszrmM2f1+HaxcZowvZlW1hWRN6X7ct1OLd7oM2f37C9c2WlT5MoakIIIYQQQgghhBBmQv5QE0IIIYQQQgghhDAT1urITfZvu62zbDJh2iVMPm2ywYr9xTK2sEx5FGWftgs324G/pWyT0idKOCntp+TKbFzcYXqc9amS0YfyLZNjcYdqns9nZpuyrjyfUlKWKf+2LBgvvPBCK1NubRnFtkN2bH1oCVh9zSJhsWzyYb5nk+/xXXE3dMob2RcOHDiw8jrj3eZX1cHeM+WTlk3ILFGUPTKeGDeWcYWy0mFw2SfHCP6eklHGNc9nXXk+3wfHNWZs4b0Y74QSWD7z2bNnW/krX/lKKz/zzDOtzFjmu+FYYVY3/pbvj+1g/dssf3OiEpsm3a1kfiEV+wbfrUmSbby37ISV2GQfNPm3ZbXgNa0OZlEc2/jMDkx7Bp+H9WOMmD2SMbt///5WZj/nvTjHcwwllsGN4+mRI0damXJ0Pj/fJefZV155pZU5btj8a/bypWWWmWJl6s3otN3YO2FMcV6yzGjsa+yz7Au0DlhWFvYvxgrH9XFsco1rWRVZJ9oNbCyzDDqWbY7X4TNzfWB9gufzvrb24jxOCzBtkrzOpphDf70dFUu+UcmWyOPsF8yiya0tOKaalZ7rQMs8Rosb5y/LdsqY4Nxi6zXei7Fi37lmbR6vw9kPLZMgn41jDa1crCvvbd+MnI/YFnw2wrjm+2CGU7MJW8YsxiNtibTJsQ8Rs+2TXpvwsr5OQwghhBBCCCGEEO5i8oeaEEIIIYQQQgghhJlQzvpkcjKTwVLixOtYZoopEiFKvCh9ogzZLCEmrWI9CeValhHDpGsmd6dVyjLdDMNWKRqlobaDPY8z4wPrYb9lPVi2ncopgaNEj9Kyhx56qJUp56Y9jM9IuTiPs33NCmGybZMLLyFjhVGRhvZmd7LYZLuaXYjvzaT0tls+78vr075jlkn2O/YR6+8/+tGPWpnxZO3A42NborUFf0PZs1mEzLbAsYljCscdtinLfGbWm++VMfjf/tt/a+XvfOc7rcwYtHgx25hl+mH/YL+kDJfvaQkZMSrWwgqVDBeV61eyJRg2PrAvsO/bfEJ5svVNy17I+DD7r40n43uYxJztwntTzs05y8ZTSqz5PMwywuw4tHLY+EgJ98mTJ1uZMn0+M/sEr/+DH/yglWlvZHzZvGn0nr/TbCrrU2+GyYo1o0LFZsi+wDnH6sb4YkzwmoQxyLne1vBch4/rz/mCc7w9p2Wo4vm0FrJOvBd/y9hkzLI+nHN5TY6DlUw0HFsee+yxVmZ2RbMVV+i1zi6BUlYc6XvsL3w/9p7ffPPNVqYdh23Jbx3OCTY/0GrDeZDjLq/Pfmq2Ic5Ldo6db2ur8VYZfAb2ST4/4XhhWU0ZR1zf8vmZKZYWJMsOzHbnWMNMqXyX/E4gHMteffXVVv7e977XyvxWr1iDK1TOj6ImhBBCCCGEEEIIYSbkDzUhhBBCCCGEEEIIM2Gt9cl2pTYsU4zZAirSIctEY7vcU/pESZRJrCmBpAyf9aRszDJiUBrGZ6G0jHW2Xd4pv6Jsb3xvSvQo5WKZ9eZz8h4mMbdnYBtRJstrUm7LOtCWRpkcd79nG/EZ2V7MMGT2qErGKNulfQlYjFR2zjeJrsm8zQJpdgZmImJ92Hf4W/YR1s3sSOx3NiawPhwHiGWWsXGDfWQsKeezsa9ybLId+W1nfz6n7fLP5+R7sqxXllnjq1/9aiszu1NFjl7JqlbJ2EfMeleZh3YaswNXMrJV2pJU5s2K1YLH2cbss2Z1tXGAfbmScYVzEeOGFoFr1661MuOM9Rzb4/hsjDVey94N68FnNosfZe4c1/jMtCNdvHixlRnvHINOnz7dyrRBWcYK1u3FF19sZdqdaA/pzUA2t+xHH5deu9OmskFVrtlrrTLrk2XS41qJ6zuzI5hl2NbnjLN11kvbeoBrUcuQyHNYtrU768F5jVZEjnFsLz6zWa54jtkr2C7M2nb06NFW5rp3CVkON8UUq2AlE52N8eyTHJtpRzPrEK3qPMfuyzhlX+BajLHJmDArYiWuK1mCx9e3fs5tNBibltGJ9+a8xnpw3uR92f+ZccmyanF7DVqfeA7HMrbXlStXWvnP/uzPWplZn6xNeufBXotiFDUhhBBCCCGEEEIIMyF/qAkhhBBCCCGEEEKYCflDTQghhBBCCCGEEMJMWLsxB/1htn8LoWeLXi5Lq2WeekuhaF5q2+eAdaYXjf5E89vanjY8hx5Gev3o4aMnj3Uwbxzbavy8lsKNe4Kw3R944IGVx3ld1tX8wjxu6dLoq2WKUqZaMz8jn8vSn/M69DPS4//GG2+0Mveusfdn+7AsAfOSV551SqzxXvTVmkecMcjzWU/GCJ/LUs7a9dl3bK8mPhf7OM/ndTgOrIPX5f3oeefzWEpjXoftwv7MeOd1eJzXpKeabffd7363lb/2ta+1Mv37lTHXyrYvkvl8bb8DvuMlxKml5+5NjV3ZE8OOV/YUsbZnH+HYz70cOJZznrH90lhmO5innp5y+tE5D7z88ssr68n+Owxb49HSl3Is4PPbXlqMNT4b37f56Hkdm+9szxGOCawbY4rz4HPPPdfKTC06Ze+LJe9LY/siTtmjhlT22ZiSntuuwz7FvsNz2McJ+5HtM8G+bPvFsQ6MCUvnOww+l3PO4t6GTElv78/mb0tpbHvecTzifVk3rmlsrW97o3AMsT00bD3Xy9Ji1uZNi19i35g2/3INxffJbxq+H47H7DtMAc13aHsk2v6FrI/te8R+yrHc9n9jmb+19OLDsDVe+J1o846NEbwu247j1PXr11uZawvuOcs2ZRux3bkvDeOL12Q/YPtyPcz9cPiObS21qbIRRU0IIYQQQgghhBDCTMgfakIIIYQQQgghhBBmwlrrU29KRksVWjleqYOdT+kXJVGWgpJSJkqfmC6NEtATJ06srAPvy7RulJmZpI0SO0rgLJX5+Lr8P5ZZb5Nts96UQ/MZ2Hasqz0PZWmUyFOGThmbWUVMqsh3Qxki5XO8l6UVrqQJ7rUo7ARm2zI7IanIvO1ehFLlW7dutTL7He/Fvsn3Q/kk+xHPp2SS/d3sMmYDYrwzlilVZjxWZfD8N9uF/bMSj+znfK+0l9j5lJ6arYM2y9/7vd9bebw3XW9Fgmzpnw2ewz69hHSlFVtYxVJmcUq247jZoDhXUKrMWGO/rqQrNRsUrX7Hjh1rZcYmLbCUZrNu4/sxLszOTbuiWRgIZdWcKwnrzTgllLZzzOJxezecu3/wgx+0Mq3KjJ2KhNuelyzNUlGhMuZXxrzeVN2kMtZyPrF7sY/bcc4hLPP67Gucrzm38Jq0I9iadBi2xhfX5YxnptxlH2adzArOOvH6tn7m2pUWKq6HOS8zvsy6xTUA53G2HVN18x1Msf0uLTbZN8zaY9i3qtmQbSxk37bvCc6DXJeald5seXxGziGV9Nk859ChQ63M/stn5JxmabtZt2HY2l6cj+w5LVU9MZs044jPfPz48ZVlrg8Ya/w25L34LKz/tWvXWplWats6ozJXVrYC6P07SBQ1IYQQQgghhBBCCDMhf6gJIYQQQgghhBBCmAlrrU9TdhmvXKeSgaciPaVcjZJJSi7tHEq0KGOjrJrSNcrPbty40cqUU1EmxzqY3Yl14w73Fy5cGAglYZRiUrLGuto9TPZJSR+laGwjs51QysV7mcXDZHWUw/EZKWPjDvyU2NKiRukan4v1N4napvr9dmJyuUrmpil2J4tTywxGWwRjh5JeywrHGLRd69k3K8/OmGW/sIxv9ryM6/EzsA+zz1v2KUqdLUMNpau8PvsB6802orzzO9/5TiufP3++lS2up8j3TYJsMnXCtuZvl5D1qYKNN5sqV+zJvdmgaFO4dOlSK1uGNct2wX5ttiGOJ7T1fPrTn25lji2cK/jbcb0ZIyyzT5pVg2MW24XPzzHO5Nz8rVk0LbsJn41zHO1OXDdYXJPe7ESbymC0E1SyH24q1uwd9lrKzLpnNnzakAl/y9jkOpH91OwCXN/yOC19/C3jg7E4/j3ncs79NlZy/q5Y2jlGWKZMth1tJGw7jnG0WZpVjFlQ+Z5s3OSYaJarXpZgg2Ibsy+xbTj+2Thk34+2hrR1I78T2Rf43syCY5nUbJ3JPsK1JJ+LccdvIN6LNmHa2W1+tGyn43+zn/Mb1dZybBfLbGgWaL57lvl9blnu2C62jQDfJbM78dvA7E5mN2U9ba6fYjGOoiaEEEIIIYQQQghhJuQPNSGEEEIIIYQQQggzYa31yawhpCKnteOV31akQ4RSLFpwLFuCXZ9SLEqezRJEWRqlWLQsUM5JKZrZrNbtkM96U4pGCR2fkxJTSt/YRrw+z7f2MnsJ24vXpOSMUjFKBtnPKEW7fPlyK9MGxV2++T5MJtqbyWyumNSzV4pesUFVMEmjSQUpB2X92RcIr0PJM3e8t+xRHBMYpyZbZX0s+9DY+sT+bLYdk5XzOOvNOGLbWbYL3ovP+e1vf7uVv/GNb7SyjY/GlAwoNm5U5MtsqyVYn6zP23GT7W/3mFQZK+w4x1pKrDn/0NbDODp8+HArM444b9KCwDGebcjYZyyPsyWalYnSaLYFbSFm5+A6gOdbdkmW+ZxWB86bHAcox6fd6YUXXlh5jsUaqVifKr9dGtth7Z9iFSW8DvuLZVLjPGAZV8yGzH5ttgP2Qa5pbZxmzLHvj9eM7KtmWWFb8N7WFjYX87esH8uWBZVrUa4/Gb+sM+tgWwHwvrSH8D2NvwHuZtgeXAdZ27CNef7Vq1dbmX2vsqUGz2EcXbx4ceW99u3b18pcc3FOsOyljBf+lsdpMeZ3Huv58MMPtzLnWfY7xi/nSmYbY9sOw9bvUj4zLconT55cWW+ebxZNztM839qIbWpbJLDMNf2bb77Zyq+//norP/fcc63Md1BZo1qWskp2z97vtChqQgghhBBCCCGEEGZC/lATQgghhBBCCCGEMBM2mvWp1+40JWMFMZuSSY/NykM5me1yT9mjSRptZ3Je8+DBgyvrT9kXrz8MnnWCcjeTSlbsCXx+StQqdie7DmVylABWJNmUf/McylApf2Qd2FaVjADsE/aMc8Ji0+Sd9tsp1ie2E/sgy3yHzGZgVkqTGVqWJMpiGYNmkbF3y7rRasFd8Rm/4z7Lfkj5JWOYsck2Mvk05aAmSef5tGMwo9PXvva1VrZMV71MGcdNLk9s5/wlZJbppTeLTq9NbVNUxnhKjCkLNzkwY4XX4Tm85uOPP97KnKMYE4yn8b05XtCmxfinxJoWEd6Pv2WMW4Ybk3Dzvmaz5HqCEvznn3++lTeVHabC3WJ36s36ZEyxG5sdkv3IbBR855X1DvsybRSWLdBsCpZpkfMmf8tr0iY5vhbLBw4caGVaNRgvtCbR5sA4sq0ALAMlx6CzZ8+2Mp+T74NZdmgD4bvhusTmdMLxy7J83Y3zoK3N+M1Fqw7bm/3t93//91uZWybwnVRin/2ItjlekzZe9guuFTnnsJ+yL/CdWxZUrt14HWZkOnXqVCu/+uqrwyps6wu28zBsjWfbGoCxQ2xrA/ZhPqdZnxg7rAOz/bLtWGden+/+zJkzrcx3aVsBmN2pkq2JTInfKGpCCCGEEEIIIYQQZkL+UBNCCCGEEEIIIYQwEz5W1qcpWZl67RiUpVkdKLOi/MzkkJTJmSyRMihKL00WTXkXy/ytZTp66KGHWtl2KR8GlzezTpSSWxvxOSkHrbw/k7BbnzBbGo+bNM7ks5bZi1T6Jct8riXIStl+lfdAtiPbhclWTfJPTErNWDBLI/uO2ddMrkh5KiXPlNdaHLAO4/qZbL0iSWdsWhYJwud/+eWXW/kP/uAPWvncuXMr67kd1qdN9T+zRy3BlmjvymwONv5NyZxIerPS9L5Ds0WwzDhgfFBuzTLji+ez/1LyTCn0+BmZzYLxdfz48VamfJxWZ5Ob2/jCZ2a7cP7lmoPncAxiHRjXX/3qV1fWmXNihd5MT3dj1idjU5mberE+QrsP+4VldSGWOZBjqmUiYp9iFjaWaeuwrKSWTWUYtq6PLasa78F4ZF0vXLjQyrROMDZ5HbOIs70Ym1x7M075XcF2fOSRR1Ze07JBcSyz7FwVeuN3TticyD5Dq9Gv//qvtzLnCI7xf/iHf9jK3//+91uZ743YuoZ9gTYo2u/sHfL9Wx9krHGuZL+jXZF9kNkP+Vtmg7KtP8h4TOO4Qysi7UK2zQFjk++Gz8x4MXuRWZ94Du/FMYTxxYzDLLPOlQxNRuVvIrbtRrI+hRBCCCGEEEIIISyI/KEmhBBCCCGEEEIIYSbckaxPlPlUMhKYRJNlszvR+sNzKJmkXMssS5SiUbrF3/L6LFMa98EHH7QyZVwms6K8a7yrNOtHOSmlqJSSUgJISTapSLAs+05FEkbZn1kY7JqUt7FstqneDA3Wt5Zgr7AdxzeV0alCRRpqWYwYF7QgVd6n2RX5bk0KTqkqY8KyKlk7UzI5vp9ZHDmmsI/xefhbk6haVoAf/OAHrcyMFWxfsik59KbsrMRicwm2RLPo9sassR3ZoHqlu4Qxy7mI0mNKuCtZmMziwPpw3qcsfFxP9jezQfFatF3w3iZhp6yc51esX4xljomvvPJKKzNrG7Pm2PhgbMrKtAQbhbGpWOs9h7D9ON7bmpbXN7sT5xZ7P7wX7UGMA8KYZTxy7cl70brI3zJWaNkYhq3Pw3mKGeOY9Y31vnr1aiszjjgG0YJkduNr1661Mp/NbIy8DtcTtCjy+szEwxhnu5uFqjezzJLhOM3+TIvniy++2Mqf+9znWnn//v2tzHfOLHkcU3n9im3UYpB147jO+YixTHsU18l857yXZR3l9xDjgxZg9h3amPiNSMvgOGNwZZzn8/PZ+DyEdeJ4xPfHtTWf3yyB9p3IWGYWVFqfGHeVb0Ozr1e2epliRfzkjAIhhBBCCCGEEEIIMyd/qAkhhBBCCCGEEEKYCR8r6xPlPGZlqmTXqciFbKdkygZtt21KxShvs6wxrA+vbztmU7plO5ZTJsfrUN7F83nOWD5GmRbPo8yUcq9du3a1Mi0YfDbLUFKRyBOzt5nlwfoE5b9mIeHz2vVNcmbSNevrc2VT2XWmWElMWsksZrQzsD9TAk0Jt71/SiB5HUogLX7NBkWLA6/zcdqzkkXC+hX7JH/LMYvXoSSb0l7K0yn/trjYbqZkW1ty9gr2YWKZ60hvhqZeejNGVTBZOOcosyaxb5oViTYI1p82Z16H0u5h8PiiJYPvw2KQ1+FzmiWZczzHMp5P2fq3v/3tVv7Wt77Vyq+//norW7YSo2Jx6o01W5MtgV77V8WuOAVen2sc9hFb31UyLXIs4hxNmxLjgOtbxi/nE9aH87LZsiwT3DBsjVW2+40bN1Y+A/s/n59zH8cF2kv4bcDY5LhjNrBKNiDWgRYn+0ayjKtsU1uvbvc8sRPYtwj74ZkzZ1r5P/2n/9TKX/jCF1qZfY/tx+9E9lXbhsHg+zSbLDMKsq/xWbgGti0vePzEiROtTLse164cHxjv7FOs8zoLGOOFliqbH9m+9j3MtuCawDIo27uxb0mOTbRGPvvss63MODVLI+n9m0UvyfoUQgghhBBCCCGEsCDyh5oQQgghhBBCCCGEmVDO+tSbTcakSWY1qtTB5IGUblKmRNkjy7REVTKQ2K7SZoOivNMy2vBZbMf3sWWD/7bd4+1+ZiPib01aZlJ1UrGLVGwOhG1tu3NXbBQV+bJl5JkrfIdT7Ay9Uj62JfvqY4891sqHDx9uZfY7yh4p+2SZbc8YP3ToUCuzz5rNhP2F8cjjvM54x/uPsD4yzrhi9jpKOi2mzL7FtjbJ7BtvvNHKly5damW2dSU2t0M+bXNApb+yDZeW9anXblI5p7f9yHa3Ga/PfscsGzyHdj3GNeXotC9wHCBmmxpL6Bn/HLM4hjKbjFkOLSskY5NZYHicz8b6/Mmf/EkrP/PMM63MzBSVrCS9VDJ7VayI251Z8E7Rm7XDfluxjLPM+Yv9mes79iOz/tg1aS+wMsdX9k3a8mgpYEzYmpx14/m0XQzD1rnMrMs8h5ZIWhjsfox3ro35zIxNjgnE3rHZOth2n/3sZ1fei9e0rQwss9uUOWauVL6P2H7f+c53WvnVV19tZVpwWGZccM1l46vFF98/+5RlK6JtyDJb0bJkGQIPHDiw8jpc97E+nEP5vLw+23bdvMm44HUJ12y0VvLZOM/yGbhFAu2Qtv0By7w+x4qXXnqplZmdin2osjauZDruXdv1zpVR1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEmrLU+9VKxR1UkQmY9oQyKdifK28zyYHInqw+ll5RZUTJKqZdJLymHo0TLdptetws1n4FlXpfSUmZ9otyN7WWZqyryLWL2oko2JT4n61ORh/VmbrA6VDI9zAnLTmBMsRmavJk72z/11FOtfPDgwVamBJh1phSR8cLsEvv3729lWheZBcYyJ1BKTIk045ESY8pKWR/KU9fFB+PfMldRlmqZCXg+Y5zPzx3/KfVkXS3TRK/daco5FneVLICV43PFsgyx7jZ3EGuDXhtKrxy+d6wgfBbG8pUrV1qZGV14nGOLzVc2R1vmmmHY2o6MQWa14Dmsh40FlGfzeVjmvMx1yfPPP9/KP/jBD1q5kilmu5nSV5ZgtaiMJZVYq8jhK/ZrHmcfYb+zNaGNr+y/ZlmwLCu03DE2Gcscuzif2lzMeYznD8PWeY315nmc73mc9+A8WLFdsK5sF65dOO5Y5kjCPmHZ3+zbwKxYlk3SWFo8EpvLLAMvx3J+63ENxXfOPs++xjY2qyvhu6pkImK8MB4Z7xz7ObfY+WZlsr7DOvO3tGWNLWA2NvE3XEPzmfk+LNsl60H4jW3rataHdmOWuU5mv6lsbdG71UslI9sUm/D8V70hhBBCCCGEEEIInxDyh5oQQgghhBBCCCGEmVDO+lSRC1lWEzuHmKyUUEJFSRslUZSNUU5W2S3fds6nRJoSa8rkWDaLg2V+oESNu9SPZaK8Lq9FTGZKGSelcrwfJYa9kq1Klq/KddheJjGs3HenMt3cKSjXtXaqWFIq74Tns/9zp3br25QAs3+xzN+y/pbtotJ3KIWmHZDHLdMTMUvjWBbLNqK8k+MIf0/JKOtBSS5l4RcuXGhlWrl4TbZpRdY/5bidU7EcVixObJMlx+mmqNipiI27vRLdXhsUy4xZzsuUJ9MqRNuBjVG0LHDuYsytkxVzHjSsfTlOcW3BOOVz0t7J7Gyvv/56K3N83I6sSb1S7Yp9bsmZnqZYArvl6jL+WX9m2fqz1ZN2D/ZxxhTXsTyH9mRanBiblcxIXFdahjSuYYfBMzLSvjT+zar68R6cH2mj4HqCz885nusb1oExXrEVsx0Z+2Z55bxv65LKGL1k6xPfP+nNbGiWIs4XjBeznle+IdgXLPuf2Y7YB/lbjgPs48ymapndCJ+La0Ou280mNgxb18psO96b2xPwe5NjBNeojCm2ndmjeC+zMPMd0655+fLlVra+RaZYyo2KVbXSv6OoCSGEEEIIIYQQQpgJ+UNNCCGEEEIIIYQQwkxYa32akinGzqlg17RduykfpuSQ8qiK5cruxTIlWiyb1JMyNspHTQZFmRhlX8Pgklnem7LPkydPrnwGStQofTOZWcVSZPWsHK9kVqhch/Rmh1maTJRSRGIWCcusZbvWWxub5PDixYsrr1/Z/Z3nUGLM+vC+lHHympQ3mmWBliPey+w44wwyHzFuH7NWst68N20R/C3lsC+99FIrf//73195fRsv+A4qtpCK7LM3u5PJi81iavVZGjb2WGya3JrjulkazVpH+FurA9mUnYXXYR+s2Bgpw2Y70F5BeTWfa9wOvJbZfnkPiyObyxnjHFM4Jp47d66VOd7tlHWoEte9MbiEmN2ODHKV57Z7VTK+Ve7LPstsn8yYtHfv3pX3tYyCnN/ZXxh3Fis2vo1tQxwX7LqMX8bd/fff38rMVmUWY9o0WA+zMll2VMvCxTLrQDvGo48+uvJeZlOxulXsw0uIR2JbbVTsfpV1rM079n1n/ZZls2vbFhRHjx5tZWYapeWO8wbrzHmGFiJug0ALlW1lwfbhfDjOwsT/sy0DeF3GC8cO1oNxzfvZWMN3wH7ONrVMT9zyoJJFcafmwVifQgghhBBCCCGEEBZE/lATQgghhBBCCCGEMBPKWZ96ZdKVbDwVKT2lUpR4EVqfmHWhIrFmHSjRooyLsjTbwZ5yZsoe2Q5mLWJ5neyR/zaZOyVqbAvem7Ixy2QzJROEYfIz2wG79/pGRQ76Sc1ewf5pmYtMPmp9h1Jly25EGbZZ8SiNZPYKSjJ5Pq9D6SnLrD93y6fsmvfl9dm2Y+sZz2MM8360ZTLTBssca77xjW+08quvvtrKjGU+G2WvbOvKDvO9fcjGL7OGmly2kvXJ+uhcqWTtsLJJ7O25GQu8DuPX2rs3e88UmzOfhXMlJc/2jIwnto/Z+2iJGIatsWrZXmxMZEyxzGfgPHv+/PlWZqY2Pmclg+Z2Y+++khFzU/PyTrMpy7VZfqx/2XUqNheLZc5f7P9cM/O37Mu05tA6z/Utn5HxxC0IeA7X5LzOOJMp50fbGoDWLI4FtDwwHjnWcI63zFU8zjZi23FNsy7746rjbFNCixrPMftrhaXZnYhZynrjsbJtg93L7FTEshWxH7Fvct1Hix6vY/Yr21KD5zMm7BuZz8g1Ju/FtcQwbI1VZoxj+/I425pjEMcaxhHfAedljhf2/hiDXD8zwxrbvRJHU+ay3u04ujMIdtcohBBCCCGEEEIIIWwL+UNNCCGEEEIIIYQQwkyYnPWp97eV45QIUY5FmRUtFZQNUhI1JbPBup3qP4LSOLNd8LeUdFHGxvNZ/7G9ib9hmfWg3ItyUO4SbtI9s3lsaif5Tf22YqWrZHfgb5dgqSDsb2adsJ3wTYJnGXvY12zndUKpMvsj60DpMXdnZ7xToslnpNyaMWKZWDhW8L6Up7IdeB3ajFh/tskwuEyU96Ys85lnnmllk91fvny5lSmZ5bshfAbW2zIW8Hyz6/TGl1lTKudX7ruEOK1YuypxZ3YJvkNaCG0etGyGlB6b1bFXdl6x1Ni4wXikLYBQOk3bBOH4MAxbxxEb+9j/TYZu2dxu3LjRyrSRMPbnZneaYl+yvrsE20VlXVOxRNm6yTJ48jqM3145vI0t7LO0P3A+5fkcKzj/WqZUyzBFGxT7O+dQs2GO4bXYppYBjnHN+dHWw/wt7RhsO9aBY+uePXta2Z7Txj62KbcmIFyXcN1eaTubE5dmUey1fPXa/yu2xCkZMhkX/C2tsVwb873x+4x2PfZTy/RrcyLHKMuuuXv37pX1GQbPJsUxxSxVrB+tWbYtiGVUtOPMjMV1Mo9XYrN3qwijt//1zpXzX/WGEEIIIYQQQgghfELIH2pCCCGEEEIIIYQQZkI561NFRjcliwShZItSLkqMKZOmtNCk/RXJvGUmMWkc70t5G6XdrA+fhRI4SrQo2+b1x79nPXgPyjIpCaM8znYV3yl6s0tUbGwVKdqmLF07AaWMluGHmNTTbBHWv3gv24WeckVKJlkHy9jA3eJtd3rLPMXMKrymxS/tFWYrHMfgR4ztFXxm1s8smrRIVCyRbEezpZmNyI5XMrxUMiuY/cHOsXJlvlmC9cmojE+W8bDSNpTtMx75nu04Ybz3ysgr/YixQ1k045F9n2OC2Ul4Pq2Hw+BZFc3SSSqSbM79tDbwnLlRWZ/Ze52SvWKnmTKesT04prI/V9bAU7KwcUygBeHkyZOtfOrUqVampYJrzqtXr7Yys6Zw7WoZS1lmO3CONisxy8Pg7c65n3CM43zKLFOMQdaPx20c4Pm0I+3fv7+Vr1271spmRyEcs15++eVWfvTRR1v5yJEjK69jY3Rl/ljamtYs2qR324PKGr9i7+39/rU+xUyAhw8fbmWuGdn3uY5lH+f1+VuORdY3bf3ImBiGre0yzgj1EYwRwnVGJUuWWb7t+5/tyLU05+Lx9gQfMWVbj8q7791mpcJyV70hhBBCCCGEEEIIdxn5Q00IIYQQQgghhBDCTPhYWZ+m2FMquy+blI82AsoJeyVOVh9C6ZbJM812QbkWZV8mnbYsGGMqklxei1I5Hh9L3D6CslLKWy27hjEls8IUm9IUSdvS5Nzsn3yfZpdgXzWJMi0DvOb169dbmVJH9mdKqXlN9kHbOd6kp5RxUhr5C7/wC63M2GdMVSTAlELz2Xk+49p2ux/fj7auc+fOtTLlmsy0wXa0evOd2fuzzF58l5bFxuLFrKQVi5OdYxZTY2nZKywLTGWu5BjM98N3SMk/s5HQwsDjtNYxkwmlxIxNvvNKNqjKWMtxiWMX487GActeZzaocYYL/tusZbwuxx2Od2ZdZtmyTs6NKVk5l5aFjdg4xHdl8WtZ7BizNs/a2Nxrg+I1aZFghhbGFK0T7Ke0xXNtaPdirHAsskw9ZsceZxfkdWnTolWfMcjxyGwUfAe0QrBsVmqzfJvVjeuDyjcG11K0dDLTDzNYmQ218g3Gdp9D1rnbYfZ8sh1j6pTvXOvb7NeMQZ7DuDt48GArW9bgStY5q79td8F6jtvBbFQ8buMg44jxy2fg+MXvBMssy3Z8/fXXW5lWRLNuGnfSHpisTyGEEEIIIYQQQgh3AflDTQghhBBCCCGEEMJMKGd96t3teMruyDzHpEyUYlV2Rjd4DiWdlHdRNkb51a1bt1aWKaU0iTjlbfaMlHCO62EydN6bEkrKSnfv3r3yHmahoRStkiVqU3YnUrHJVejNYrIETJbM57Dd3RlH7F/sF7w+j7Ovced13ov2IkLZI/uXWZkMyrlZH8otKSumLYmZHBgTJm1m3x/bB2nnoMSaNpXKDv5mWerNiGTyfbNm9FohejM6TclGMUUyutPYWGW2CD4rpfFjO89HHDt2rJU/+9nPtvJ3v/vdVqbF6ejRo61MK7FlTpySwaAiHee9aGm07DY2F1kmqXVUrHyEccp3ZlL1OVufjEqdtyOrxZ2i8p7NGsAxlfHCa1ofqWSWsXraGtXihf2Ra0DL9GSx3wufhdfkHEqL5RiOiWaX4LNxbWGZpbguf+ONN1bei2NHxdZEi4dlq7H1JOd91of1vHTp0srf9m45UbESzQmrb2Xt05tRkfRmvLTsTuzbXAPa1hSMWcYdbX8sc31becaxzfAj2Mcts9swbF0rmiXbMsWafYnxYusMjh2MccYIrZtsa34z9K4bp8xfle9Hex8VoqgJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTChnfarI7XslapXrmJSpIlu2+vfuBk0pFqGVgXJLk/DxWXg+7RjcvZ9ys/G/K+1F28X58+dbmRI6StcoN6Ws1qSxFdluxfJQkRtOkdpXrjPFTrUTUEZHawDfp+0Mzz5G2aBlTuE1eQ77GvsUMxrZrvWW0Yn9hbJP1pm2KcaOZWZgO/A6rA+tgayDWZ/27ds3ED4/JbAsm92J9bDMIhVLEccHPjOPsw58f9bnrZ4VW5M9C49XMv0sIR5JpT1MJsy4O3HiRCvzHV68eLGV//W//tcrf3vq1KlWfu6551r5i1/8YivTRvG9732vlTk3sb8QywZl87JlHuOcw/ZhjPM4y5zfOF+NYdxaVh6TJduzmdViinVku6nMfVMsjUvA5kTrt7TEcj6ipYjXsTWh0ZvRju3NPm+WAq7dWDezwJp1guMP28Gyo1bl/xxH+Ay2fQDnY7Mb2PYBtHtx3Dl9+vTKuvLdcD1h1icbEwn7BC2pXMfwnfVuFWFz9BKsT2RK1qdNrRes/ew4257rPvZlxg77pmVuYozbPGZrV/Yji007fxjcbm1ZnzjH85l5nPfgMzMueA5tUzzO9rW/EZA7aZ/f1HYcZFmzbAghhBBCCCGEEMJdTP5QE0IIIYQQQgghhDATPlbWp0q5ch1iWZwoJzSmSPxMmk4oM6P8itJrHjfZJ5+F9hDKaynJHGOZmIjtMM4d/9nWlNZR0klJK49T0tYr897Urtp2TZP0kYo0dAky0YqEm+/HLDI8h/3FpNGEvzXJt0m7+R5oR7IMVoT9l/c9ePBgK7N9GF/8re2oz98yxllnWjOGwTNNUKrNczgW9MrfzX5o446Na6xDxfphlgf7bW82At6L5/B57VnmhD2rZfSy52P/tIxRZ8+ebeUnnniilS2bGy0b7PPMjGaWjSmZa/jsnFsq79bGN44V62xMfE72ec61ltmOz8w53mzIS6TXDmz9ewnzJvsb+4JlG7x27Vor0ybMPkUrAPuOZTXp3QqA59DmzKxwPE67Ii0CnJcso6LZnzkWcc3IcYxtyFix+gyDZyy1rKicj3kttrVZRLjmZtuxfhybWB+znNm4QWxNZv2j1/Y75btrTmxHHXszZRmVb0ybK9i/eM6hQ4damfHIufjAgQOtzDjg/MMyr2PfzmZdGs+/vJZ9l9qcbRlk7R3Y8/B8jr+2XUIvvVa63uzDlayfJcvrbc8IIYQQQgghhBBCCHeE/KEmhBBCCCGEEEIIYSaUsz7Z8V7ZXeW3FUtNRZZr9algO1JTxvb++++3ssnMeF+ThlLStu7ZTd5tbc37USZ6/fr1VqakjXJQQjloJWOLMUXGOSWjk12f9Wd7LiHLjGXoomyQthtadWiR4Dk//OEPW9kyibFtKhnArF15PqWYlH3yHMtYYRkYeA7j67777ltZH9aT8c77UubNaw6Dy+grWc8qMlyzG5h1xDLo8Pp834bJv61uJt8nlfHaMmGZbWpO2HuwOYXtYZZTjs3nzp1rZUrvX3/99ZX34vm0SPD98/xdu3a1sll6rV+YtZTj1d69e1fei+ewHWi7sCxyfK5xtgq2tdm9LBMVxyazHlt2s51iipWpYtuz473rgZ2G4zT7hdkHGAucCzjmmc2ud+w0+N5oGea6lHMfMwtxDWhxanHA8YfxaFlcLAvT+Bmtz3B+5RrFLMqVeZZjB9vrvffea2WOuZbJle++8r1R+eaxdqhYd+y+S8v6NGXsrGT7rcRg5bitgS3zGvuXZWoz+5JlVTKrpo1jZjdeZ51nfFWs+r0ZnTmfMtY4vnD+5XhUifftwPpWb+bp7mx//VUNIYQQQgghhBBCCNtB/lATQgghhBBCCCGEMBPKWZ/suEn2KsftOr0yQKtbBbsOJZ2Uk1FKSvmkycns+pR6sUzZ6lh6R6kcZWMVGRWla5bdh1I5Ss5M5m471ZMpFrjK8V65XcVqsQQJN98VZZN79uxZeZz95cSJE638ve99b+X1LU4rskmTg7IOrBuzMtEKQWuh2Q8tAxT7OOvA89kXKvJRMrYoMl4oGbXsO9a+lonJ+iefweyXdrySza03O0IvFWno0rI+EXu3Zhnhc9Oa8/DDD688n1khmEWC75Ntxn564cKFVmY2qErWJ9bfspfwHMY+60PLUmVO6LXvVK9r5zN+uSaglJxy9iny5kp9KvFYsU/a8YrdaW5Wrx5snjJL3Trbzqrjdp3erDGW0Yx2J8YyYSxzDqWFiJhFkRaE/fv3tzJjlnFgc6utdYdh6zObBYnjpllGK98D/C1tn2+++WYrs335Li3D1BQbVGWdWRkHjSWsY8mUsWSK9cTOr1ifrMw+y8xxfCe0AO/bt6+VGe8PPPBAK3NMGNt7V2E2K44bZrMaBrcpERvXKlskWHvZeMrnYRv1fgtvit6+ZeVYn0IIIYQQQgghhBAWRP5QE0IIIYQQQgghhDAT1urIKzsr99pfTEo6xbI0JZuQ1Y3SSFoqKpmeemWJZuVYJ/PvleURe2baoOyadl+7fu97miJT7812YedUnnGnoZzy3XffbWW2Gd8nbREmKzaLmJ1TkuzhOpQuHjlypJW/+MUvtjKl17QvUbZMOWQlswaf17LDUMJNaSjl35Rb8prD4Lvz834V64FlCTL7D5+/kpHNsnqYTJ/H2UZm0bJ6WhYnqz+Psz0rkt+dxjJTmZXt4MGDrXzq1KlW/s3f/M1W5ru6detWK3O+ePnll1deh1m/GHe0TXGssHfLtq9Y+nicMcUy+5SVCePMrJTjMZ7XoiXM5hqzcnH8Ynvx+puS79vxylxm44xZlni8YoPqzZIyJ+yd95bZzysZPyt2fnsPjH3CcZGZPC2TI/ss68b+S+v08ePHV9bNxns+I+drjhVjyzDjkZYts4HxmVkny4jD52S9eV9bP/E6HHNt64Bem1zl+CeJih2Y9NqXes+pjHO2biL8fqS9j+V33nmnlWl5Zmxa3ycWp7bu5TVp7xvf26yvxLYS4P3Yz3kdm5dZb2ae41y8qXlnUxmdKvXptSXOf2YNIYQQQgghhBBC+ISQP9SEEEIIIYQQQgghzIRy1qcpUr5KpidjSqanXksUJY2UYlHeWMmOUqmD7WTP64+hRYq/r0iwKtJKytVMwj6Wrq6iIi+u0GuV6j1nCVJtg3JK9hlKdCmZvnnzZitfvny5lSmT5nue8g5NPmq7tlN+yeszywpjhM/OOGCcXr16tZXZDnwuWj/YDqwPjzMjBOs2DFvj4u233155Hutt8dVrG6zYHNhGtsu/2ZRMOm70xlSl/qzP2HI2RypjsGVXoTWJGdB4TdqaaBdgf2asPf30061M6y6zTlB6TbsEZcuWScrGBHtGHmeZcUd7FGPL7DjrpPJ8BtrArO+ZnYOwHzIzh9lKzU5FKjFeyWA4xeJk7Vvp00vIAGXrl14pus2JZg/l3MHjtCSzDrQ/8L0xZm2tSEuFWYZZT8bgZz/72Va2+ZHXoTWB62eeT0vFeN40WxTblG3B+DW7MduFbc0y68G1AsdBricqa3TrW9tha6p8byzNTlUZe4xei9OULD08v9ceyn7EDMIcH8xuX8kCatmWPk6WMPu9tdeUTLHjceEjOI5YRuR1tudVVCxOm8reWOlblblnuV+qIYQQQgghhBBCCHcZ+UNNCCGEEEIIIYQQwkxYa32qyH92KstBr3y4YpuqWJy2w65lO9xTJjcMW6WllIxWZJC92ZpYp4qks1c21vuejClSN2KywrlCqa/JL2lzoMyS8l5mPKAEumJzqUj1K9kraMuyneAZC5RCcyd4Xp9yZsYKpeP79+9vZduNfvfu3a1Mi8P42Tl2mPXAmJK9wCyQFQmvxaPZpgw7f1M2KLPJzZV12fo+wuxotMfRgmR9mzHyzDPPtPJv/dZvrTyf8wttU+wLPMeykFX6Hc+nPJkyb1oZeF8bN3ol8eueoZKtyjK9sd05Rtx3332tzDHLrDKVOdqskdbPzErK4ybfN/trbxaWuVLJUtprmbcMUHw/tDhxzvrc5z7XyowLxr7Z5Lkus3GDlgLWmXF38uTJVv7Sl7608vrnzp1rZc6/jFnel/VkedzmlqGJa13aqywzKanYMXh9wu0F7L1WtnvYKdvR0qyIxLJcVtYRFZsS6f2uNGwctetwruf8yzGB60z2d/7WLLY2n9gYz3YeZ9Sk/bjXWkbs+4T3Y4zTlmnfKr22rinfifbs9r57+1BpO4muK4YQQgghhBBCCCGEbSN/qAkhhBBCCCGEEEKYCeWsT5uyg9xJOV5lt2aTRlbkSJVzeiVRrA93yx+GrVYWSuIq9TDpsv22kt2JbEpKSHplnFNkn7aL+lzhbuiWBcmsQyYhZJ+y3eMrfc1sHZR3WmYGZq0yWbXt8s5MN7Q1Ua5I2TYtFSappl2A/WJsO+D/sa5vvvlmKzN+rY9ZP6zIsC1mTT5b6fN2L7a72aN6xyVrX74/ynGXgLUN5b3sF+z/Fy5caGVmYOG8wNinnP+1115rZcYa++bzzz+/8rc2t5jM2+ZNxinLfHZKnmnTsDGH9+V11tmTezMh2pjId8n2YpYOjnEco2mpsPualNoybJnFcixhv931TbI+xXo5V3qzPlXGMOt7bJsrV660Mscwxu/hw4dbmXZg2umuXbvWyuxT58+fb2XL+sR+wXfFuZL9mvWnTYMxy7WEZZbkOWM7P9uOZbMgcRyxrDEWs5V3XMl2WTk/9MO1Vu+4UrE7Wca8ipWtYoshtnUA+ybjlFsTHD9+vJXZr2mJ4thv430ly1U1q6fZCStbRtjfEbgW5ZrGrsMxgedbJtNKuTdDGOm9jr2nWJ9CCCGEEEIIIYQQFkT+UBNCCCGEEEIIIYQwEz5W1ic7x45XMo1MqUPv+b0SRZPMTdkh3CRzlH9S9jYMW2VzlYwFvVlXKnaMyjUrMjs7n0y5V+WcXqnbnDB7ETFJtsl4e2XhxOSNJpNkhgtaP2jZYP+nJPvTn/70ymvyvTGrhY0/bDfL2kR5KstjCw7tJdypnmXKNa1OJjGt2BMMk3/32v2mjHeVGDfp7dJik8/BPmZZLWjhoQT60qVLrcy+Q3sU5cAmJeb57Gu0CprlweKXmPyZz0XZNq0cvf3OLLyW6WiM2etMAs570OLEsYnWDrapZasxWT/byyTTZn2y7E42tpCKfN/mht41xhKYYmGx+fTtt99uZYsRzlk2PrBPvfHGG63MccNsQ2YReOWVV1Y+C+cuWiY5D7Ivc7y6fv16K1umqmHwtYhlwuM4VZnLbN1j9FqZ5mx3WloGqEp2ykoGPHtum8sq16/MfbZOsd+yPowRxi/jhefwXlx72r0q3whj+7+tV2xbBNbJxhrLXPzcc8+18sMPP9zKtHRyvKMFdPydvOq+dtwsxhXbb8VyVrHVVbj7ZtkQQgghhBBCCCGEhZI/1IQQQgghhBBCCCHMhHLWJ2OKJWpTWZMqsvpKFqPKzu52/d4drykZpUydu+VT8jkMWyVevdYns1FYdo1KlqwptjQ73muV2o4d4ZeQ9cl2STcpH/ubvX+TOpKKlJi/pbzx6tWrrUyLwMWLF1uZkmnLWrVr165WPnjwYCtTirhnz55WpiycliVm4ti7d28rM87YJpR2M3vUMGx9NkrGeW/LAESrgmHSU2Ky+ykZ73rtEla3iq2J96XEn9jxOVEZk2hn4HNzzGefomSYfZiZVtgnKRmmpNmsA2Y7MEm5Wdb47IxTltnfLdMc28cyjFlmsHFfs/GR2HGOC3x+Wrlo3XzsscdameMRrS8sEz4zGWeY+4je2OyNcZOCk0rbzok7aQexNQWzgTErIG2/u3fvbmXG+Llz51qZMU67RMXqyj774osvtvKrr7668lnM4mBzvWUXrGKWLbIpW8Gmfjs3lhCPhNY/+9ax75jKWFixPvWOqRwjK7YsYmsAzhuWXZDrf2ZC49xasQOzj/A643qzbOsGjju2puU75rh27NixVuZzfuELX1h5L46h3/zmN1eew7YjZkurWJ96syuazdWy3RlR1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEmrLU+VTJyVGRpFYlir4WFmF2mkm3KMjBYFgXLhEB5Zq/E2Ha4p7xtGFxmbNJzkwaaJcbkWNYulWxKvXan3gxhlfta+5jkrCJF22loGWB9TXbH47ZTfa981Kw8hOdT8v/WW2+1Mi1Olh2F5/yP//E/WpkZZE6ePNnKtCC89NJLK+tGC8mv/uqvtjItJPwtZeqUXg7DVmsWn9Mk4JRNmsSUbMpaaJkMWM+KXNgsc6QyLlWslHxPS8syY9kPOLZzfmFGFfZ5sw6ZVcoyQFHebNlUKhanSuxT6sv+zuvwGStZjyrZh8Z9pGJRJjY+0o7CeD98+HAr04LyS7/0S63MzFBnzpxZeb6NFRZHtt6yOOU7s2tanFasAkuwjfSOo1OeydYgfG+0yfIc9i9aBF5++eVWZp+qWF3NimUWAfvtptpnzBysOtv1bOH23H///a1MizMzjtl3SSWDX8X6VFl/sQ6cTytbTXAtw9/Sqs9xmudzruRxyxDHcsXCPLbycJ1R+UaztRmvy3P4vtlebAs+G8/nXMwsUf/lv/yXVuY2Irb1A5/R6mnzoPUV+762ebn0t4/bnhFCCCGEEEIIIYQQ7gj5Q00IIYQQQgghhBDCTFhrfSImraxkgek9bvJDk1lVJP9m/ahI8i0DhcnnrH2snpS0UeY6lpf3ylvtt8Qk7JUMUL0ZmipS0sp9TdrYm8nCpPxLyPrE+trO66SS4cfOqVgLK7vxs59XMjmYzJ/2KMYLYUYnysj5zikfPXr0aCvTukQ7CTNu0LIwDFufhxkLeG+TnzIDFo9z3GHb8TqWocfksCbFpD3Grm/2lUqsGfztz/3cz7Uys+qYFHau8J3zvdk7vHXr1spzmDHM3g/L/C3tDHyHlJSznrRBWSxXxhBSmYtMnm0ZGCyGqjaFynxkcz/vzT5p7ch7PfjggyvPoTzbJP6W3crqaWO6jYOW0ac3w2PFDrfT3Ek7i7UT25vzSMWWfe3atVbm+6zM1xWJfeX8ylqvynZskWB12o4sUXOjNyPqnOAYaWMh50H7jjMqW2dU2q8yHhusMzMg8dl5nHM3rVK2Drc5tJIBedw+le9w0rvtCMvcbsC+1TnHHTlyZOX1n3zyyVbm2Mp+w7qxTc0aRyrWJ16fda5Yko0oakIIIYQQQgghhBBmQv5QE0IIIYQQQgghhDAT1mrTKXU3Oa3J7c22QCq7cFdk9RXJkmHn876Un9ku4r2yOsueU2m38Xl2vCLtrtTP7tWbocneccWK1nt9O87n4o7fvD4tGHPFbFuVd1WRG/e+c/utZVgzyahleOG7suvQBkWLh9l3aFF6/vnnVz4LM2ussyUSWrMqmdp4LRvXKNE0KtJbk8+yXcwGWBnvLMYrcnxad3j8/fffX1nPuWJ922w7fCdsex6nzYHjEy1OZnPhcbNi2fxOGI88x+LLrDb33HNPK/MZ+Vy0JVq7TcWe2eyBrAfHF2bkYjY4s6bwt7RQse0s4waP8/0RHrf5zt69zRM2RllGk7li4+t22J17bSicNyjbt3pWsqza2qoSR73WmY+Tka+y3q1YKirWjMo77rWH7RSVNfCSbVCcC/hMHDstY62tzSqWH1v708JCqzptSjbuclznXLF3795WpvWeNiDOlZYplMdtjUnMVjxeW1n/6d3+oJLNk+sA+5sC253txTmUz8zjZ8+ebWXOyyxznWlrncrfIyzrE5+RfaXyvRlFTQghhBBCCCGEEMJMyB9qQgghhBBCCCGEEGbCWusTpbKUZVZkdBXZXa8cj5KrSgYku9emzrcdqSuZdHqlqmMonbIMQCYr/TjZMlZRsTNMefdWT7tvRSJs8lde87777rtt3XYa9rfeWNjUO68ct7r1ynJpr+A1zV7AzCqWoYhljm+V3dmrY5dZ+XptBZRNmiXVJL+UVnJMN2sZ284sNDZ+2fs2OSufyyyKPGcJ9gqzsBCzoZh1iOdY3+b7Z7yY9cksbmZhtv5vcmZKuDmmUsLMccz6qcXQx5HzVzJ88N58H5aBg7/lMzBzCX/LZ2Z2M3tms36xf9ACV7Fz99obzWbFc/gsc4Xv06yWm6IyV9p7Zl+w92Y2B8av2T0qNiM7vslsUFPW4r3rmE294znYiHot7kuYNzlfWCY69n+OebSxW//nGMz243hMaxXHcs5Zhw4damW2q63LOPfx/N27d7cyLVS8l40PhPe1eZxtWP3GrKzXezNmVc63dSOfje+Jz8asT2zrp59+upWZvZVZF1lmfzK7OGE92Z/Y52x9U9nWIIqaEEIIIYQQQgghhJmQP9SEEEIIIYQQQgghzIQfm8MO5iGEEEIIIYQQQgghipoQQgghhBBCCCGE2ZA/1IQQQgghhBBCCCHMhPyhJoQQQgghhBBCCGEm5A81IYQQQgghhBBCCDMhf6gJIYQQQgghhBBCmAn5Q00IIYQQQgghhBDCTPj/AAC5zj7HjzajAAAAAElFTkSuQmCC\n" }, "metadata": { "needs_background": "light" - }, - "output_type": "display_data" + } } ], "source": [ @@ -5102,7 +643,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.9" + "version": "3.8.3" } }, "nbformat": 4, From c9ba20a7fd3cb8204ce74bc06e05b5419e14c6ab Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Wed, 19 Aug 2020 11:24:38 +0800 Subject: [PATCH 19/37] [DLMED] refactor image readers and load image transform --- monai/data/image_reader.py | 226 +++++++++++++++++++---------------- monai/transforms/io/array.py | 45 ++----- 2 files changed, 136 insertions(+), 135 deletions(-) diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index 39542b2c21..1f44149b85 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -10,12 +10,12 @@ # limitations under the License. from abc import ABC, abstractmethod -from typing import Any, Dict, List, Optional, Sequence +from typing import Any, Dict, Tuple, Optional, Sequence, Union import numpy as np from monai.data.utils import correct_nifti_header_if_necessary -from monai.utils import optional_import +from monai.utils import optional_import, ensure_tuple itk, _ = optional_import("itk", allow_namespace_pkg=True) nib, _ = optional_import("nibabel") @@ -23,22 +23,20 @@ class ImageReader(ABC): """Abstract class to define interface APIs to load image files. - users need to call `read_image` to load image and then use other APIs - to get image data or properties from meta data. + users need to call `read` to load image and then use `get_data` + to get the image data and properties from meta data. Args: img: image to initialize the reader, this is for the usage that the image data is already in memory and no need to read from file again, default is None. - as_closest_canonical: if True, load the image as closest to canonical axis format. """ - def __init__(self, img: Optional[Any] = None, as_closest_canonical: bool = False): + def __init__(self, img: Optional[Any] = None) -> None: self.img = img - self.as_closest_canonical = as_closest_canonical - self._suffixes: Optional[Sequence] = None + self._suffixes: Optional[Sequence[str]] = None - def get_suffixes(self): + def get_suffixes(self) -> Sequence[str]: """ Get the supported image file suffixes of current reader. Default is None, support all kinds of image format. @@ -46,7 +44,7 @@ def get_suffixes(self): """ return self._suffixes - def verify_suffix(self, suffix: str): + def verify_suffix(self, suffix: str) -> bool: """ Verify whether the specified file matches supported suffixes. If supported suffixes is None, skip the verification. @@ -54,7 +52,7 @@ def verify_suffix(self, suffix: str): """ return False if self._suffixes is not None and suffix not in self._suffixes else True - def uncache(self): + def uncache(self) -> None: """ Release image object and other cache data. @@ -62,51 +60,19 @@ def uncache(self): self.img = None @abstractmethod - def convert(self): - """ - Convert the image if necessary. - - """ - raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") - - @abstractmethod - def read_image(self, filename: str): - """ - Read image data from specified file. - Note that different readers return different image data type. - - """ - raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") - - @abstractmethod - def get_meta_dict(self) -> Dict: - """ - Get the all the meta data of the image and convert to dict type. - - """ - raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") - - @abstractmethod - def get_affine(self) -> np.ndarray: + def read(self, filename: str) -> Union[Sequence[Any], Any]: """ - Get or construct the affine matrix of the image, it can be used to correct - spacing, orientation or execute spatial transforms. + Read image data from specified file or files and save to `self.img`. + Note that it returns the raw data, so different readers return different image data type. """ raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") @abstractmethod - def get_spatial_shape(self) -> List: - """ - Get the spatial shape of image data, it doesn't contain the channel dim. - + def get_data(self) -> Tuple[np.ndarray, Dict]: """ - raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") - - @abstractmethod - def get_array_data(self) -> np.ndarray: - """ - Get the raw array data of the image, converted to Numpy array. + Extract data array and meta data from loaded image and return them. + This function must return 2 objects, first is numpy array of image data, second is dict of meta data. """ raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") @@ -118,42 +84,77 @@ class ITKReader(ImageReader): All the supported image formats can be found: https://github.com/InsightSoftwareConsortium/ITK/tree/master/Modules/IO + Args: + img: image to initialize the reader, this is for the usage that the image data + is already in memory and no need to read from file again, default is None. + keep_axes: default to `True`. if `False`, the numpy array will have C-order indexing. + this is the reverse of how indices are specified in ITK, i.e. k,j,i versus i,j,k. + however C-order indexing is expected by most algorithms in numpy / scipy. + """ + def __init__(self, img: Optional[itk.Image] = None, keep_axes: bool = True): + super().__init__(img=img) + self.keep_axes = keep_axes - def convert(self, as_closest_canonical: Optional[bool] = None): + def read(self, filename: str): """ - Convert the image as closest to canonical axis format. + Read image data from specified file or files. + Note that the returned object is ITK image object or list of ITK image objects. + `self.img` is always a list, even only has 1 image. """ - # FIXME: need to add support later - pass + filenames: Sequence[str] = ensure_tuple(filename) + self.img: Sequence[itk.Image] = list() + for name in filenames: + self.img.append(itk.imread(name)) + return self.img if len(filenames) > 1 else self.img[0] - def read_image(self, filename: str): + def get_data(self): """ - Read image data from specified file. - Note that the returned object is ITK image object. + Extract data array and meta data from loaded image and return them. + This function returns 2 objects, first is numpy array of image data, second is dict of meta data. + It constructs `affine`, `original_affine`, and `spatial_shape` and stores in meta dict. + If the loaded data is a list of images, stack them at first dim and use the meta data of first image. """ - self.img = itk.imread(filename) + img_array: Sequence[np.ndarray] = list() + compatible_meta: Dict = None + for img in self.img: + header = self._get_meta_dict(img) + header["original_affine"] = self._get_affine(img) + header["affine"] = header["original_affine"].copy() + header["spatial_shape"] = self._get_spatial_shape(img) + img_array.append(self._get_array_data(img)) + + if compatible_meta is None: + compatible_meta = header + else: + if not np.allclose(header["affine"], compatible_meta["affine"]): + raise RuntimeError("affine matrix of all images should be same.") + if not np.allclose(header["spatial_shape"], compatible_meta["spatial_shape"]): + raise RuntimeError("spatial_shape of all images should be same.") + + img_array = np.stack(img_array, axis=0) if len(img_array) > 1 else img_array[0] + return img_array, compatible_meta - def get_meta_dict(self) -> Dict: + def _get_meta_dict(self, img: itk.Image) -> Dict: """ - Get the all the meta data of the image and convert to dict type. + Get all the meta data of the image and convert to dict type. """ - img_meta_dict = self.img.GetMetaDataDictionary() + img_meta_dict = img.GetMetaDataDictionary() meta_dict = dict() for key in img_meta_dict.GetKeys(): # ignore deprecated, legacy members that cause issues if key.startswith("ITK_original_"): continue meta_dict[key] = img_meta_dict[key] - meta_dict["origin"] = np.asarray(self.img.GetOrigin()) - meta_dict["spacing"] = np.asarray(self.img.GetSpacing()) - meta_dict["direction"] = itk.array_from_matrix(self.img.GetDirection()) + meta_dict["origin"] = np.asarray(img.GetOrigin()) + meta_dict["spacing"] = np.asarray(img.GetSpacing()) + meta_dict["direction"] = itk.array_from_matrix(img.GetDirection()) return meta_dict - def get_affine(self) -> np.ndarray: + def _get_affine(self, img: itk.Image) -> np.ndarray: """ Get or construct the affine matrix of the image, it can be used to correct spacing, orientation or execute spatial transforms. @@ -161,9 +162,9 @@ def get_affine(self) -> np.ndarray: Refer to: https://github.com/RSIP-Vision/medio """ - direction = itk.array_from_matrix(self.img.GetDirection()) - spacing = np.asarray(self.img.GetSpacing()) - origin = np.asarray(self.img.GetOrigin()) + direction = itk.array_from_matrix(img.GetDirection()) + spacing = np.asarray(img.GetSpacing()) + origin = np.asarray(img.GetOrigin()) direction = np.asarray(direction) affine = np.eye(direction.shape[0] + 1) @@ -171,19 +172,19 @@ def get_affine(self) -> np.ndarray: affine[(slice(-1), -1)] = origin return affine - def get_spatial_shape(self) -> List: + def _get_spatial_shape(self, img: itk.Image) -> Sequence: """ Get the spatial shape of image data, it doesn't contain the channel dim. """ - return list(itk.size(self.img)) + return list(itk.size(img)) - def get_array_data(self) -> np.ndarray: + def _get_array_data(self, img: itk.Image) -> np.ndarray: """ Get the raw array data of the image, converted to Numpy array. """ - return itk.array_view_from_image(self.img, keep_axes=True) + return itk.array_view_from_image(img, keep_axes=self.keep_axes) class NibabelReader(ImageReader): @@ -198,63 +199,87 @@ class NibabelReader(ImageReader): """ def __init__(self, img: Optional[Any] = None, as_closest_canonical: bool = False): - super().__init__(img, as_closest_canonical) - self._suffixes: [Sequence] = ["nii", "nii.gz"] + super().__init__(img) + self._suffixes: [Sequence[str]] = ["nii", "nii.gz"] + self.as_closest_canonical = as_closest_canonical - def convert(self, as_closest_canonical: Optional[bool] = None): + def read(self, filename: str): """ - Convert the image as closest to canonical axis format. + Read image data from specified file or files. + Note that the returned object is Nibabel image object or list of Nibabel image objects. + `self.img` is always a list, even only has 1 image. """ - if as_closest_canonical is None: - as_closest_canonical = self.as_closest_canonical - if as_closest_canonical: - self.img = nib.as_closest_canonical(self.img) + filenames: Sequence[str] = ensure_tuple(filename) + self.img: Sequence[nib.nifti1.Nifti1Image] = list() + for name in filenames: + img = nib.load(name) + img = correct_nifti_header_if_necessary(img) + self.img.append(img) + return self.img if len(filenames) > 1 else self.img[0] - def read_image(self, filename: str): + def get_data(self): """ - Read image data from specified file. - Note that the returned object is Nibabel image object. + Extract data array and meta data from loaded image and return them. + This function returns 2 objects, first is numpy array of image data, second is dict of meta data. + It constructs `affine`, `original_affine`, and `spatial_shape` and stores in meta dict. + If the loaded data is a list of images, stack them at first dim and use the meta data of first image. """ - img = nib.load(filename) - img = correct_nifti_header_if_necessary(img) - if self.as_closest_canonical: - img = nib.as_closest_canonical(img) - self.img = img + img_array: Sequence[np.ndarray] = list() + compatible_meta: Dict = None + for img in self.img: + header = self._get_meta_dict(img) + header["original_affine"] = self._get_affine(img) + header["affine"] = header["original_affine"].copy() + if self.as_closest_canonical: + img = nib.as_closest_canonical(img) + header["affine"] = self._get_affine(img) + header["as_closest_canonical"] = self.as_closest_canonical + header["spatial_shape"] = self._get_spatial_shape(img) + img_array.append(self._get_array_data(img)) + + if compatible_meta is None: + compatible_meta = header + else: + if not np.allclose(header["affine"], compatible_meta["affine"]): + raise RuntimeError("affine matrix of all images should be same.") + if not np.allclose(header["spatial_shape"], compatible_meta["spatial_shape"]): + raise RuntimeError("spatial_shape of all images should be same.") + + img_array = np.stack(img_array, axis=0) if len(img_array) > 1 else img_array[0] + return img_array, compatible_meta - def get_meta_dict(self) -> Dict: + def _get_meta_dict(self, img: nib.nifti1.Nifti1Image) -> Dict: """ Get the all the meta data of the image and convert to dict type. """ - meta_data = dict(self.img.header) - meta_data["as_closest_canonical"] = self.as_closest_canonical - return meta_data + return dict(img.header) - def get_affine(self) -> np.ndarray: + def _get_affine(self, img: nib.nifti1.Nifti1Image) -> np.ndarray: """ Get the affine matrix of the image, it can be used to correct spacing, orientation or execute spatial transforms. """ - return self.img.affine + return img.affine - def get_spatial_shape(self) -> List: + def _get_spatial_shape(self, img: nib.nifti1.Nifti1Image) -> Sequence: """ Get the spatial shape of image data, it doesn't contain the channel dim. """ - ndim = self.img.header["dim"][0] + ndim = img.header["dim"][0] spatial_rank = min(ndim, 3) - return self.img.header["dim"][1 : spatial_rank + 1] + return img.header["dim"][1 : spatial_rank + 1] - def get_array_data(self) -> np.ndarray: + def _get_array_data(self, img: nib.nifti1.Nifti1Image) -> np.ndarray: """ Get the raw array data of the image, converted to Numpy array. """ - return np.array(self.img.get_fdata()) + return np.array(img.get_fdata()) def uncache(self): """ @@ -262,5 +287,6 @@ def uncache(self): """ if self.img is not None: - self.img.uncache() - super().uncache() + for img in self.img: + img.uncache() + super().uncache() diff --git a/monai/transforms/io/array.py b/monai/transforms/io/array.py index ebe191c934..483904ba58 100644 --- a/monai/transforms/io/array.py +++ b/monai/transforms/io/array.py @@ -40,7 +40,7 @@ class LoadImage(Transform): """ def __init__( - self, reader: Optional[ImageReader] = None, image_only: bool = False, dtype: Optional[np.dtype] = np.float32, + self, reader: Optional[ImageReader] = None, image_only: bool = False, dtype: np.dtype = np.float32, ) -> None: """ Args: @@ -63,44 +63,19 @@ def __call__(self, filename: Union[Sequence[Union[Path, str]], Path, str]): """ Args: filename: path file or file-like object or a list of files. - """ - filename = ensure_tuple(filename) - img_array = list() - compatible_meta: Dict = None - for name in filename: - supported_format = False - suffixes = name.split(".") - for i in range(len(suffixes) - 1): - if self.reader.verify_suffix(".".join(suffixes[-(i + 2) : -1])): - supported_format = True - break - - if not supported_format: - raise RuntimeError("unsupported file format.") - self.reader.read_image(name) - img_array.append(self.reader.get_array_data().astype(dtype=self.dtype)) - if self.image_only: - continue - - header = self.reader.get_meta_dict() - header["filename_or_obj"] = name - header["original_affine"] = self.reader.get_affine() - self.reader.convert() - header["affine"] = self.reader.get_affine() - header["spatial_shape"] = self.reader.get_spatial_shape() + will save the filename to meta_data with key `filename_or_obj`. + if provided a list of files, use the filename of first file. - if compatible_meta is None: - compatible_meta = header - else: - assert np.allclose( - header["affine"], compatible_meta["affine"] - ), "affine data of all images should be same." - - img_array = np.stack(img_array, axis=0) if len(img_array) > 1 else img_array[0] + """ + self.reader.read(filename) + img_array, meta_data = self.reader.get_data() self.reader.uncache() + img_array = img_array.astype(self.dtype) + if self.image_only: return img_array - return img_array, compatible_meta + meta_data["filename_or_obj"] = ensure_tuple(filename)[0] + return img_array, meta_data class LoadNifti(Transform): From 1270df13a28a9f97b5f32b236318ddb43580d5c3 Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Wed, 19 Aug 2020 16:29:35 +0800 Subject: [PATCH 20/37] [DLMED] update LoadImage transform --- monai/data/image_reader.py | 67 +++++++++++++++++++++-- monai/transforms/io/array.py | 50 +++++++++++++---- monai/transforms/io/dictionary.py | 91 ++++++++++++++++++++----------- tests/test_load_image.py | 17 +++++- tests/test_load_imaged.py | 19 ++++++- 5 files changed, 192 insertions(+), 52 deletions(-) diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index 1f44149b85..b2d01000bb 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -44,13 +44,33 @@ def get_suffixes(self) -> Sequence[str]: """ return self._suffixes - def verify_suffix(self, suffix: str) -> bool: + def verify_suffix(self, filename: str) -> bool: """ - Verify whether the specified file matches supported suffixes. - If supported suffixes is None, skip the verification. + Verify whether the specified file or files match supported suffixes. + If supported suffixes is None, skip the verification and return True. + Args: + filename: file name or a list of file names to read. + if a list of files, verify all the subffixes. """ - return False if self._suffixes is not None and suffix not in self._suffixes else True + + if self._suffixes is None: + return True + + supported_format: bool = True + filenames: Sequence[str] = ensure_tuple(filename) + for name in filenames: + suffixes: Sequence[str] = name.split(".") + passed: bool = False + for i in range(len(suffixes) - 1): + if ".".join(suffixes[-(i + 2) : -1]) in self._suffixes: + passed = True + break + if not passed: + supported_format = False + break + + return supported_format def uncache(self) -> None: """ @@ -65,6 +85,9 @@ def read(self, filename: str) -> Union[Sequence[Any], Any]: Read image data from specified file or files and save to `self.img`. Note that it returns the raw data, so different readers return different image data type. + Args: + filename: file name or a list of file names to read. + """ raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") @@ -102,6 +125,9 @@ def read(self, filename: str): Note that the returned object is ITK image object or list of ITK image objects. `self.img` is always a list, even only has 1 image. + Args: + filename: file name or a list of file names to read. + """ filenames: Sequence[str] = ensure_tuple(filename) self.img: Sequence[itk.Image] = list() @@ -114,7 +140,8 @@ def get_data(self): Extract data array and meta data from loaded image and return them. This function returns 2 objects, first is numpy array of image data, second is dict of meta data. It constructs `affine`, `original_affine`, and `spatial_shape` and stores in meta dict. - If the loaded data is a list of images, stack them at first dim and use the meta data of first image. + If loading a list of files, stack them together and add a new dimension as first dimension, + and use the meta data of the first image to represent the stacked result. """ img_array: Sequence[np.ndarray] = list() @@ -141,6 +168,9 @@ def _get_meta_dict(self, img: itk.Image) -> Dict: """ Get all the meta data of the image and convert to dict type. + Args: + img: a ITK image object loaded from a image file. + """ img_meta_dict = img.GetMetaDataDictionary() meta_dict = dict() @@ -161,6 +191,9 @@ def _get_affine(self, img: itk.Image) -> np.ndarray: Construct Affine matrix based on direction, spacing, origin information. Refer to: https://github.com/RSIP-Vision/medio + Args: + img: a ITK image object loaded from a image file. + """ direction = itk.array_from_matrix(img.GetDirection()) spacing = np.asarray(img.GetSpacing()) @@ -176,6 +209,9 @@ def _get_spatial_shape(self, img: itk.Image) -> Sequence: """ Get the spatial shape of image data, it doesn't contain the channel dim. + Args: + img: a ITK image object loaded from a image file. + """ return list(itk.size(img)) @@ -183,6 +219,9 @@ def _get_array_data(self, img: itk.Image) -> np.ndarray: """ Get the raw array data of the image, converted to Numpy array. + Args: + img: a ITK image object loaded from a image file. + """ return itk.array_view_from_image(img, keep_axes=self.keep_axes) @@ -209,6 +248,9 @@ def read(self, filename: str): Note that the returned object is Nibabel image object or list of Nibabel image objects. `self.img` is always a list, even only has 1 image. + Args: + filename: file name or a list of file names to read. + """ filenames: Sequence[str] = ensure_tuple(filename) self.img: Sequence[nib.nifti1.Nifti1Image] = list() @@ -223,7 +265,8 @@ def get_data(self): Extract data array and meta data from loaded image and return them. This function returns 2 objects, first is numpy array of image data, second is dict of meta data. It constructs `affine`, `original_affine`, and `spatial_shape` and stores in meta dict. - If the loaded data is a list of images, stack them at first dim and use the meta data of first image. + If loading a list of files, stack them together and add a new dimension as first dimension, + and use the meta data of the first image to represent the stacked result. """ img_array: Sequence[np.ndarray] = list() @@ -254,6 +297,9 @@ def _get_meta_dict(self, img: nib.nifti1.Nifti1Image) -> Dict: """ Get the all the meta data of the image and convert to dict type. + Args: + img: a Nibabel image object loaded from a image file. + """ return dict(img.header) @@ -262,6 +308,9 @@ def _get_affine(self, img: nib.nifti1.Nifti1Image) -> np.ndarray: Get the affine matrix of the image, it can be used to correct spacing, orientation or execute spatial transforms. + Args: + img: a Nibabel image object loaded from a image file. + """ return img.affine @@ -269,6 +318,9 @@ def _get_spatial_shape(self, img: nib.nifti1.Nifti1Image) -> Sequence: """ Get the spatial shape of image data, it doesn't contain the channel dim. + Args: + img: a Nibabel image object loaded from a image file. + """ ndim = img.header["dim"][0] spatial_rank = min(ndim, 3) @@ -278,6 +330,9 @@ def _get_array_data(self, img: nib.nifti1.Nifti1Image) -> np.ndarray: """ Get the raw array data of the image, converted to Numpy array. + Args: + img: a Nibabel image object loaded from a image file. + """ return np.array(img.get_fdata()) diff --git a/monai/transforms/io/array.py b/monai/transforms/io/array.py index 483904ba58..9bfaa647cb 100644 --- a/monai/transforms/io/array.py +++ b/monai/transforms/io/array.py @@ -34,8 +34,10 @@ class LoadImage(Transform): Load image file or files from provided path based on reader, default reader is ITK. All the supported image formats of ITK: https://github.com/InsightSoftwareConsortium/ITK/tree/master/Modules/IO - If loading a list of files, stack them together and add a new dimension as first dimension, - and use the meta data of the first image to represent the stacked result. + Automatically choose readers based on the supported subffixes and in below order: + - User specified reader at runtime when call this loader. + - Registered readers from the first to the last in list. + - Default ITK reader. """ @@ -44,7 +46,8 @@ def __init__( ) -> None: """ Args: - reader: use reader to load image file and meta data, default is ITK. + reader: register reader to load image file and meta data, if None, still can register readers + at runtime or use the default ITK reader. image_only: if True return only the image volume, otherwise return image data array and header dict. dtype: if not None convert the loaded image to this data type. @@ -53,23 +56,50 @@ def __init__( or a tuple of two elements containing the data array, and the meta data in a dict format otherwise. """ - if reader is None: - reader = ITKReader() - self.reader = reader + self.defaut_reader: ITKReader = ITKReader() + self.readers: Sequence[ImageReader] = list() + if reader is not None: + self.readers.append(reader) self.image_only = image_only self.dtype = dtype - def __call__(self, filename: Union[Sequence[Union[Path, str]], Path, str]): + def register(self, reader: Optional[ImageReader]) -> List[ImageReader]: + """ + Register image reader to load image file and meta data. + Return all the registered image readers. + + Args: + reader: registered reader to load image file and meta data based on subfix, + if all registered readers can't match subfix at runtime, use the default ITK reader. + + """ + self.readers.append(reader) + return self.readers + + def __call__( + self, + filename: Union[Sequence[Union[Path, str]], Path, str], + reader: Optional[ImageReader] = None, + ): """ Args: filename: path file or file-like object or a list of files. will save the filename to meta_data with key `filename_or_obj`. if provided a list of files, use the filename of first file. + reader: runtime reader to load image file and meta data. """ - self.reader.read(filename) - img_array, meta_data = self.reader.get_data() - self.reader.uncache() + if reader is None or not reader.verify_suffix(filename): + reader = self.defaut_reader + if len(self.readers) > 0: + for r in self.readers: + if r.verify_suffix(filename): + reader = r + break + + reader.read(filename) + img_array, meta_data = reader.get_data() + reader.uncache() img_array = img_array.astype(self.dtype) if self.image_only: diff --git a/monai/transforms/io/dictionary.py b/monai/transforms/io/dictionary.py index 7d2d8e40d1..b987744702 100644 --- a/monai/transforms/io/dictionary.py +++ b/monai/transforms/io/dictionary.py @@ -25,10 +25,10 @@ from monai.transforms.io.array import LoadImage, LoadNifti, LoadNumpy, LoadPNG -class LoadDatad(MapTransform): +class LoadImaged(MapTransform): """ - Base class for dictionary-based wrapper of IO loader transforms. - It must load image and metadata together. If loading a list of files in one key, + Dictionary-based wrapper of :py:class:`monai.transforms.LoadImage`, + must load image and metadata together. If loading a list of files in one key, stack them together and add a new dimension as the first dimension, and use the meta data of the first image to represent the stacked result. Note that the affine transform of all the stacked images should be same. The output metadata field will @@ -36,36 +36,35 @@ class LoadDatad(MapTransform): """ def __init__( - self, keys: KeysCollection, loader: Callable, meta_key_postfix: str = "meta_dict", overwriting: bool = False, + self, + keys: KeysCollection, + reader: Optional[ImageReader] = None, + dtype: Optional[np.dtype] = np.float32, + meta_key_postfix: str = "meta_dict", + overwriting: bool = False, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` - loader: callable function to load data from expected source. - typically, it's array level transform, for example: `LoadNifti`, - `LoadPNG` and `LoadNumpy`, etc. - meta_key_postfix: use `key_{postfix}` to store the metadata of the loaded data, + dtype: if not None convert the loaded image data to this data type. + meta_key_postfix: use `key_{postfix}` to store the metadata of the nifti image, default is `meta_dict`. The meta data is a dictionary object. - For example, load Nifti file for `image`, store the metadata into `image_meta_dict`. + For example, load nifti file for `image`, store the metadata into `image_meta_dict`. overwriting: whether allow to overwrite existing meta data of same key. default is False, which will raise exception if encountering existing key. - - Raises: - TypeError: When ``loader`` is not ``callable``. - TypeError: When ``meta_key_postfix`` is not a ``str``. - """ super().__init__(keys) - if not callable(loader): - raise TypeError(f"loader must be callable but is {type(loader).__name__}.") - self.loader = loader + self.loader = LoadImage(reader, False, dtype) if not isinstance(meta_key_postfix, str): raise TypeError(f"meta_key_postfix must be a str but is {type(meta_key_postfix).__name__}.") self.meta_key_postfix = meta_key_postfix self.overwriting = overwriting - def __call__(self, data): + def register(self, reader: Optional[ImageReader] = None): + self.loader.register(reader) + + def __call__(self, data, reader: Optional[ImageReader] = None): """ Raises: KeyError: When not ``self.overwriting`` and key already exists in ``data``. @@ -73,7 +72,7 @@ def __call__(self, data): """ d = dict(data) for key in self.keys: - data = self.loader(d[key]) + data = self.loader(d[key], reader) assert isinstance(data, (tuple, list)), "loader must return a tuple or list." d[key] = data[0] assert isinstance(data[1], dict), "metadata must be a dict." @@ -84,10 +83,10 @@ def __call__(self, data): return d -class LoadImaged(LoadDatad): +class LoadDatad(MapTransform): """ - Dictionary-based wrapper of :py:class:`monai.transforms.LoadImage`, - must load image and metadata together. If loading a list of files in one key, + Base class for dictionary-based wrapper of IO loader transforms. + It must load image and metadata together. If loading a list of files in one key, stack them together and add a new dimension as the first dimension, and use the meta data of the first image to represent the stacked result. Note that the affine transform of all the stacked images should be same. The output metadata field will @@ -95,26 +94,52 @@ class LoadImaged(LoadDatad): """ def __init__( - self, - keys: KeysCollection, - reader: Optional[ImageReader] = None, - dtype: Optional[np.dtype] = np.float32, - meta_key_postfix: str = "meta_dict", - overwriting: bool = False, + self, keys: KeysCollection, loader: Callable, meta_key_postfix: str = "meta_dict", overwriting: bool = False, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` - dtype: if not None convert the loaded image data to this data type. - meta_key_postfix: use `key_{postfix}` to store the metadata of the nifti image, + loader: callable function to load data from expected source. + typically, it's array level transform, for example: `LoadNifti`, + `LoadPNG` and `LoadNumpy`, etc. + meta_key_postfix: use `key_{postfix}` to store the metadata of the loaded data, default is `meta_dict`. The meta data is a dictionary object. - For example, load nifti file for `image`, store the metadata into `image_meta_dict`. + For example, load Nifti file for `image`, store the metadata into `image_meta_dict`. overwriting: whether allow to overwrite existing meta data of same key. default is False, which will raise exception if encountering existing key. + + Raises: + TypeError: When ``loader`` is not ``callable``. + TypeError: When ``meta_key_postfix`` is not a ``str``. + """ - loader = LoadImage(reader, False, dtype) - super().__init__(keys, loader, meta_key_postfix, overwriting) + super().__init__(keys) + if not callable(loader): + raise TypeError(f"loader must be callable but is {type(loader).__name__}.") + self.loader = loader + if not isinstance(meta_key_postfix, str): + raise TypeError(f"meta_key_postfix must be a str but is {type(meta_key_postfix).__name__}.") + self.meta_key_postfix = meta_key_postfix + self.overwriting = overwriting + + def __call__(self, data): + """ + Raises: + KeyError: When not ``self.overwriting`` and key already exists in ``data``. + + """ + d = dict(data) + for key in self.keys: + data = self.loader(d[key]) + assert isinstance(data, (tuple, list)), "loader must return a tuple or list." + d[key] = data[0] + assert isinstance(data[1], dict), "metadata must be a dict." + key_to_add = f"{key}_{self.meta_key_postfix}" + if key_to_add in d and not self.overwriting: + raise KeyError(f"Meta data with key {key_to_add} already exists and overwriting=False.") + d[key_to_add] = data[1] + return d class LoadNiftid(LoadDatad): diff --git a/tests/test_load_image.py b/tests/test_load_image.py index 1faa2a35cf..e2d84d78cf 100644 --- a/tests/test_load_image.py +++ b/tests/test_load_image.py @@ -19,7 +19,7 @@ from parameterized import parameterized from PIL import Image -from monai.data import NibabelReader +from monai.data import NibabelReader, ITKReader from monai.transforms import LoadImage TEST_CASE_1 = [ @@ -112,6 +112,21 @@ def test_load_png(self): np.testing.assert_allclose(header["original_affine"], np.eye(3)) np.testing.assert_allclose(result, test_image) + def test_register(self): + spatial_size = (32, 64, 128) + expected_shape = (128, 64, 32) + test_image = np.random.rand(*spatial_size) + with tempfile.TemporaryDirectory() as tempdir: + filename = os.path.join(tempdir, "test_image.nii.gz") + itk_np_view = itk.image_view_from_array(test_image) + itk.imwrite(itk_np_view, filename) + + loader = LoadImage(image_only=False) + loader.register(ITKReader(keep_axes=False)) + result, header = loader(filename) + self.assertTupleEqual(tuple(header["spatial_shape"]), expected_shape) + self.assertTupleEqual(result.shape, spatial_size) + if __name__ == "__main__": unittest.main() diff --git a/tests/test_load_imaged.py b/tests/test_load_imaged.py index 736409e269..46cfd7a774 100644 --- a/tests/test_load_imaged.py +++ b/tests/test_load_imaged.py @@ -12,11 +12,11 @@ import os import tempfile import unittest - +import itk import nibabel as nib import numpy as np from parameterized import parameterized - +from monai.data import ITKReader from monai.transforms import LoadImaged KEYS = ["image", "label", "extra"] @@ -38,6 +38,21 @@ def test_shape(self, input_param, expected_shape): for key in KEYS: self.assertTupleEqual(result[key].shape, expected_shape) + def test_register(self): + spatial_size = (32, 64, 128) + expected_shape = (128, 64, 32) + test_image = np.random.rand(*spatial_size) + with tempfile.TemporaryDirectory() as tempdir: + filename = os.path.join(tempdir, "test_image.nii.gz") + itk_np_view = itk.image_view_from_array(test_image) + itk.imwrite(itk_np_view, filename) + + loader = LoadImaged(keys="img") + loader.register(ITKReader(keep_axes=False)) + result = loader({"img": filename}) + self.assertTupleEqual(tuple(result["img_meta_dict"]["spatial_shape"]), expected_shape) + self.assertTupleEqual(result["img"].shape, spatial_size) + if __name__ == "__main__": unittest.main() From 21ba37d0eab59526d927d4f1ee2425b9d7c82777 Mon Sep 17 00:00:00 2001 From: monai-bot Date: Wed, 19 Aug 2020 08:33:21 +0000 Subject: [PATCH 21/37] [MONAI] python code formatting --- monai/data/image_reader.py | 5 +++-- monai/transforms/io/array.py | 4 +--- tests/test_load_image.py | 2 +- tests/test_load_imaged.py | 2 ++ 4 files changed, 7 insertions(+), 6 deletions(-) diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index b2d01000bb..0846c487fa 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -10,12 +10,12 @@ # limitations under the License. from abc import ABC, abstractmethod -from typing import Any, Dict, Tuple, Optional, Sequence, Union +from typing import Any, Dict, Optional, Sequence, Tuple, Union import numpy as np from monai.data.utils import correct_nifti_header_if_necessary -from monai.utils import optional_import, ensure_tuple +from monai.utils import ensure_tuple, optional_import itk, _ = optional_import("itk", allow_namespace_pkg=True) nib, _ = optional_import("nibabel") @@ -115,6 +115,7 @@ class ITKReader(ImageReader): however C-order indexing is expected by most algorithms in numpy / scipy. """ + def __init__(self, img: Optional[itk.Image] = None, keep_axes: bool = True): super().__init__(img=img) self.keep_axes = keep_axes diff --git a/monai/transforms/io/array.py b/monai/transforms/io/array.py index 9bfaa647cb..2fe6353224 100644 --- a/monai/transforms/io/array.py +++ b/monai/transforms/io/array.py @@ -77,9 +77,7 @@ def register(self, reader: Optional[ImageReader]) -> List[ImageReader]: return self.readers def __call__( - self, - filename: Union[Sequence[Union[Path, str]], Path, str], - reader: Optional[ImageReader] = None, + self, filename: Union[Sequence[Union[Path, str]], Path, str], reader: Optional[ImageReader] = None, ): """ Args: diff --git a/tests/test_load_image.py b/tests/test_load_image.py index e2d84d78cf..17ec674911 100644 --- a/tests/test_load_image.py +++ b/tests/test_load_image.py @@ -19,7 +19,7 @@ from parameterized import parameterized from PIL import Image -from monai.data import NibabelReader, ITKReader +from monai.data import ITKReader, NibabelReader from monai.transforms import LoadImage TEST_CASE_1 = [ diff --git a/tests/test_load_imaged.py b/tests/test_load_imaged.py index 46cfd7a774..0d553d58e6 100644 --- a/tests/test_load_imaged.py +++ b/tests/test_load_imaged.py @@ -12,10 +12,12 @@ import os import tempfile import unittest + import itk import nibabel as nib import numpy as np from parameterized import parameterized + from monai.data import ITKReader from monai.transforms import LoadImaged From d7f3c18e9151ca637411388742b7ad5ed7c33230 Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Wed, 19 Aug 2020 16:43:23 +0800 Subject: [PATCH 22/37] [DLMED] fix packaging error --- .github/workflows/pythonapp.yml | 1 + monai/transforms/io/dictionary.py | 6 +++--- 2 files changed, 4 insertions(+), 3 deletions(-) diff --git a/.github/workflows/pythonapp.yml b/.github/workflows/pythonapp.yml index 6dfe983694..7d601ea750 100644 --- a/.github/workflows/pythonapp.yml +++ b/.github/workflows/pythonapp.yml @@ -158,6 +158,7 @@ jobs: # however, "pip install monai*.tar.gz" will build cpp/cuda with an isolated # fresh torch installation according to pyproject.toml python -m pip install torch>=1.4 torchvision + python -m pip install -r requirements-dev.txt - name: Test source archive and wheel file run: | git fetch --depth=1 origin +refs/tags/*:refs/tags/* diff --git a/monai/transforms/io/dictionary.py b/monai/transforms/io/dictionary.py index b987744702..e9c8b6647e 100644 --- a/monai/transforms/io/dictionary.py +++ b/monai/transforms/io/dictionary.py @@ -55,14 +55,14 @@ def __init__( default is False, which will raise exception if encountering existing key. """ super().__init__(keys) - self.loader = LoadImage(reader, False, dtype) + self._loader = LoadImage(reader, False, dtype) if not isinstance(meta_key_postfix, str): raise TypeError(f"meta_key_postfix must be a str but is {type(meta_key_postfix).__name__}.") self.meta_key_postfix = meta_key_postfix self.overwriting = overwriting def register(self, reader: Optional[ImageReader] = None): - self.loader.register(reader) + self._loader.register(reader) def __call__(self, data, reader: Optional[ImageReader] = None): """ @@ -72,7 +72,7 @@ def __call__(self, data, reader: Optional[ImageReader] = None): """ d = dict(data) for key in self.keys: - data = self.loader(d[key], reader) + data = self._loader(d[key], reader) assert isinstance(data, (tuple, list)), "loader must return a tuple or list." d[key] = data[0] assert isinstance(data[1], dict), "metadata must be a dict." From 1f5eb08eee474434b041ee036000cb4ea3f04e25 Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Thu, 20 Aug 2020 08:01:28 +0800 Subject: [PATCH 23/37] [DLMED] update according to comments --- monai/data/image_reader.py | 46 ++++++++++-------------------------- monai/transforms/io/array.py | 1 - tests/test_load_image.py | 2 +- tests/test_load_imaged.py | 2 +- 4 files changed, 14 insertions(+), 37 deletions(-) diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index 0846c487fa..b1523c9d74 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -29,21 +29,14 @@ class ImageReader(ABC): Args: img: image to initialize the reader, this is for the usage that the image data is already in memory and no need to read from file again, default is None. + other_args: other particular arg for every sub-class reader. """ - def __init__(self, img: Optional[Any] = None) -> None: + def __init__(self, img: Optional[Any] = None, **other_args) -> None: self.img = img self._suffixes: Optional[Sequence[str]] = None - def get_suffixes(self) -> Sequence[str]: - """ - Get the supported image file suffixes of current reader. - Default is None, support all kinds of image format. - - """ - return self._suffixes - def verify_suffix(self, filename: str) -> bool: """ Verify whether the specified file or files match supported suffixes. @@ -72,13 +65,6 @@ def verify_suffix(self, filename: str) -> bool: return supported_format - def uncache(self) -> None: - """ - Release image object and other cache data. - - """ - self.img = None - @abstractmethod def read(self, filename: str) -> Union[Sequence[Any], Any]: """ @@ -110,15 +96,16 @@ class ITKReader(ImageReader): Args: img: image to initialize the reader, this is for the usage that the image data is already in memory and no need to read from file again, default is None. - keep_axes: default to `True`. if `False`, the numpy array will have C-order indexing. + other_args: acceptable args: `c_order_axis_indexing`. + if `c_order_axis_indexing=True`, the numpy array will have C-order indexing. this is the reverse of how indices are specified in ITK, i.e. k,j,i versus i,j,k. however C-order indexing is expected by most algorithms in numpy / scipy. """ - def __init__(self, img: Optional[itk.Image] = None, keep_axes: bool = True): + def __init__(self, img: Optional[itk.Image] = None, **other_args): super().__init__(img=img) - self.keep_axes = keep_axes + self.c_order_axis_indexing = other_args.get("c_order_axis_indexing", False) def read(self, filename: str): """ @@ -224,7 +211,7 @@ def _get_array_data(self, img: itk.Image) -> np.ndarray: img: a ITK image object loaded from a image file. """ - return itk.array_view_from_image(img, keep_axes=self.keep_axes) + return itk.array_view_from_image(img, keep_axes=not self.c_order_axis_indexing) class NibabelReader(ImageReader): @@ -234,14 +221,15 @@ class NibabelReader(ImageReader): Args: img: image to initialize the reader, this is for the usage that the image data is already in memory and no need to read from file again, default is None. - as_closest_canonical: if True, load the image as closest to canonical axis format. + other_args: acceptable args: `as_closest_canonical`. + if `as_closest_canonical=True`, load the image as closest to canonical axis format. """ - def __init__(self, img: Optional[Any] = None, as_closest_canonical: bool = False): + def __init__(self, img: Optional[Any] = None, **other_args): super().__init__(img) self._suffixes: [Sequence[str]] = ["nii", "nii.gz"] - self.as_closest_canonical = as_closest_canonical + self.as_closest_canonical = other_args.get("as_closest_canonical", False) def read(self, filename: str): """ @@ -335,14 +323,4 @@ def _get_array_data(self, img: nib.nifti1.Nifti1Image) -> np.ndarray: img: a Nibabel image object loaded from a image file. """ - return np.array(img.get_fdata()) - - def uncache(self): - """ - Release image object and other cache data. - - """ - if self.img is not None: - for img in self.img: - img.uncache() - super().uncache() + return np.asarray(img.dataobj) diff --git a/monai/transforms/io/array.py b/monai/transforms/io/array.py index 2fe6353224..925139c706 100644 --- a/monai/transforms/io/array.py +++ b/monai/transforms/io/array.py @@ -97,7 +97,6 @@ def __call__( reader.read(filename) img_array, meta_data = reader.get_data() - reader.uncache() img_array = img_array.astype(self.dtype) if self.image_only: diff --git a/tests/test_load_image.py b/tests/test_load_image.py index 17ec674911..948242d42d 100644 --- a/tests/test_load_image.py +++ b/tests/test_load_image.py @@ -122,7 +122,7 @@ def test_register(self): itk.imwrite(itk_np_view, filename) loader = LoadImage(image_only=False) - loader.register(ITKReader(keep_axes=False)) + loader.register(ITKReader(c_order_axis_indexing=True)) result, header = loader(filename) self.assertTupleEqual(tuple(header["spatial_shape"]), expected_shape) self.assertTupleEqual(result.shape, spatial_size) diff --git a/tests/test_load_imaged.py b/tests/test_load_imaged.py index 0d553d58e6..c44f176213 100644 --- a/tests/test_load_imaged.py +++ b/tests/test_load_imaged.py @@ -50,7 +50,7 @@ def test_register(self): itk.imwrite(itk_np_view, filename) loader = LoadImaged(keys="img") - loader.register(ITKReader(keep_axes=False)) + loader.register(ITKReader(c_order_axis_indexing=True)) result = loader({"img": filename}) self.assertTupleEqual(tuple(result["img_meta_dict"]["spatial_shape"]), expected_shape) self.assertTupleEqual(result["img"].shape, spatial_size) From c1a2145820005a255da05f7143c0eda6fdc0a32e Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Thu, 20 Aug 2020 09:48:45 +0800 Subject: [PATCH 24/37] [DLMED] remove constructor of ImageReader --- monai/data/image_reader.py | 71 +++++++++++++++++++------------------- monai/data/utils.py | 29 +++++++++++++++- 2 files changed, 63 insertions(+), 37 deletions(-) diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index b1523c9d74..8f1bbf4dd3 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -16,6 +16,7 @@ from monai.data.utils import correct_nifti_header_if_necessary from monai.utils import ensure_tuple, optional_import +from .utils import is_supported_format itk, _ = optional_import("itk", allow_namespace_pkg=True) nib, _ = optional_import("nibabel") @@ -26,44 +27,19 @@ class ImageReader(ABC): users need to call `read` to load image and then use `get_data` to get the image data and properties from meta data. - Args: - img: image to initialize the reader, this is for the usage that the image data - is already in memory and no need to read from file again, default is None. - other_args: other particular arg for every sub-class reader. - """ - - def __init__(self, img: Optional[Any] = None, **other_args) -> None: - self.img = img - self._suffixes: Optional[Sequence[str]] = None - + @abstractmethod def verify_suffix(self, filename: str) -> bool: """ - Verify whether the specified file or files match supported suffixes. - If supported suffixes is None, skip the verification and return True. + Verify whether the specified file or files format is supported by current reader. Args: filename: file name or a list of file names to read. if a list of files, verify all the subffixes. - """ - if self._suffixes is None: - return True + """ + raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") - supported_format: bool = True - filenames: Sequence[str] = ensure_tuple(filename) - for name in filenames: - suffixes: Sequence[str] = name.split(".") - passed: bool = False - for i in range(len(suffixes) - 1): - if ".".join(suffixes[-(i + 2) : -1]) in self._suffixes: - passed = True - break - if not passed: - supported_format = False - break - - return supported_format @abstractmethod def read(self, filename: str) -> Union[Sequence[Any], Any]: @@ -96,16 +72,27 @@ class ITKReader(ImageReader): Args: img: image to initialize the reader, this is for the usage that the image data is already in memory and no need to read from file again, default is None. - other_args: acceptable args: `c_order_axis_indexing`. - if `c_order_axis_indexing=True`, the numpy array will have C-order indexing. + c_order_axis_indexing: if `True`, the numpy array will have C-order indexing. this is the reverse of how indices are specified in ITK, i.e. k,j,i versus i,j,k. however C-order indexing is expected by most algorithms in numpy / scipy. """ - def __init__(self, img: Optional[itk.Image] = None, **other_args): - super().__init__(img=img) - self.c_order_axis_indexing = other_args.get("c_order_axis_indexing", False) + def __init__(self, img: Optional[itk.Image] = None, c_order_axis_indexing: bool = False): + super().__init__() + self.img = img + self.c_order_axis_indexing = c_order_axis_indexing + + def verify_suffix(self, filename: str) -> bool: + """ + Verify whether the specified file or files format is supported by ITK reader. + + Args: + filename: file name or a list of file names to read. + if a list of files, verify all the subffixes. + + """ + return True def read(self, filename: str): """ @@ -227,10 +214,22 @@ class NibabelReader(ImageReader): """ def __init__(self, img: Optional[Any] = None, **other_args): - super().__init__(img) - self._suffixes: [Sequence[str]] = ["nii", "nii.gz"] + super().__init__() + self.img = img self.as_closest_canonical = other_args.get("as_closest_canonical", False) + def verify_suffix(self, filename: str) -> bool: + """ + Verify whether the specified file or files format is supported by Nibabel reader. + + Args: + filename: file name or a list of file names to read. + if a list of files, verify all the subffixes. + + """ + suffixes: [Sequence[str]] = ["nii", "nii.gz"] + return is_supported_format(filename, suffixes) + def read(self, filename: str): """ Read image data from specified file or files. diff --git a/monai/data/utils.py b/monai/data/utils.py index 1d95d496e5..e19f631112 100644 --- a/monai/data/utils.py +++ b/monai/data/utils.py @@ -20,7 +20,7 @@ from torch.utils.data._utils.collate import default_collate from monai.networks.layers.simplelayers import GaussianFilter -from monai.utils import BlendMode, NumpyPadMode, ensure_tuple_size, first, optional_import +from monai.utils import BlendMode, NumpyPadMode, ensure_tuple, ensure_tuple_size, first, optional_import nib, _ = optional_import("nibabel") @@ -507,3 +507,30 @@ def compute_importance_map( raise ValueError(f'Unsupported mode: {mode}, available options are ["constant", "gaussian"].') return importance_map + + +def is_supported_format(filename: str, suffixes: Sequence[str]) -> bool: + """ + Verify whether the specified file or files format match supported suffixes. + If supported suffixes is None, skip the verification and return True. + + Args: + filename: file name or a list of file names to read. + if a list of files, verify all the subffixes. + suffixes: all the supported image subffixes of current reader. + + """ + supported_format: bool = True + filenames: Sequence[str] = ensure_tuple(filename) + for name in filenames: + tokens: Sequence[str] = name.split(".") + passed: bool = False + for i in range(len(tokens) - 1): + if ".".join(tokens[-(i + 2) : -1]) in suffixes: + passed = True + break + if not passed: + supported_format = False + break + + return supported_format From 6da75e4ceb262f5940e035751e1062880e6612ca Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Thu, 20 Aug 2020 20:47:08 +0800 Subject: [PATCH 25/37] [DLMED] update read API --- monai/data/image_reader.py | 84 +++++++++++++++++++++++--------------- 1 file changed, 50 insertions(+), 34 deletions(-) diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index 8f1bbf4dd3..3b6292e38c 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -10,7 +10,7 @@ # limitations under the License. from abc import ABC, abstractmethod -from typing import Any, Dict, Optional, Sequence, Tuple, Union +from typing import Any, Dict, Sequence, Tuple, Union import numpy as np @@ -42,13 +42,15 @@ def verify_suffix(self, filename: str) -> bool: @abstractmethod - def read(self, filename: str) -> Union[Sequence[Any], Any]: + def read(self, data: Union[Sequence[str], str, Any], **kwargs) -> Union[Sequence[Any], Any]: """ - Read image data from specified file or files and save to `self.img`. + Read image data from specified file or files, or set a loaded image. Note that it returns the raw data, so different readers return different image data type. Args: - filename: file name or a list of file names to read. + data: file name or a list of file names to read, or a loaded image object. + kwargs: additional args for 3rd party reader API. + """ raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") @@ -70,17 +72,15 @@ class ITKReader(ImageReader): https://github.com/InsightSoftwareConsortium/ITK/tree/master/Modules/IO Args: - img: image to initialize the reader, this is for the usage that the image data - is already in memory and no need to read from file again, default is None. c_order_axis_indexing: if `True`, the numpy array will have C-order indexing. this is the reverse of how indices are specified in ITK, i.e. k,j,i versus i,j,k. however C-order indexing is expected by most algorithms in numpy / scipy. """ - def __init__(self, img: Optional[itk.Image] = None, c_order_axis_indexing: bool = False): + def __init__(self, c_order_axis_indexing: bool = False): super().__init__() - self.img = img + self._img = None self.c_order_axis_indexing = c_order_axis_indexing def verify_suffix(self, filename: str) -> bool: @@ -94,21 +94,28 @@ def verify_suffix(self, filename: str) -> bool: """ return True - def read(self, filename: str): + def read(self, data: Union[Sequence[str], str, itk.Image], **kwargs): """ - Read image data from specified file or files. + Read image data from specified file or files, or set a `itk.Image` object. Note that the returned object is ITK image object or list of ITK image objects. - `self.img` is always a list, even only has 1 image. + `self._img` is always a list, even only has 1 image. Args: - filename: file name or a list of file names to read. + data: file name or a list of file names to read, or a `itk.Image` object for the usage that + the image data is already in memory and no need to read from file again. + kwargs: additional args for `itk.imread` API. more details about available args: + https://github.com/InsightSoftwareConsortium/ITK/blob/master/Wrapping/Generators/Python/itkExtras.py """ - filenames: Sequence[str] = ensure_tuple(filename) - self.img: Sequence[itk.Image] = list() + self._img: Sequence[itk.Image] = list() + if isinstance(data, itk.Image): + self._img.append(data) + return data + + filenames: Sequence[str] = ensure_tuple(data) for name in filenames: - self.img.append(itk.imread(name)) - return self.img if len(filenames) > 1 else self.img[0] + self._img.append(itk.imread(name, **kwargs)) + return self._img if len(filenames) > 1 else self._img[0] def get_data(self): """ @@ -121,7 +128,10 @@ def get_data(self): """ img_array: Sequence[np.ndarray] = list() compatible_meta: Dict = None - for img in self.img: + if self._img is None: + raise RuntimeError("please call read() first then use get_data().") + + for img in self._img: header = self._get_meta_dict(img) header["original_affine"] = self._get_affine(img) header["affine"] = header["original_affine"].copy() @@ -206,17 +216,14 @@ class NibabelReader(ImageReader): Load NIfTI format images based on Nibabel library. Args: - img: image to initialize the reader, this is for the usage that the image data - is already in memory and no need to read from file again, default is None. - other_args: acceptable args: `as_closest_canonical`. - if `as_closest_canonical=True`, load the image as closest to canonical axis format. + as_closest_canonical: if True, load the image as closest to canonical axis format. """ - def __init__(self, img: Optional[Any] = None, **other_args): + def __init__(self, as_closest_canonical: bool = False): super().__init__() - self.img = img - self.as_closest_canonical = other_args.get("as_closest_canonical", False) + self.img = None + self.as_closest_canonical = as_closest_canonical def verify_suffix(self, filename: str) -> bool: """ @@ -230,23 +237,29 @@ def verify_suffix(self, filename: str) -> bool: suffixes: [Sequence[str]] = ["nii", "nii.gz"] return is_supported_format(filename, suffixes) - def read(self, filename: str): + def read(self, data: Union[Sequence[str], str, nib.nifti1.Nifti1Image], **kwargs): """ - Read image data from specified file or files. + Read image data from specified file or files, or set a Nibabel Image object. Note that the returned object is Nibabel image object or list of Nibabel image objects. - `self.img` is always a list, even only has 1 image. + `self._img` is always a list, even only has 1 image. Args: - filename: file name or a list of file names to read. + data: file name or a list of file names to read. + kwargs: additional args for `nibabel.load` API. more details about available args: + https://github.com/nipy/nibabel/blob/master/nibabel/loadsave.py """ - filenames: Sequence[str] = ensure_tuple(filename) - self.img: Sequence[nib.nifti1.Nifti1Image] = list() + self._img: Sequence[nib.nifti1.Nifti1Image] = list() + if isinstance(data, nib.nifti1.Nifti1Image): + self._img.append(data) + return data + + filenames: Sequence[str] = ensure_tuple(data) for name in filenames: - img = nib.load(name) + img = nib.load(name, **kwargs) img = correct_nifti_header_if_necessary(img) - self.img.append(img) - return self.img if len(filenames) > 1 else self.img[0] + self._img.append(img) + return self._img if len(filenames) > 1 else self._img[0] def get_data(self): """ @@ -259,7 +272,10 @@ def get_data(self): """ img_array: Sequence[np.ndarray] = list() compatible_meta: Dict = None - for img in self.img: + if self._img is None: + raise RuntimeError("please call read() first then use get_data().") + + for img in self._img: header = self._get_meta_dict(img) header["original_affine"] = self._get_affine(img) header["affine"] = header["original_affine"].copy() From ec64108954ef5b7aff594bb60251cd32f8a0e806 Mon Sep 17 00:00:00 2001 From: monai-bot Date: Thu, 20 Aug 2020 12:49:25 +0000 Subject: [PATCH 26/37] [MONAI] python code formatting --- monai/data/image_reader.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index 3b6292e38c..56d13c88a1 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -16,6 +16,7 @@ from monai.data.utils import correct_nifti_header_if_necessary from monai.utils import ensure_tuple, optional_import + from .utils import is_supported_format itk, _ = optional_import("itk", allow_namespace_pkg=True) @@ -28,6 +29,7 @@ class ImageReader(ABC): to get the image data and properties from meta data. """ + @abstractmethod def verify_suffix(self, filename: str) -> bool: """ @@ -40,7 +42,6 @@ def verify_suffix(self, filename: str) -> bool: """ raise NotImplementedError(f"Subclass {self.__class__.__name__} must implement this method.") - @abstractmethod def read(self, data: Union[Sequence[str], str, Any], **kwargs) -> Union[Sequence[Any], Any]: """ From 8b939d2c63275da5b5c4f4b01f8140a640022c99 Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Thu, 20 Aug 2020 23:51:27 +0800 Subject: [PATCH 27/37] [DLMED] ignore pytype issue --- monai/config/deviceconfig.py | 2 +- monai/data/image_reader.py | 8 ++++---- 2 files changed, 5 insertions(+), 5 deletions(-) diff --git a/monai/config/deviceconfig.py b/monai/config/deviceconfig.py index 7cd0db15ee..2b65a62029 100644 --- a/monai/config/deviceconfig.py +++ b/monai/config/deviceconfig.py @@ -67,7 +67,7 @@ gdown_version = "NOT INSTALLED or UNKNOWN VERSION." try: - import itk + import itk # type: ignore itk_version = itk.Version.GetITKVersion() del itk diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index 56d13c88a1..ad1487ccd0 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -81,7 +81,7 @@ class ITKReader(ImageReader): def __init__(self, c_order_axis_indexing: bool = False): super().__init__() - self._img = None + self._img: Sequence[itk.Image] = None self.c_order_axis_indexing = c_order_axis_indexing def verify_suffix(self, filename: str) -> bool: @@ -108,7 +108,7 @@ def read(self, data: Union[Sequence[str], str, itk.Image], **kwargs): https://github.com/InsightSoftwareConsortium/ITK/blob/master/Wrapping/Generators/Python/itkExtras.py """ - self._img: Sequence[itk.Image] = list() + self._img = list() if isinstance(data, itk.Image): self._img.append(data) return data @@ -223,7 +223,7 @@ class NibabelReader(ImageReader): def __init__(self, as_closest_canonical: bool = False): super().__init__() - self.img = None + self._img: Sequence[nib.nifti1.Nifti1Image] = None self.as_closest_canonical = as_closest_canonical def verify_suffix(self, filename: str) -> bool: @@ -250,7 +250,7 @@ def read(self, data: Union[Sequence[str], str, nib.nifti1.Nifti1Image], **kwargs https://github.com/nipy/nibabel/blob/master/nibabel/loadsave.py """ - self._img: Sequence[nib.nifti1.Nifti1Image] = list() + self._img = list() if isinstance(data, nib.nifti1.Nifti1Image): self._img.append(data) return data From b7e08d62fa2ede1850ffed90a1e34a9f34f7c9ed Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Fri, 21 Aug 2020 00:06:37 +0800 Subject: [PATCH 28/37] [DLMED] fix typo --- monai/config/deviceconfig.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/monai/config/deviceconfig.py b/monai/config/deviceconfig.py index d1a5db3838..0bcecb1813 100644 --- a/monai/config/deviceconfig.py +++ b/monai/config/deviceconfig.py @@ -66,7 +66,7 @@ except (ImportError, AttributeError): gdown_version = "NOT INSTALLED or UNKNOWN VERSION." -try +try: import torchvision torchvision_version = torchvision.__version__ From 2d906f8df25289761f7e0dc077a9ee417f03c72c Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Fri, 21 Aug 2020 00:25:22 +0800 Subject: [PATCH 29/37] [DLMED] fix typehints --- monai/data/image_reader.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index ad1487ccd0..6d4c96c090 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -10,7 +10,7 @@ # limitations under the License. from abc import ABC, abstractmethod -from typing import Any, Dict, Sequence, Tuple, Union +from typing import Any, Dict, Sequence, Tuple, Union, List import numpy as np @@ -127,7 +127,7 @@ def get_data(self): and use the meta data of the first image to represent the stacked result. """ - img_array: Sequence[np.ndarray] = list() + img_array: List[np.ndarray] = list() compatible_meta: Dict = None if self._img is None: raise RuntimeError("please call read() first then use get_data().") @@ -235,7 +235,7 @@ def verify_suffix(self, filename: str) -> bool: if a list of files, verify all the subffixes. """ - suffixes: [Sequence[str]] = ["nii", "nii.gz"] + suffixes: Sequence[str] = ["nii", "nii.gz"] return is_supported_format(filename, suffixes) def read(self, data: Union[Sequence[str], str, nib.nifti1.Nifti1Image], **kwargs): @@ -271,7 +271,7 @@ def get_data(self): and use the meta data of the first image to represent the stacked result. """ - img_array: Sequence[np.ndarray] = list() + img_array: List[np.ndarray] = list() compatible_meta: Dict = None if self._img is None: raise RuntimeError("please call read() first then use get_data().") From 4e372fb617e0a3e4e691b4ea61ef1beef51b294a Mon Sep 17 00:00:00 2001 From: monai-bot Date: Thu, 20 Aug 2020 16:31:34 +0000 Subject: [PATCH 30/37] [MONAI] python code formatting --- monai/data/image_reader.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index 6d4c96c090..8ddc65c576 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -10,7 +10,7 @@ # limitations under the License. from abc import ABC, abstractmethod -from typing import Any, Dict, Sequence, Tuple, Union, List +from typing import Any, Dict, List, Sequence, Tuple, Union import numpy as np From 3f27f459659d377ab5375eef2e7f7d0fb045c2b7 Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Fri, 21 Aug 2020 00:43:26 +0800 Subject: [PATCH 31/37] [DLMED] fix typehints --- monai/data/image_reader.py | 8 ++++---- monai/transforms/io/array.py | 2 +- monai/transforms/io/dictionary.py | 2 +- 3 files changed, 6 insertions(+), 6 deletions(-) diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index 8ddc65c576..5587a08330 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -147,8 +147,8 @@ def get_data(self): if not np.allclose(header["spatial_shape"], compatible_meta["spatial_shape"]): raise RuntimeError("spatial_shape of all images should be same.") - img_array = np.stack(img_array, axis=0) if len(img_array) > 1 else img_array[0] - return img_array, compatible_meta + img_array_ = np.stack(img_array, axis=0) if len(img_array) > 1 else img_array[0] + return img_array_, compatible_meta def _get_meta_dict(self, img: itk.Image) -> Dict: """ @@ -295,8 +295,8 @@ def get_data(self): if not np.allclose(header["spatial_shape"], compatible_meta["spatial_shape"]): raise RuntimeError("spatial_shape of all images should be same.") - img_array = np.stack(img_array, axis=0) if len(img_array) > 1 else img_array[0] - return img_array, compatible_meta + img_array_ = np.stack(img_array, axis=0) if len(img_array) > 1 else img_array[0] + return img_array_, compatible_meta def _get_meta_dict(self, img: nib.nifti1.Nifti1Image) -> Dict: """ diff --git a/monai/transforms/io/array.py b/monai/transforms/io/array.py index 925139c706..7ef32f92c5 100644 --- a/monai/transforms/io/array.py +++ b/monai/transforms/io/array.py @@ -63,7 +63,7 @@ def __init__( self.image_only = image_only self.dtype = dtype - def register(self, reader: Optional[ImageReader]) -> List[ImageReader]: + def register(self, reader: ImageReader) -> List[ImageReader]: """ Register image reader to load image file and meta data. Return all the registered image readers. diff --git a/monai/transforms/io/dictionary.py b/monai/transforms/io/dictionary.py index e9c8b6647e..145c54458f 100644 --- a/monai/transforms/io/dictionary.py +++ b/monai/transforms/io/dictionary.py @@ -61,7 +61,7 @@ def __init__( self.meta_key_postfix = meta_key_postfix self.overwriting = overwriting - def register(self, reader: Optional[ImageReader] = None): + def register(self, reader: ImageReader): self._loader.register(reader) def __call__(self, data, reader: Optional[ImageReader] = None): From 51af48dbdfe8f1a0b5f9632a01f5939baf5e00ae Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Fri, 21 Aug 2020 01:12:42 +0800 Subject: [PATCH 32/37] [DLMED] fix pytype --- monai/config/deviceconfig.py | 2 +- monai/data/image_reader.py | 14 +++++++------- monai/transforms/io/array.py | 4 ++-- 3 files changed, 10 insertions(+), 10 deletions(-) diff --git a/monai/config/deviceconfig.py b/monai/config/deviceconfig.py index 0bcecb1813..bba5f48ea7 100644 --- a/monai/config/deviceconfig.py +++ b/monai/config/deviceconfig.py @@ -75,7 +75,7 @@ torchvision_version = "NOT INSTALLED or UNKNOWN VERSION." try: - import itk # type: ignore + import itk itk_version = itk.Version.GetITKVersion() del itk diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index 5587a08330..4e00dc5e50 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -10,7 +10,7 @@ # limitations under the License. from abc import ABC, abstractmethod -from typing import Any, Dict, List, Sequence, Tuple, Union +from typing import Any, Dict, List, Sequence, Tuple, Union, Optional import numpy as np @@ -31,7 +31,7 @@ class ImageReader(ABC): """ @abstractmethod - def verify_suffix(self, filename: str) -> bool: + def verify_suffix(self, filename: Union[Sequence[str], str]) -> bool: """ Verify whether the specified file or files format is supported by current reader. @@ -81,10 +81,10 @@ class ITKReader(ImageReader): def __init__(self, c_order_axis_indexing: bool = False): super().__init__() - self._img: Sequence[itk.Image] = None + self._img: Optional[Sequence[itk.Image]] = None self.c_order_axis_indexing = c_order_axis_indexing - def verify_suffix(self, filename: str) -> bool: + def verify_suffix(self, filename: Union[Sequence[str], str]) -> bool: """ Verify whether the specified file or files format is supported by ITK reader. @@ -223,10 +223,10 @@ class NibabelReader(ImageReader): def __init__(self, as_closest_canonical: bool = False): super().__init__() - self._img: Sequence[nib.nifti1.Nifti1Image] = None + self._img: Optional[Sequence[nib.nifti1.Nifti1Image]] = None self.as_closest_canonical = as_closest_canonical - def verify_suffix(self, filename: str) -> bool: + def verify_suffix(self, filename: Union[Sequence[str], str]) -> bool: """ Verify whether the specified file or files format is supported by Nibabel reader. @@ -329,7 +329,7 @@ def _get_spatial_shape(self, img: nib.nifti1.Nifti1Image) -> Sequence: """ ndim = img.header["dim"][0] spatial_rank = min(ndim, 3) - return img.header["dim"][1 : spatial_rank + 1] + return list(img.header["dim"][1 : spatial_rank + 1]) def _get_array_data(self, img: nib.nifti1.Nifti1Image) -> np.ndarray: """ diff --git a/monai/transforms/io/array.py b/monai/transforms/io/array.py index 7ef32f92c5..d0b4e74eb1 100644 --- a/monai/transforms/io/array.py +++ b/monai/transforms/io/array.py @@ -57,7 +57,7 @@ def __init__( """ self.defaut_reader: ITKReader = ITKReader() - self.readers: Sequence[ImageReader] = list() + self.readers: List[ImageReader] = list() if reader is not None: self.readers.append(reader) self.image_only = image_only @@ -77,7 +77,7 @@ def register(self, reader: ImageReader) -> List[ImageReader]: return self.readers def __call__( - self, filename: Union[Sequence[Union[Path, str]], Path, str], reader: Optional[ImageReader] = None, + self, filename: Union[Sequence[str], str], reader: Optional[ImageReader] = None, ): """ Args: From 6ced0f0d194b003b08f78c4f32cc999d75c114cb Mon Sep 17 00:00:00 2001 From: monai-bot Date: Thu, 20 Aug 2020 17:20:12 +0000 Subject: [PATCH 33/37] [MONAI] python code formatting --- monai/data/image_reader.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index 4e00dc5e50..c63b4e142d 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -10,7 +10,7 @@ # limitations under the License. from abc import ABC, abstractmethod -from typing import Any, Dict, List, Sequence, Tuple, Union, Optional +from typing import Any, Dict, List, Optional, Sequence, Tuple, Union import numpy as np From b9ff481da4b5f505652a85acb443e9365b6f0a3f Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Fri, 21 Aug 2020 01:29:19 +0800 Subject: [PATCH 34/37] [DLMED] ignore itk error --- monai/config/deviceconfig.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/monai/config/deviceconfig.py b/monai/config/deviceconfig.py index bba5f48ea7..0bcecb1813 100644 --- a/monai/config/deviceconfig.py +++ b/monai/config/deviceconfig.py @@ -75,7 +75,7 @@ torchvision_version = "NOT INSTALLED or UNKNOWN VERSION." try: - import itk + import itk # type: ignore itk_version = itk.Version.GetITKVersion() del itk From 114e28b3e042ddb50217b8c3acf63283c9cecf19 Mon Sep 17 00:00:00 2001 From: Nic Ma Date: Fri, 21 Aug 2020 01:39:08 +0800 Subject: [PATCH 35/37] [DLMED] fix mytype issue --- monai/data/utils.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/monai/data/utils.py b/monai/data/utils.py index e19f631112..aae1836567 100644 --- a/monai/data/utils.py +++ b/monai/data/utils.py @@ -509,7 +509,7 @@ def compute_importance_map( return importance_map -def is_supported_format(filename: str, suffixes: Sequence[str]) -> bool: +def is_supported_format(filename: Union[Sequence[str], str], suffixes: Sequence[str]) -> bool: """ Verify whether the specified file or files format match supported suffixes. If supported suffixes is None, skip the verification and return True. From 18758e660d27c5aed625cc8459a00b7558648f34 Mon Sep 17 00:00:00 2001 From: Wenqi Li Date: Thu, 20 Aug 2020 20:12:35 +0100 Subject: [PATCH 36/37] fixes mypy errors --- monai/data/image_reader.py | 10 +++++++--- setup.cfg | 4 ++-- 2 files changed, 9 insertions(+), 5 deletions(-) diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index c63b4e142d..857f4c98a1 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -10,7 +10,7 @@ # limitations under the License. from abc import ABC, abstractmethod -from typing import Any, Dict, List, Optional, Sequence, Tuple, Union +from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple, Union import numpy as np @@ -19,8 +19,12 @@ from .utils import is_supported_format -itk, _ = optional_import("itk", allow_namespace_pkg=True) -nib, _ = optional_import("nibabel") +if TYPE_CHECKING: + import itk # type: ignore + import nibabel as nib +else: + itk, _ = optional_import("itk", allow_namespace_pkg=True) + nib, _ = optional_import("nibabel") class ImageReader(ABC): diff --git a/setup.cfg b/setup.cfg index 51d13683b2..2c161f2a18 100644 --- a/setup.cfg +++ b/setup.cfg @@ -81,8 +81,8 @@ ignore_missing_imports = True no_implicit_optional = True # Warns about casting an expression to its inferred type. warn_redundant_casts = True -# Warns about unneeded # type: ignore comments. -warn_unused_ignores = True +# No error on unneeded # type: ignore comments. +warn_unused_ignores = False # Shows a warning when returning a value with type Any from a function declared with a non-Any return type. warn_return_any = True # Prohibit equality checks, identity checks, and container checks between non-overlapping types. From 76988b9c86873335eab19d47c44f2f01400a018a Mon Sep 17 00:00:00 2001 From: Wenqi Li Date: Thu, 20 Aug 2020 20:29:47 +0100 Subject: [PATCH 37/37] revert packaging pipeline --- .github/workflows/pythonapp.yml | 3 +-- monai/data/image_reader.py | 32 ++++++++++++++++++-------------- 2 files changed, 19 insertions(+), 16 deletions(-) diff --git a/.github/workflows/pythonapp.yml b/.github/workflows/pythonapp.yml index 648f1ea714..ea43b66fe1 100644 --- a/.github/workflows/pythonapp.yml +++ b/.github/workflows/pythonapp.yml @@ -156,7 +156,7 @@ jobs: ln -s /usr/bin/python$PYVER /usr/bin/python`echo $PYVER | cut -c1-1` && curl -O https://bootstrap.pypa.io/get-pip.py && \ python get-pip.py && \ - rm get-pip.py ; fi + rm get-pip.py ; fi - name: Install dependencies run: | which python @@ -205,7 +205,6 @@ jobs: # however, "pip install monai*.tar.gz" will build cpp/cuda with an isolated # fresh torch installation according to pyproject.toml python -m pip install torch>=1.4 torchvision - python -m pip install -r requirements-dev.txt - name: Test source archive and wheel file run: | git fetch --depth=1 origin +refs/tags/*:refs/tags/* diff --git a/monai/data/image_reader.py b/monai/data/image_reader.py index 857f4c98a1..d2bdede4bd 100644 --- a/monai/data/image_reader.py +++ b/monai/data/image_reader.py @@ -22,9 +22,13 @@ if TYPE_CHECKING: import itk # type: ignore import nibabel as nib + from itk import Image # type: ignore + from nibabel.nifti1 import Nifti1Image else: itk, _ = optional_import("itk", allow_namespace_pkg=True) + Image, _ = optional_import("itk", allow_namespace_pkg=True, name="Image") nib, _ = optional_import("nibabel") + Nifti1Image, _ = optional_import("nibabel.nifti1", name="Nifti1Image") class ImageReader(ABC): @@ -85,7 +89,7 @@ class ITKReader(ImageReader): def __init__(self, c_order_axis_indexing: bool = False): super().__init__() - self._img: Optional[Sequence[itk.Image]] = None + self._img: Optional[Sequence[Image]] = None self.c_order_axis_indexing = c_order_axis_indexing def verify_suffix(self, filename: Union[Sequence[str], str]) -> bool: @@ -99,7 +103,7 @@ def verify_suffix(self, filename: Union[Sequence[str], str]) -> bool: """ return True - def read(self, data: Union[Sequence[str], str, itk.Image], **kwargs): + def read(self, data: Union[Sequence[str], str, Image], **kwargs): """ Read image data from specified file or files, or set a `itk.Image` object. Note that the returned object is ITK image object or list of ITK image objects. @@ -113,7 +117,7 @@ def read(self, data: Union[Sequence[str], str, itk.Image], **kwargs): """ self._img = list() - if isinstance(data, itk.Image): + if isinstance(data, Image): self._img.append(data) return data @@ -154,7 +158,7 @@ def get_data(self): img_array_ = np.stack(img_array, axis=0) if len(img_array) > 1 else img_array[0] return img_array_, compatible_meta - def _get_meta_dict(self, img: itk.Image) -> Dict: + def _get_meta_dict(self, img: Image) -> Dict: """ Get all the meta data of the image and convert to dict type. @@ -174,7 +178,7 @@ def _get_meta_dict(self, img: itk.Image) -> Dict: meta_dict["direction"] = itk.array_from_matrix(img.GetDirection()) return meta_dict - def _get_affine(self, img: itk.Image) -> np.ndarray: + def _get_affine(self, img: Image) -> np.ndarray: """ Get or construct the affine matrix of the image, it can be used to correct spacing, orientation or execute spatial transforms. @@ -195,7 +199,7 @@ def _get_affine(self, img: itk.Image) -> np.ndarray: affine[(slice(-1), -1)] = origin return affine - def _get_spatial_shape(self, img: itk.Image) -> Sequence: + def _get_spatial_shape(self, img: Image) -> Sequence: """ Get the spatial shape of image data, it doesn't contain the channel dim. @@ -205,7 +209,7 @@ def _get_spatial_shape(self, img: itk.Image) -> Sequence: """ return list(itk.size(img)) - def _get_array_data(self, img: itk.Image) -> np.ndarray: + def _get_array_data(self, img: Image) -> np.ndarray: """ Get the raw array data of the image, converted to Numpy array. @@ -227,7 +231,7 @@ class NibabelReader(ImageReader): def __init__(self, as_closest_canonical: bool = False): super().__init__() - self._img: Optional[Sequence[nib.nifti1.Nifti1Image]] = None + self._img: Optional[Sequence[Nifti1Image]] = None self.as_closest_canonical = as_closest_canonical def verify_suffix(self, filename: Union[Sequence[str], str]) -> bool: @@ -242,7 +246,7 @@ def verify_suffix(self, filename: Union[Sequence[str], str]) -> bool: suffixes: Sequence[str] = ["nii", "nii.gz"] return is_supported_format(filename, suffixes) - def read(self, data: Union[Sequence[str], str, nib.nifti1.Nifti1Image], **kwargs): + def read(self, data: Union[Sequence[str], str, Nifti1Image], **kwargs): """ Read image data from specified file or files, or set a Nibabel Image object. Note that the returned object is Nibabel image object or list of Nibabel image objects. @@ -255,7 +259,7 @@ def read(self, data: Union[Sequence[str], str, nib.nifti1.Nifti1Image], **kwargs """ self._img = list() - if isinstance(data, nib.nifti1.Nifti1Image): + if isinstance(data, Nifti1Image): self._img.append(data) return data @@ -302,7 +306,7 @@ def get_data(self): img_array_ = np.stack(img_array, axis=0) if len(img_array) > 1 else img_array[0] return img_array_, compatible_meta - def _get_meta_dict(self, img: nib.nifti1.Nifti1Image) -> Dict: + def _get_meta_dict(self, img: Nifti1Image) -> Dict: """ Get the all the meta data of the image and convert to dict type. @@ -312,7 +316,7 @@ def _get_meta_dict(self, img: nib.nifti1.Nifti1Image) -> Dict: """ return dict(img.header) - def _get_affine(self, img: nib.nifti1.Nifti1Image) -> np.ndarray: + def _get_affine(self, img: Nifti1Image) -> np.ndarray: """ Get the affine matrix of the image, it can be used to correct spacing, orientation or execute spatial transforms. @@ -323,7 +327,7 @@ def _get_affine(self, img: nib.nifti1.Nifti1Image) -> np.ndarray: """ return img.affine - def _get_spatial_shape(self, img: nib.nifti1.Nifti1Image) -> Sequence: + def _get_spatial_shape(self, img: Nifti1Image) -> Sequence: """ Get the spatial shape of image data, it doesn't contain the channel dim. @@ -335,7 +339,7 @@ def _get_spatial_shape(self, img: nib.nifti1.Nifti1Image) -> Sequence: spatial_rank = min(ndim, 3) return list(img.header["dim"][1 : spatial_rank + 1]) - def _get_array_data(self, img: nib.nifti1.Nifti1Image) -> np.ndarray: + def _get_array_data(self, img: Nifti1Image) -> np.ndarray: """ Get the raw array data of the image, converted to Numpy array.