Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add SignalFillEmptyd tranform #7011

Merged
merged 8 commits into from
Sep 21, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 9 additions & 0 deletions docs/source/transforms.rst
Original file line number Diff line number Diff line change
Expand Up @@ -1713,6 +1713,15 @@ Post-processing (Dict)
:members:
:special-members: __call__

Signal (Dict)
^^^^^^^^^^^^^

`SignalFillEmptyd`
""""""""""""""""""
.. autoclass:: SignalFillEmptyd
:members:
:special-members: __call__


Spatial (Dict)
^^^^^^^^^^^^^^
Expand Down
1 change: 1 addition & 0 deletions monai/transforms/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -345,6 +345,7 @@
SignalRandShift,
SignalRemoveFrequency,
)
from .signal.dictionary import SignalFillEmptyd, SignalFillEmptyD, SignalFillEmptyDict
from .smooth_field.array import (
RandSmoothDeform,
RandSmoothFieldAdjustContrast,
Expand Down
52 changes: 52 additions & 0 deletions monai/transforms/signal/dictionary.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A collection of dictionary-based wrappers around the signal operations defined in :py:class:`monai.transforms.signal.array`.

Class names are ended with 'd' to denote dictionary-based transforms.
"""

from __future__ import annotations

from collections.abc import Hashable, Mapping

from monai.config.type_definitions import KeysCollection, NdarrayOrTensor
from monai.transforms.signal.array import SignalFillEmpty
from monai.transforms.transform import MapTransform

__all__ = ["SignalFillEmptyd", "SignalFillEmptyD", "SignalFillEmptyDict"]


class SignalFillEmptyd(MapTransform):
"""
Applies the SignalFillEmptyd transform on the input. All NaN values will be replaced with the
replacement value.

Args:
keys: keys of the corresponding items to model output.
allow_missing_keys: don't raise exception if key is missing.
replacement: The value that the NaN entries shall be mapped to.
"""

backend = SignalFillEmpty.backend

def __init__(self, keys: KeysCollection = None, allow_missing_keys: bool = False, replacement=0.0):
super().__init__(keys, allow_missing_keys)
self.signal_fill_empty = SignalFillEmpty(replacement=replacement)

def __call__(self, data: Mapping[Hashable, NdarrayOrTensor]) -> Mapping[Hashable, NdarrayOrTensor]:
for key in self.key_iterator(data):
data[key] = self.signal_fill_empty(data[key]) # type: ignore

return data


SignalFillEmptyD = SignalFillEmptyDict = SignalFillEmptyd
4 changes: 2 additions & 2 deletions tests/test_signal_fillempty.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ def test_correct_parameters_multi_channels(self):
sig[:, 123] = np.NAN
fillempty = SignalFillEmpty(replacement=0.0)
fillemptysignal = fillempty(sig)
self.assertTrue(not np.isnan(fillemptysignal.any()))
self.assertTrue(not np.isnan(fillemptysignal).any())


@SkipIfBeforePyTorchVersion((1, 9))
Expand All @@ -43,7 +43,7 @@ def test_correct_parameters_multi_channels(self):
sig[:, 123] = convert_to_tensor(np.NAN)
fillempty = SignalFillEmpty(replacement=0.0)
fillemptysignal = fillempty(sig)
self.assertTrue(not torch.isnan(fillemptysignal.any()))
self.assertTrue(not torch.isnan(fillemptysignal).any())


if __name__ == "__main__":
Expand Down
58 changes: 58 additions & 0 deletions tests/test_signal_fillemptyd.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

import os
import unittest

import numpy as np
import torch

from monai.transforms import SignalFillEmptyd
from monai.utils.type_conversion import convert_to_tensor
from tests.utils import SkipIfBeforePyTorchVersion

TEST_SIGNAL = os.path.join(os.path.dirname(__file__), "testing_data", "signal.npy")


@SkipIfBeforePyTorchVersion((1, 9))
class TestSignalFillEmptyNumpy(unittest.TestCase):
def test_correct_parameters_multi_channels(self):
self.assertIsInstance(SignalFillEmptyd(replacement=0.0), SignalFillEmptyd)
sig = np.load(TEST_SIGNAL)
sig[:, 123] = np.NAN
data = {}
data["signal"] = sig
fillempty = SignalFillEmptyd(keys=("signal",), replacement=0.0)
data_ = fillempty(data)

self.assertTrue(np.isnan(sig).any())
self.assertTrue(not np.isnan(data_["signal"]).any())


@SkipIfBeforePyTorchVersion((1, 9))
class TestSignalFillEmptyTorch(unittest.TestCase):
def test_correct_parameters_multi_channels(self):
self.assertIsInstance(SignalFillEmptyd(replacement=0.0), SignalFillEmptyd)
sig = convert_to_tensor(np.load(TEST_SIGNAL))
sig[:, 123] = convert_to_tensor(np.NAN)
data = {}
data["signal"] = sig
fillempty = SignalFillEmptyd(keys=("signal",), replacement=0.0)
data_ = fillempty(data)

self.assertTrue(np.isnan(sig).any())
self.assertTrue(not torch.isnan(data_["signal"]).any())


if __name__ == "__main__":
unittest.main()
Loading