-
Notifications
You must be signed in to change notification settings - Fork 0
/
factorise.py
931 lines (790 loc) · 26.8 KB
/
factorise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
from builtins import ValueError
import sys
#from fractions import gcd
import random
from math import sqrt, log2, ceil, floor, gcd
#!/usr/bin/python3 -O
"""This script factorises a natural number given as a command line
parameter into its prime factors. It first attempts to use trial
division to find very small factors, then uses Brent's version of the
Pollard rho algorithm [1] to find slightly larger factors. If any large
factors remain, it uses the Self-Initializing Quadratic Sieve (SIQS) [2]
to factorise those.
[1] Brent, Richard P. 'An improved Monte Carlo factorization algorithm.'
BIT Numerical Mathematics 20.2 (1980): 176-184.
[2] Contini, Scott Patrick. 'Factoring integers with the self-
initializing quadratic sieve.' (1997).
"""
# Some tuning parameters
MAX_DIGITS_POLLARD = 30
POLLARD_QUICK_ITERATIONS = 20
MIN_DIGITS_POLLARD_QUICK2 = 45
POLLARD_QUICK2_ITERATIONS = 25
SIQS_TRIAL_DIVISION_EPS = 25
SIQS_MIN_PRIME_POLYNOMIAL = 400
SIQS_MAX_PRIME_POLYNOMIAL = 4000
# Number of iterations for the Miller-Rabin primality test
MILLER_RABIN_ITERATIONS = 50
class Polynomial:
"""A polynomial used for the Self-Initializing Quadratic Sieve."""
def __init__(self, coeff=[], a=None, b=None):
self.coeff = coeff
self.a = a
self.b = b
def eval(self, x):
res = 0
for a in self.coeff[::-1]:
res *= x
res += a
return res
class FactorBasePrime:
"""A factor base prime for the Self-Initializing Quadratic Sieve."""
def __init__(self, p, tmem, lp):
self.p = p
self.soln1 = None
self.soln2 = None
self.tmem = tmem
self.lp = lp
self.ainv = None
def lowest_set_bit(a):
b = (a & -a)
low_bit = -1
while (b):
b >>= 1
low_bit += 1
return low_bit
def to_bits(k):
"""Return a generator that returns the bits of k, starting from the
least significant bit, using True for 1s, and False for 0s.
"""
k_binary = bin(k)[2:]
return (bit == '1' for bit in k_binary[::-1])
def pow_mod(a, k, m):
"""Return a^k mod m."""
r = 1
b = a
for bit in to_bits(k):
if bit:
r = (r * b) % m
b = (b * b) % m
return r
def is_quadratic_residue(a, p):
"""Return whether a is a quadratic residue modulo a prime p."""
return legendre(a, (p - 1) // 2, 1, p) == 1
def legendre(a, q, l, n):
x = q ** l
if x == 0:
return 1
z = 1
a %= n
while x != 0:
if x % 2 == 0:
a = (a ** 2) % n
x //= 2
else:
x -= 1
z = (z * a) % n
return z
def sqrt_mod_prime(a, p):
"""Return the square root of a modulo the prime p. Behaviour is
undefined if a is not a quadratic residue mod p."""
# Algorithm from http://www.mersennewiki.org/index.php/Modular_Square_Root
assert a < p
assert is_probable_prime(p)
if a == 0:
return 0
if p == 2:
return a
if p % 2 == 0:
return None
p_mod_8 = p % 8
if p_mod_8 == 1:
# Shanks method
q = p // 8
e = 3
while q % 2 == 0:
q //= 2
e += 1
while True:
x = random.randint(2, p - 1)
z = pow_mod(x, q, p)
if pow_mod(z, 2 ** (e - 1), p) != 1:
break
y = z
r = e
x = pow_mod(a, (q - 1) // 2, p)
v = (a * x) % p
w = (v * x) % p
while True:
if w == 1:
return v
k = 1
while pow_mod(w, 2 ** k, p) != 1:
k += 1
d = pow_mod(y, 2 ** (r - k - 1), p)
y = (d ** 2) % p
r = k
v = (d * v) % p
w = (w * y) % p
elif p_mod_8 == 5:
v = pow_mod(2 * a, (p - 5) // 8, p)
i = (2 * a * v * v) % p
return (a * v * (i - 1)) % p
else:
return pow_mod(a, (p + 1) // 4, p)
def inv_mod(a, m):
"""Return the modular inverse of a mod m."""
return eea(a, m)[0] % m
def eea(a, b):
"""Solve the equation a*x + b*y = gcd(a,b).
Return (x, y, +/-gcd(a,b)).
"""
if a == 0:
return (0, 1, b)
x = eea(b % a, a)
return (x[1] - b // a * x[0], x[0], x[2])
def is_probable_prime(a):
"""Perform the Miller-Rabin primality test to determine whether the
given number a is a prime. Return True if the number is a prime
with very high probability, and False if it is definitely composite.
"""
if a == 2:
return True
if a == 1 or a % 2 == 0:
return False
return primality_test_miller_rabin(a, MILLER_RABIN_ITERATIONS)
def primality_test_miller_rabin(a, iterations):
m = a - 1
lb = lowest_set_bit(m)
m >>= lb
for _ in range(iterations):
b = random.randint(2, a - 1)
j = 0
z = pow_mod(b, m, a)
while not ((j == 0 and z == 1) or z == a - 1):
if (j > 0 and z == 1 or j + 1 == lb):
return False
j += 1
z = (z * z) % a
return True
def siqs_factor_base_primes(n, nf):
"""Compute and return nf factor base primes suitable for a Quadratic
Sieve on the number n.
"""
global small_primes
factor_base = []
for p in small_primes:
if is_quadratic_residue(n, p):
t = sqrt_mod_prime(n % p, p)
lp = round(log2(p))
factor_base.append(FactorBasePrime(p, t, lp))
if len(factor_base) >= nf:
break
return factor_base
def siqs_find_first_poly(n, m, factor_base):
"""Compute the first of a set of polynomials for the Self-
Initialising Quadratic Sieve.
"""
p_min_i = None
p_max_i = None
for i, fb in enumerate(factor_base):
if p_min_i is None and fb.p >= SIQS_MIN_PRIME_POLYNOMIAL:
p_min_i = i
if p_max_i is None and fb.p > SIQS_MAX_PRIME_POLYNOMIAL:
p_max_i = i - 1
break
# The following may happen if the factor base is small, make sure
# that we have enough primes.
if p_max_i is None:
p_max_i = len(factor_base) - 1
if p_min_i is None or p_max_i - p_min_i < 20:
p_min_i = min(p_min_i, 5)
target = sqrt(2 * float(n)) / m
target1 = target / ((factor_base[p_min_i].p +
factor_base[p_max_i].p) / 2) ** 0.5
# find q such that the product of factor_base[q_i] is approximately
# sqrt(2 * n) / m; try a few different sets to find a good one
best_q, best_a, best_ratio = None, None, None
for _ in range(30):
a = 1
q = []
while a < target1:
p_i = 0
while p_i == 0 or p_i in q:
p_i = random.randint(p_min_i, p_max_i)
p = factor_base[p_i].p
a *= p
q.append(p_i)
ratio = a / target
# ratio too small seems to be not good
if (best_ratio is None or (ratio >= 0.9 and ratio < best_ratio) or
best_ratio < 0.9 and ratio > best_ratio):
best_q = q
best_a = a
best_ratio = ratio
a = best_a
q = best_q
s = len(q)
B = []
for l in range(s):
fb_l = factor_base[q[l]]
q_l = fb_l.p
assert a % q_l == 0
gamma = (fb_l.tmem * inv_mod(a // q_l, q_l)) % q_l
if gamma > q_l // 2:
gamma = q_l - gamma
B.append(a // q_l * gamma)
b = sum(B) % a
b_orig = b
if (2 * b > a):
b = a - b
assert 0 < b
assert 2 * b <= a
assert ((b * b - n) % a == 0)
g = Polynomial([b * b - n, 2 * a * b, a * a], a, b_orig)
h = Polynomial([b, a])
for fb in factor_base:
if a % fb.p != 0:
fb.ainv = inv_mod(a, fb.p)
fb.soln1 = (fb.ainv * (fb.tmem - b)) % fb.p
fb.soln2 = (fb.ainv * (-fb.tmem - b)) % fb.p
return g, h, B
def siqs_find_next_poly(n, factor_base, i, g, B):
"""Compute the (i+1)-th polynomials for the Self-Initialising
Quadratic Sieve, given that g is the i-th polynomial.
"""
v = lowest_set_bit(i) + 1
z = -1 if ceil(i / (2 ** v)) % 2 == 1 else 1
b = (g.b + 2 * z * B[v - 1]) % g.a
a = g.a
b_orig = b
if (2 * b > a):
b = a - b
assert ((b * b - n) % a == 0)
g = Polynomial([b * b - n, 2 * a * b, a * a], a, b_orig)
h = Polynomial([b, a])
for fb in factor_base:
if a % fb.p != 0:
fb.soln1 = (fb.ainv * (fb.tmem - b)) % fb.p
fb.soln2 = (fb.ainv * (-fb.tmem - b)) % fb.p
return g, h
def siqs_sieve(factor_base, m):
"""Perform the sieving step of the SIQS. Return the sieve array."""
sieve_array = [0] * (2 * m + 1)
for fb in factor_base:
if fb.soln1 is None:
continue
p = fb.p
i_start_1 = -((m + fb.soln1) // p)
a_start_1 = fb.soln1 + i_start_1 * p
lp = fb.lp
if p > 20:
for a in range(a_start_1 + m, 2 * m + 1, p):
sieve_array[a] += lp
i_start_2 = -((m + fb.soln2) // p)
a_start_2 = fb.soln2 + i_start_2 * p
for a in range(a_start_2 + m, 2 * m + 1, p):
sieve_array[a] += lp
return sieve_array
def siqs_trial_divide(a, factor_base):
"""Determine whether the given number a can be fully factorised into
primes from the factors base. If so, return the indices of the
factors from the factor base. If not, return None.
"""
divisors_idx = []
for i, fb in enumerate(factor_base):
if a % fb.p == 0:
exp = 0
while a % fb.p == 0:
a //= fb.p
exp += 1
divisors_idx.append((i, exp))
if a == 1:
return divisors_idx
return None
def siqs_trial_division(n, sieve_array, factor_base, smooth_relations, g, h, m,
req_relations):
"""Perform the trial division step of the Self-Initializing
Quadratic Sieve.
"""
sqrt_n = sqrt(float(n))
limit = log2(m * sqrt_n) - SIQS_TRIAL_DIVISION_EPS
for (i, sa) in enumerate(sieve_array):
if sa >= limit:
x = i - m
gx = g.eval(x)
divisors_idx = siqs_trial_divide(gx, factor_base)
if divisors_idx is not None:
u = h.eval(x)
v = gx
assert (u * u) % n == v % n
smooth_relations.append((u, v, divisors_idx))
if (len(smooth_relations) >= req_relations):
return True
return False
def siqs_build_matrix(factor_base, smooth_relations):
"""Build the matrix for the linear algebra step of the Quadratic Sieve."""
fb = len(factor_base)
M = []
for sr in smooth_relations:
mi = [0] * fb
for j, exp in sr[2]:
mi[j] = exp % 2
M.append(mi)
return M
def siqs_build_matrix_opt(M):
"""Convert the given matrix M of 0s and 1s into a list of numbers m
that correspond to the columns of the matrix.
The j-th number encodes the j-th column of matrix M in binary:
The i-th bit of m[i] is equal to M[i][j].
"""
m = len(M[0])
cols_binary = [""] * m
for mi in M:
for j, mij in enumerate(mi):
cols_binary[j] += "1" if mij else "0"
return [int(cols_bin[::-1], 2) for cols_bin in cols_binary], len(M), m
def add_column_opt(M_opt, tgt, src):
"""For a matrix produced by siqs_build_matrix_opt, add the column
src to the column target (mod 2).
"""
M_opt[tgt] ^= M_opt[src]
def find_pivot_column_opt(M_opt, j):
"""For a matrix produced by siqs_build_matrix_opt, return the row of
the first non-zero entry in column j, or None if no such row exists.
"""
if M_opt[j] == 0:
return None
return lowest_set_bit(M_opt[j])
def siqs_solve_matrix_opt(M_opt, n, m):
"""
Perform the linear algebra step of the SIQS. Perform fast
Gaussian elimination to determine pairs of perfect squares mod n.
Use the optimisations described in [1].
[1] Koç, Çetin K., and Sarath N. Arachchige. 'A Fast Algorithm for
Gaussian Elimination over GF (2) and its Implementation on the
GAPP.' Journal of Parallel and Distributed Computing 13.1
(1991): 118-122.
"""
row_is_marked = [False] * n
pivots = [-1] * m
for j in range(m):
i = find_pivot_column_opt(M_opt, j)
if i is not None:
pivots[j] = i
row_is_marked[i] = True
for k in range(m):
if k != j and (M_opt[k] >> i) & 1: # test M[i][k] == 1
add_column_opt(M_opt, k, j)
perf_squares = []
for i in range(n):
if not row_is_marked[i]:
perfect_sq_indices = [i]
for j in range(m):
if (M_opt[j] >> i) & 1: # test M[i][j] == 1
perfect_sq_indices.append(pivots[j])
perf_squares.append(perfect_sq_indices)
return perf_squares
def siqs_calc_sqrts(square_indices, smooth_relations):
"""Given on of the solutions returned by siqs_solve_matrix_opt and
the corresponding smooth relations, calculate the pair [a, b], such
that a^2 = b^2 (mod n).
"""
res = [1, 1]
for idx in square_indices:
res[0] *= smooth_relations[idx][0]
res[1] *= smooth_relations[idx][1]
res[1] = sqrt_int(res[1])
return res
def sqrt_int(n):
"""Return the square root of the given integer, rounded down to the
nearest integer.
"""
a = n
s = 0
o = 1 << (floor(log2(n)) & ~1)
while o != 0:
t = s + o
if a >= t:
a -= t
s = (s >> 1) + o
else:
s >>= 1
o >>= 2
assert s * s == n
return s
def kth_root_int(n, k):
"""Return the k-th root of the given integer n, rounded down to the
nearest integer.
"""
u = n
s = n + 1
while u < s:
s = u
t = (k - 1) * s + n // pow(s, k - 1)
u = t // k
return s
def siqs_factor_from_square(n, square_indices, smooth_relations):
"""Given one of the solutions returned by siqs_solve_matrix_opt,
return the factor f determined by f = gcd(a - b, n), where
a, b are calculated from the solution such that a*a = b*b (mod n).
Return f, a factor of n (possibly a trivial one).
"""
sqrt1, sqrt2 = siqs_calc_sqrts(square_indices, smooth_relations)
assert (sqrt1 * sqrt1) % n == (sqrt2 * sqrt2) % n
return gcd(abs(sqrt1 - sqrt2), n)
def siqs_find_factors(n, perfect_squares, smooth_relations):
"""Perform the last step of the Self-Initialising Quadratic Field.
Given the solutions returned by siqs_solve_matrix_opt, attempt to
identify a number of (not necessarily prime) factors of n, and
return them.
"""
factors = []
rem = n
non_prime_factors = set()
prime_factors = set()
for square_indices in perfect_squares:
fact = siqs_factor_from_square(n, square_indices, smooth_relations)
if fact != 1 and fact != rem:
if is_probable_prime(fact):
if fact not in prime_factors:
print("SIQS: Prime factor found: %d" % fact)
prime_factors.add(fact)
while rem % fact == 0:
factors.append(fact)
rem //= fact
if rem == 1:
break
if is_probable_prime(rem):
factors.append(rem)
rem = 1
break
else:
if fact not in non_prime_factors:
print("SIQS: Non-prime factor found: %d" % fact)
non_prime_factors.add(fact)
if rem != 1 and non_prime_factors:
non_prime_factors.add(rem)
for fact in sorted(siqs_find_more_factors_gcd(non_prime_factors)):
while fact != 1 and rem % fact == 0:
print("SIQS: Prime factor found: %d" % fact)
factors.append(fact)
rem //= fact
if rem == 1 or is_probable_prime(rem):
break
if rem != 1:
factors.append(rem)
return factors
def siqs_find_more_factors_gcd(numbers):
res = set()
for n in numbers:
res.add(n)
for m in numbers:
if n != m:
fact = gcd(n, m)
if fact != 1 and fact != n and fact != m:
if fact not in res:
print("SIQS: GCD found non-trivial factor: %d" % fact)
res.add(fact)
res.add(n // fact)
res.add(m // fact)
return res
def siqs_choose_nf_m(d):
"""Choose parameters nf (sieve of factor base) and m (for sieving
in [-m,m].
"""
# Using similar parameters as msieve-1.52
if d <= 34:
return 200, 65536
if d <= 36:
return 300, 65536
if d <= 38:
return 400, 65536
if d <= 40:
return 500, 65536
if d <= 42:
return 600, 65536
if d <= 44:
return 700, 65536
if d <= 48:
return 1000, 65536
if d <= 52:
return 1200, 65536
if d <= 56:
return 2000, 65536 * 3
if d <= 60:
return 4000, 65536 * 3
if d <= 66:
return 6000, 65536 * 3
if d <= 74:
return 10000, 65536 * 3
if d <= 80:
return 30000, 65536 * 3
if d <= 88:
return 50000, 65536 * 3
if d <= 94:
return 60000, 65536 * 9
return 100000, 65536 * 9
def siqs_factorise(n):
"""Use the Self-Initializing Quadratic Sieve algorithm to identify
one or more non-trivial factors of the given number n. Return the
factors as a list.
"""
dig = len(str(n))
nf, m = siqs_choose_nf_m(dig)
factor_base = siqs_factor_base_primes(n, nf)
required_relations_ratio = 1.05
success = False
smooth_relations = []
prev_cnt = 0
i_poly = 0
while not success:
print("*** Step 1/2: Finding smooth relations ***")
required_relations = round(len(factor_base) * required_relations_ratio)
print("Target: %d relations" % required_relations)
enough_relations = False
while not enough_relations:
if i_poly == 0:
g, h, B = siqs_find_first_poly(n, m, factor_base)
else:
g, h = siqs_find_next_poly(n, factor_base, i_poly, g, B)
i_poly += 1
if i_poly >= 2 ** (len(B) - 1):
i_poly = 0
sieve_array = siqs_sieve(factor_base, m)
enough_relations = siqs_trial_division(
n, sieve_array, factor_base, smooth_relations,
g, h, m, required_relations)
if (len(smooth_relations) >= required_relations or
i_poly % 8 == 0 and len(smooth_relations) > prev_cnt):
print("Total %d/%d relations." %
(len(smooth_relations), required_relations))
prev_cnt = len(smooth_relations)
print("*** Step 2/2: Linear Algebra ***")
print("Building matrix for linear algebra step...")
M = siqs_build_matrix(factor_base, smooth_relations)
M_opt, M_n, M_m = siqs_build_matrix_opt(M)
print("Finding perfect squares using matrix...")
perfect_squares = siqs_solve_matrix_opt(M_opt, M_n, M_m)
print("Finding factors from perfect squares...")
factors = siqs_find_factors(n, perfect_squares, smooth_relations)
if len(factors) > 1:
success = True
else:
print("Failed to find a solution. Finding more relations...")
required_relations_ratio += 0.05
return factors
def check_factor(n, i, factors):
while n % i == 0:
n //= i
factors.append(i)
if is_probable_prime(n):
factors.append(n)
n = 1
return n
def trial_div_init_primes(n, upper_bound):
"""Perform trial division on the given number n using all primes up
to upper_bound. Initialise the global variable small_primes with a
list of all primes <= upper_bound. Return (factors, rem), where
factors is the list of identified prime factors of n, and rem is the
remaining factor. If rem = 1, the function terminates early, without
fully initialising small_primes.
"""
print("Trial division and initialising small primes...")
global small_primes
is_prime = [True] * (upper_bound + 1)
is_prime[0:2] = [False] * 2
factors = []
small_primes = []
max_i = sqrt_int(upper_bound)
rem = n
for i in range(2, max_i + 1):
if is_prime[i]:
small_primes.append(i)
rem = check_factor(rem, i, factors)
if rem == 1:
return factors, 1
for j in (range(i ** 2, upper_bound + 1, i)):
is_prime[j] = False
for i in range(max_i + 1, upper_bound + 1):
if is_prime[i]:
small_primes.append(i)
rem = check_factor(rem, i, factors)
if rem == 1:
return factors, 1
print("Primes initialised.")
return factors, rem
def pollard_brent_f(c, n, x):
"""Return f(x) = (x^2 + c)%n. Assume c < n.
"""
x1 = (x * x) % n + c
if x1 >= n:
x1 -= n
assert x1 >= 0 and x1 < n
return x1
def pollard_brent_find_factor(n, max_iter=None):
"""Perform Brent's variant of the Pollard rho factorisation
algorithm to attempt to a non-trivial factor of the given number n.
If max_iter > 0, return None if no factors were found within
max_iter iterations.
"""
y, c, m = (random.randint(1, n - 1) for _ in range(3))
r, q, g = 1, 1, 1
i = 0
while g == 1:
x = y
for _ in range(r):
y = pollard_brent_f(c, n, y)
k = 0
while k < r and g == 1:
ys = y
for _ in range(min(m, r - k)):
y = pollard_brent_f(c, n, y)
q = (q * abs(x - y)) % n
g = gcd(q, n)
k += m
r *= 2
if max_iter:
i += 1
if (i == max_iter):
return None
if g == n:
while True:
ys = pollard_brent_f(c, n, ys)
g = gcd(abs(x - ys), n)
if g > 1:
break
return g
def pollard_brent_quick(n, factors):
"""Perform up to max_iter iterations of Brent's variant of the
Pollard rho factorisation algorithm to attempt to find small
prime factors. Restart the algorithm each time a factor was found.
Add all identified prime factors to factors, and return 1 if all
prime factors were found, or otherwise the remaining factor.
"""
rem = n
while True:
if is_probable_prime(rem):
factors.append(rem)
rem = 1
break
digits = len(str(n))
if digits < MIN_DIGITS_POLLARD_QUICK2:
max_iter = POLLARD_QUICK_ITERATIONS
else:
max_iter = POLLARD_QUICK2_ITERATIONS
f = pollard_brent_find_factor(rem, max_iter)
if f and f < rem:
if is_probable_prime(f):
print("Pollard rho (Brent): Prime factor found: %s" % f)
factors.append(f)
assert rem % f == 0
rem //= f
else:
print("Pollard rho (Brent): Non-prime factor found: %s" % f)
rem_f = pollard_brent_quick(f, factors)
rem = (rem // f) * rem_f
else:
print("No (more) small factors found.")
break
return rem
def check_perfect_power(n):
"""Check if the given integer is a perfect power. If yes, return
(r, b) such that r^b == n. If no, return None. Assume that
global small_primes has already been initialised and that n does
not have any prime factors from small_primes.
"""
largest_checked_prime = small_primes[-1]
for b in small_primes:
bth_root = kth_root_int(n, b)
if bth_root < largest_checked_prime:
break
if (bth_root ** b == n):
return (bth_root, b)
return None
def find_prime_factors(n):
"""Return one or more prime factors of the given number n. Assume
that n is not a prime and does not have very small factors, and that
the global small_primes has already been initialised. Do not return
duplicate factors.
"""
print("Checking whether %d is a perfect power..." % n)
perfect_power = check_perfect_power(n)
if perfect_power:
print("%d is %d^%d" % (n, perfect_power[0], perfect_power[1]))
factors = [perfect_power[0]]
else:
print("Not a perfect power.")
digits = len(str(n))
if digits <= MAX_DIGITS_POLLARD:
print("Using Pollard rho (Brent's variant) to factorise %d (%d digits)..."
% (n, digits))
factors = [pollard_brent_find_factor(n)]
else:
print("Using Self-Initializing Quadratic Sieve to factorise" +
" %d (%d digits)..." % (n, digits))
factors = siqs_factorise(n)
prime_factors = []
for f in set(factors):
for pf in find_all_prime_factors(f):
prime_factors.append(pf)
return prime_factors
def find_all_prime_factors(n):
"""Return all prime factors of the given number n. Assume that n
does not have very small factors and that the global small_primes
has already been initialised.
"""
rem = n
factors = []
while rem > 1:
if is_probable_prime(rem):
factors.append(rem)
break
for f in find_prime_factors(rem):
print("Prime factor found: %d" % f)
assert is_probable_prime(f)
assert rem % f == 0
while rem % f == 0:
rem //= f
factors.append(f)
return factors
def product(factors):
"""Return the product of all numbers in the given list."""
prod = 1
for f in factors:
prod *= f
return prod
def factorise(n):
"""Factorise the given integer n >= 1 into its prime factors."""
if type(n) != int or n < 1:
raise ValueError("Number needs to be an integer >= 1")
print("Factorising %d (%d digits)..." % (n, len(str(n))))
if n == 1:
return []
if is_probable_prime(n):
return [n]
factors, rem = trial_div_init_primes(n, 1000000)
if factors:
print("Prime factors found so far: %s" % factors)
else:
print("No small factors found.")
if rem != 1:
digits = len(str(rem))
if digits > MAX_DIGITS_POLLARD:
print("Attempting quick Pollard rho (Brent's variant) to find slightly " +
"larger factors...")
rem = pollard_brent_quick(rem, factors)
if rem > 1:
for fr in find_all_prime_factors(rem):
factors.append(fr)
factors.sort()
assert product(factors) == n
for p in factors:
assert is_probable_prime(p)
return factors
if __name__ == '__main__':
if len(sys.argv) > 1:
N = int(sys.argv[1])
print("\nSuccess. Prime factors: %s" % factorise(N))
else:
print("Usage: factorize.py <N>", file=sys.stderr)