Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merge similar test components with parameterized #7663

Merged
merged 8 commits into from
Apr 23, 2024
39 changes: 20 additions & 19 deletions tests/test_affine_transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -133,28 +133,29 @@ def test_to_norm_affine_ill(self, affine, src_size, dst_size, align_corners):

class TestAffineTransform(unittest.TestCase):

def test_affine_shift(self):
affine = torch.as_tensor([[1.0, 0.0, 0.0], [0.0, 1.0, -1.0]])
image = torch.as_tensor([[[[4.0, 1.0, 3.0, 2.0], [7.0, 6.0, 8.0, 5.0], [3.0, 5.0, 3.0, 6.0]]]])
out = AffineTransform(align_corners=False)(image, affine)
out = out.detach().cpu().numpy()
expected = [[[[0, 4, 1, 3], [0, 7, 6, 8], [0, 3, 5, 3]]]]
np.testing.assert_allclose(out, expected, atol=1e-5, rtol=_rtol)

def test_affine_shift_1(self):
affine = torch.as_tensor([[1.0, 0.0, -1.0], [0.0, 1.0, -1.0]])
image = torch.as_tensor([[[[4.0, 1.0, 3.0, 2.0], [7.0, 6.0, 8.0, 5.0], [3.0, 5.0, 3.0, 6.0]]]])
out = AffineTransform(align_corners=False)(image, affine)
out = out.detach().cpu().numpy()
expected = [[[[0, 0, 0, 0], [0, 4, 1, 3], [0, 7, 6, 8]]]]
np.testing.assert_allclose(out, expected, atol=1e-5, rtol=_rtol)

def test_affine_shift_2(self):
affine = torch.as_tensor([[1.0, 0.0, -1.0], [0.0, 1.0, 0.0]])
@parameterized.expand(
[
(
"shift",
torch.as_tensor([[1.0, 0.0, 0.0], [0.0, 1.0, -1.0]]),
[[[[0, 4, 1, 3], [0, 7, 6, 8], [0, 3, 5, 3]]]],
),
(
"shift_1",
torch.as_tensor([[1.0, 0.0, -1.0], [0.0, 1.0, -1.0]]),
[[[[0, 0, 0, 0], [0, 4, 1, 3], [0, 7, 6, 8]]]],
),
(
"shift_2",
torch.as_tensor([[1.0, 0.0, -1.0], [0.0, 1.0, 0.0]]),
[[[[0, 0, 0, 0], [4, 1, 3, 2], [7, 6, 8, 5]]]],
),
]
)
def test_affine_transforms(self, name, affine, expected):
freddiewanah marked this conversation as resolved.
Show resolved Hide resolved
image = torch.as_tensor([[[[4.0, 1.0, 3.0, 2.0], [7.0, 6.0, 8.0, 5.0], [3.0, 5.0, 3.0, 6.0]]]])
out = AffineTransform(align_corners=False)(image, affine)
out = out.detach().cpu().numpy()
expected = [[[[0, 0, 0, 0], [4, 1, 3, 2], [7, 6, 8, 5]]]]
np.testing.assert_allclose(out, expected, atol=1e-5, rtol=_rtol)

def test_zoom(self):
Expand Down
46 changes: 26 additions & 20 deletions tests/test_compute_f_beta.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@

import numpy as np
import torch
from parameterized import parameterized

from monai.metrics import FBetaScore
from tests.utils import assert_allclose
Expand All @@ -33,26 +34,31 @@ def test_expecting_success_and_device(self):
assert_allclose(result, torch.Tensor([0.714286]), atol=1e-6, rtol=1e-6)
np.testing.assert_equal(result.device, y_pred.device)

def test_expecting_success2(self):
metric = FBetaScore(beta=0.5)
metric(
y_pred=torch.Tensor([[1, 1, 1], [1, 1, 1], [1, 1, 1]]), y=torch.Tensor([[1, 0, 1], [0, 1, 0], [1, 0, 1]])
)
assert_allclose(metric.aggregate()[0], torch.Tensor([0.609756]), atol=1e-6, rtol=1e-6)

def test_expecting_success3(self):
metric = FBetaScore(beta=2)
metric(
y_pred=torch.Tensor([[1, 1, 1], [1, 1, 1], [1, 1, 1]]), y=torch.Tensor([[1, 0, 1], [0, 1, 0], [1, 0, 1]])
)
assert_allclose(metric.aggregate()[0], torch.Tensor([0.862069]), atol=1e-6, rtol=1e-6)

def test_denominator_is_zero(self):
metric = FBetaScore(beta=2)
metric(
y_pred=torch.Tensor([[1, 1, 1], [1, 1, 1], [1, 1, 1]]), y=torch.Tensor([[0, 0, 0], [0, 0, 0], [0, 0, 0]])
)
assert_allclose(metric.aggregate()[0], torch.Tensor([0.0]), atol=1e-6, rtol=1e-6)
@parameterized.expand(
[
(
"success_beta_0_5",
freddiewanah marked this conversation as resolved.
Show resolved Hide resolved
FBetaScore(beta=0.5),
freddiewanah marked this conversation as resolved.
Show resolved Hide resolved
torch.Tensor([[1, 0, 1], [0, 1, 0], [1, 0, 1]]),
torch.Tensor([0.609756]),
),
(
"success_beta_2",
FBetaScore(beta=2),
torch.Tensor([[1, 0, 1], [0, 1, 0], [1, 0, 1]]),
torch.Tensor([0.862069]),
),
(
"denominator_zero",
FBetaScore(beta=2),
torch.Tensor([[0, 0, 0], [0, 0, 0], [0, 0, 0]]),
torch.Tensor([0.0]),
),
]
)
def test_success_and_zero(self, name, metric, y, expected_score):
metric(y_pred=torch.Tensor([[1, 1, 1], [1, 1, 1], [1, 1, 1]]), y=y)
assert_allclose(metric.aggregate()[0], expected_score, atol=1e-6, rtol=1e-6)

def test_number_of_dimensions_less_than_2_should_raise_error(self):
metric = FBetaScore()
Expand Down
42 changes: 27 additions & 15 deletions tests/test_global_mutual_information_loss.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@

import numpy as np
import torch
from parameterized import parameterized

from monai import transforms
from monai.losses.image_dissimilarity import GlobalMutualInformationLoss
Expand Down Expand Up @@ -116,24 +117,35 @@ def transformation(translate_params=(0.0, 0.0, 0.0), rotate_params=(0.0, 0.0, 0.

class TestGlobalMutualInformationLossIll(unittest.TestCase):

def test_ill_shape(self):
@parameterized.expand(
[
("mismatched_simple_dims", torch.ones((1, 2), dtype=torch.float), torch.ones((1, 3), dtype=torch.float)),
(
"mismatched_advanced_dims",
torch.ones((1, 3, 3), dtype=torch.float),
torch.ones((1, 3), dtype=torch.float),
),
# You can add more test cases as needed
]
)
def test_ill_shape(self, name, input1, input2):
freddiewanah marked this conversation as resolved.
Show resolved Hide resolved
loss = GlobalMutualInformationLoss()
with self.assertRaisesRegex(ValueError, ""):
loss.forward(torch.ones((1, 2), dtype=torch.float), torch.ones((1, 3), dtype=torch.float, device=device))
with self.assertRaisesRegex(ValueError, ""):
loss.forward(torch.ones((1, 3, 3), dtype=torch.float), torch.ones((1, 3), dtype=torch.float, device=device))

def test_ill_opts(self):
with self.assertRaises(ValueError):
loss.forward(input1, input2)

@parameterized.expand(
[
("num_bins_zero", 0, "mean", ValueError, ""),
("num_bins_negative", -1, "mean", ValueError, ""),
("reduction_unknown", 64, "unknown", ValueError, ""),
("reduction_none", 64, None, ValueError, ""),
]
)
def test_ill_opts(self, name, num_bins, reduction, expected_exception, expected_message):
pred = torch.ones((1, 3, 3, 3, 3), dtype=torch.float, device=device)
target = torch.ones((1, 3, 3, 3, 3), dtype=torch.float, device=device)
with self.assertRaisesRegex(ValueError, ""):
GlobalMutualInformationLoss(num_bins=0)(pred, target)
with self.assertRaisesRegex(ValueError, ""):
GlobalMutualInformationLoss(num_bins=-1)(pred, target)
with self.assertRaisesRegex(ValueError, ""):
GlobalMutualInformationLoss(reduction="unknown")(pred, target)
with self.assertRaisesRegex(ValueError, ""):
GlobalMutualInformationLoss(reduction=None)(pred, target)
with self.assertRaisesRegex(expected_exception, expected_message):
GlobalMutualInformationLoss(num_bins=num_bins, reduction=reduction)(pred, target)


if __name__ == "__main__":
Expand Down
22 changes: 6 additions & 16 deletions tests/test_hausdorff_loss.py
Original file line number Diff line number Diff line change
Expand Up @@ -219,17 +219,12 @@ def test_ill_opts(self):
with self.assertRaisesRegex(ValueError, ""):
HausdorffDTLoss(reduction=None)(chn_input, chn_target)

def test_input_warnings(self):
@parameterized.expand([(False, False, False), (False, True, False), (False, False, True)])
def test_input_warnings(self, include_background, softmax, to_onehot_y):
chn_input = torch.ones((1, 1, 1, 3))
chn_target = torch.ones((1, 1, 1, 3))
with self.assertWarns(Warning):
loss = HausdorffDTLoss(include_background=False)
loss.forward(chn_input, chn_target)
with self.assertWarns(Warning):
loss = HausdorffDTLoss(softmax=True)
loss.forward(chn_input, chn_target)
with self.assertWarns(Warning):
loss = HausdorffDTLoss(to_onehot_y=True)
loss = HausdorffDTLoss(include_background=include_background, softmax=softmax, to_onehot_y=to_onehot_y)
loss.forward(chn_input, chn_target)


Expand All @@ -256,17 +251,12 @@ def test_ill_opts(self):
with self.assertRaisesRegex(ValueError, ""):
LogHausdorffDTLoss(reduction=None)(chn_input, chn_target)

def test_input_warnings(self):
@parameterized.expand([(False, False, False), (False, True, False), (False, False, True)])
def test_input_warnings(self, include_background, softmax, to_onehot_y):
chn_input = torch.ones((1, 1, 1, 3))
chn_target = torch.ones((1, 1, 1, 3))
with self.assertWarns(Warning):
loss = LogHausdorffDTLoss(include_background=False)
loss.forward(chn_input, chn_target)
with self.assertWarns(Warning):
loss = LogHausdorffDTLoss(softmax=True)
loss.forward(chn_input, chn_target)
with self.assertWarns(Warning):
loss = LogHausdorffDTLoss(to_onehot_y=True)
loss = LogHausdorffDTLoss(include_background=include_background, softmax=softmax, to_onehot_y=to_onehot_y)
loss.forward(chn_input, chn_target)


Expand Down
30 changes: 14 additions & 16 deletions tests/test_median_filter.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,27 +15,25 @@

import numpy as np
import torch
from parameterized import parameterized

from monai.networks.layers import MedianFilter


class MedianFilterTestCase(unittest.TestCase):

def test_3d_big(self):
a = torch.ones(1, 1, 2, 3, 5)
g = MedianFilter([1, 2, 4]).to(torch.device("cpu:0"))

expected = a.numpy()
out = g(a).cpu().numpy()
np.testing.assert_allclose(out, expected, rtol=1e-5)

def test_3d(self):
a = torch.ones(1, 1, 4, 3, 4)
g = MedianFilter(1).to(torch.device("cpu:0"))

expected = a.numpy()
out = g(a).cpu().numpy()
np.testing.assert_allclose(out, expected, rtol=1e-5)
@parameterized.expand(
[
("3d_big", torch.ones(1, 1, 2, 3, 5), MedianFilter([1, 2, 4])),
freddiewanah marked this conversation as resolved.
Show resolved Hide resolved
("3d", torch.ones(1, 1, 4, 3, 4), MedianFilter(1)),
]
)
def test_3d(self, name, input_tensor, filter):
filter = filter.to(torch.device("cpu:0"))

expected = input_tensor.numpy()
output = filter(input_tensor).cpu().numpy()

np.testing.assert_allclose(output, expected, rtol=1e-5)

def test_3d_radii(self):
a = torch.ones(1, 1, 4, 3, 2)
Expand Down
30 changes: 19 additions & 11 deletions tests/test_multi_scale.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,17 +58,25 @@ def test_shape(self, input_param, input_data, expected_val):
result = MultiScaleLoss(**input_param).forward(**input_data)
np.testing.assert_allclose(result.detach().cpu().numpy(), expected_val, rtol=1e-5)

def test_ill_opts(self):
with self.assertRaisesRegex(ValueError, ""):
MultiScaleLoss(loss=dice_loss, kernel="none")
with self.assertRaisesRegex(ValueError, ""):
MultiScaleLoss(loss=dice_loss, scales=[-1])(
torch.ones((1, 1, 3), device=device), torch.ones((1, 1, 3), device=device)
)
with self.assertRaisesRegex(ValueError, ""):
MultiScaleLoss(loss=dice_loss, scales=[-1], reduction="none")(
torch.ones((1, 1, 3), device=device), torch.ones((1, 1, 3), device=device)
)
@parameterized.expand(
[
("kernel_none", {"loss": dice_loss, "kernel": "none"}, None, None),
("scales_negative", {"loss": dice_loss, "scales": [-1]}, torch.ones((1, 1, 3)), torch.ones((1, 1, 3))),
(
"scales_negative_reduction_none",
{"loss": dice_loss, "scales": [-1], "reduction": "none"},
torch.ones((1, 1, 3)),
torch.ones((1, 1, 3)),
),
]
)
def test_ill_opts(self, name, kwargs, input, target):
if input is None and target is None:
with self.assertRaisesRegex(ValueError, ""):
MultiScaleLoss(**kwargs)
else:
with self.assertRaisesRegex(ValueError, ""):
MultiScaleLoss(**kwargs)(input, target)

def test_script(self):
input_param, input_data, expected_val = TEST_CASES[0]
Expand Down
27 changes: 8 additions & 19 deletions tests/test_optional_import.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,22 +13,20 @@

import unittest

from parameterized import parameterized

from monai.utils import OptionalImportError, exact_version, optional_import


class TestOptionalImport(unittest.TestCase):

def test_default(self):
my_module, flag = optional_import("not_a_module")
@parameterized.expand(["not_a_module", "torch.randint"])
def test_default(self, import_module):
my_module, flag = optional_import(import_module)
self.assertFalse(flag)
with self.assertRaises(OptionalImportError):
my_module.test

my_module, flag = optional_import("torch.randint")
with self.assertRaises(OptionalImportError):
self.assertFalse(flag)
print(my_module.test)

def test_import_valid(self):
my_module, flag = optional_import("torch")
self.assertTrue(flag)
Expand All @@ -47,18 +45,9 @@ def test_import_wrong_number(self):
self.assertTrue(flag)
print(my_module.randint(1, 2, (1, 2)))

def test_import_good_number(self):
my_module, flag = optional_import("torch", "0")
my_module.nn
self.assertTrue(flag)
print(my_module.randint(1, 2, (1, 2)))

my_module, flag = optional_import("torch", "0.0.0.1")
my_module.nn
self.assertTrue(flag)
print(my_module.randint(1, 2, (1, 2)))

my_module, flag = optional_import("torch", "1.1.0")
@parameterized.expand(["0", "0.0.0.1", "1.1.0"])
def test_import_good_number(self, version_number):
my_module, flag = optional_import("torch", version_number)
my_module.nn
self.assertTrue(flag)
print(my_module.randint(1, 2, (1, 2)))
Expand Down
8 changes: 3 additions & 5 deletions tests/test_perceptual_loss.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,12 +85,10 @@ def test_1d(self):
with self.assertRaises(NotImplementedError):
PerceptualLoss(spatial_dims=1)

def test_medicalnet_on_2d_data(self):
@parameterized.expand(["medicalnet_resnet10_23datasets", "medicalnet_resnet50_23datasets"])
def test_medicalnet_on_2d_data(self, network_type):
with self.assertRaises(ValueError):
PerceptualLoss(spatial_dims=2, network_type="medicalnet_resnet10_23datasets")

with self.assertRaises(ValueError):
PerceptualLoss(spatial_dims=2, network_type="medicalnet_resnet50_23datasets")
PerceptualLoss(spatial_dims=2, network_type=network_type)


if __name__ == "__main__":
Expand Down
Loading
Loading