-
Notifications
You must be signed in to change notification settings - Fork 149
/
Copy pathhpf_movielens.py
68 lines (56 loc) · 1.69 KB
/
hpf_movielens.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Example (Hierarchical) Poisson Factorization vs BPR on MovieLens data"""
import cornac
from cornac.datasets import movielens
from cornac.eval_methods import RatioSplit
# Load user-item feedback
data = movielens.load_feedback(variant="100K")
# Instantiate an evaluation method to split data into train and test sets.
ratio_split = RatioSplit(
data=data,
test_size=0.2,
exclude_unknowns=True,
verbose=True,
seed=123,
rating_threshold=0.5,
)
hpf = cornac.models.HPF(
k=5,
seed=123
)
pf = cornac.models.HPF(
k=5,
seed=123,
hierarchical=False,
name="PF"
)
bpr = cornac.models.BPR(
k=5,
max_iter=200,
learning_rate=0.001,
lambda_reg=0.01,
seed=123)
# Instantiate evaluation measures
rec_20 = cornac.metrics.Recall(k=20)
ndcg_20 = cornac.metrics.NDCG(k=20)
auc = cornac.metrics.AUC()
# Put everything together into an experiment and run it
cornac.Experiment(
eval_method=ratio_split,
models=[pf, hpf, bpr],
metrics=[rec_20, ndcg_20, auc],
user_based=True,
).run()