-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathlatent-mixing.py
632 lines (527 loc) · 23.8 KB
/
latent-mixing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from sklearn.metrics.ranking import roc_auc_score
import torchvision.transforms as transforms
import argparse
import os
import random
from utils import Bar, Logger, AverageMeter, accuracy, mkdir_p, savefig
from tensorboardX import SummaryWriter
import time
import shutil
"""
Configs
"""
parser = argparse.ArgumentParser(description='PyTorch Latent MixMatch Training for X-Ray')
# Optimization options
parser.add_argument('--epochs', default=1024, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--batch-size', default=64, type=int, metavar='N',
help='train batchsize')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--schedule', type=int, nargs='+', default=[200, 500], help='Decrease learning rate at these epochs.')
parser.add_argument('--gammas', type=float, nargs='+', default=[0.1, 0.1], help='LR is multiplied by gamma on schedule, number of gammas should be equal to schedule')
# Checkpoints
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
# Miscs
parser.add_argument('--manualSeed', type=int, default=0, help='manual seed')
#Device options
parser.add_argument('--gpu', default='0', type=str,
help='id(s) for CUDA_VISIBLE_DEVICES')
#Method options
parser.add_argument('--howManyLabelled', type=int, default=300,
help='Number of labeled data')
parser.add_argument('--val-iteration', type=int, default=250,
help='Number of labeled data')
parser.add_argument('--out', default='out',
help='Directory to output the result')
parser.add_argument('--alpha', default=0.75, type=float)
parser.add_argument('--lambda-u', default=75, type=float)
parser.add_argument('--T', default=0.5, type=float)
parser.add_argument('--ema-decay', default=0.999, type=float)
#Add noise or data augmentation
parser.add_argument('--augu', action='store_true', default=False,
help='use augmentation or not!')
parser.add_argument('--noise', action='store_true', default=False,
help='use augmentation or not!')
#ManifoldMixup
parser.add_argument('--mixup', type=str, default = 'input', choices =['input', 'mixup_hidden','only_hidden', 'fixHidden1', 'fixHidden2', 'fixHidden05', 'fixHidden15'])
parser.add_argument('--noSharp', action='store_true', default=False,
help='Avoid sharpeninig (for multilabel case!)')
#Dataset
parser.add_argument('--dataset', type=str, default = 'xray', choices =['xray', 'skin'])
#Supervised baseline
parser.add_argument('--sup', action='store_true', default=False,
help='supervised baseline!')
#Considering different pair for manifold mixup
parser.add_argument('--analyzeMN', default=False, action='store_true')
parser.add_argument('--bb', default=2, type=float)
args = parser.parse_args()
state = {k: v for k, v in args._get_kwargs()}
# Use CUDA
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
use_cuda = torch.cuda.is_available()
# Random seed
if args.manualSeed is None:
args.manualSeed = random.randint(1, 10000)
if use_cuda:
torch.cuda.manual_seed_all(args.manualSeed)
else:
torch.manual_seed(args.manualSeed)
np.random.seed(args.manualSeed)
class GaussianNoise(nn.Module):
def __init__(self, batch_size, input_shape, std=0.05, image_size=128):
super(GaussianNoise, self).__init__()
self.shape = (batch_size,) + input_shape
self.noise = Variable(torch.zeros(self.shape).cuda())
self.std = std
self.image_size=image_size
def forward(self, x):
self.noise.data.normal_(0, std=self.std)
try:
return x + self.noise
except:
self.noise = Variable(torch.zeros((x.size(0),) + (1, self.image_size, self.image_size)).cuda())
self.noise.data.normal_(0, std=self.std)
return x + self.noise
class Classifier(nn.Module):
def __init__(self, batch_size, std, noise, input_shape = (1, 128, 128), p=0.5, data='xray'):
super(Classifier, self).__init__()
self.std = std
self.noise = noise
self.gn = GaussianNoise(batch_size, input_shape=input_shape, std=self.std)
self.act = nn.ReLU()
self.drop1 = nn.Dropout(p)
self.drop2 = nn.Dropout(p)
self.data = data
if data == 'xray':
classCount = 14
else:
classCount = 7
if data == 'xray':
self.conv1 = nn.Conv2d(1, 32, kernel_size=4, stride=2, padding=1)
else:
self.conv1 = nn.Conv2d(3, 32, kernel_size=4, stride=2, padding=1)
self.bn1 = nn.BatchNorm2d(32)
self.conv2 = nn.Conv2d(32, 32, kernel_size=4, stride=2, padding=1)
self.bn2 = nn.BatchNorm2d(32)
self.conv3 = nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=1)
self.bn3 = nn.BatchNorm2d(64)
self.conv4 = nn.Conv2d(64, 64, kernel_size=4, stride=2, padding=1)
self.bn4 = nn.BatchNorm2d(64)
self.conv5 = nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1)
self.bn5 = nn.BatchNorm2d(128)
self.classifierXray = nn.Sequential(
nn.Dropout(),
nn.Linear(128 * 4 * 4, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, classCount),
)
def forward(self, x):
if self.noise and self.training:
x = self.gn(x)
x = self.bn1(self.act(self.conv1(x)))
x = self.bn2(self.act(self.conv2(x)))
x = self.bn3(self.act(self.conv3(x)))
x = self.bn4(self.act(self.conv4(x)))
x = self.bn5(self.act(self.conv5(x)))
x = x.view(-1, 128 * 4 * 4)
x = self.classifierXray(x)
if self.data == 'xray':
return torch.sigmoid(x)
else:
return torch.softmax(x, dim=1)
def HiddenAfterHalf(self, x):
if self.noise and self.training:
x = self.gn(x)
x = self.bn1(self.act(self.conv1(x)))
return x
def HiddenAfterFirst(self, x):
x = self.HiddenAfterHalf(x)
x = self.bn2(self.act(self.conv2(x)))
return x
def HiddenAfterOneAndHalf(self, x):
x = self.HiddenAfterFirst(x)
x = self.bn3(self.act(self.conv3(x)))
return x
def HiddenAfterSecond(self, x):
x = self.HiddenAfterOneAndHalf(x)
x = self.bn4(self.act(self.conv4(x)))
return x
def LogitAfterHalf(self, x):
x = self.bn2(self.act(self.conv2(x)))
return self.LogitAfterFirst(x)
def LogitAfterFirst(self, x):
x = self.bn3(self.act(self.conv3(x)))
return self.LogitAfterOneAndHalf(x)
def LogitAfterOneAndHalf(self, x):
x = self.bn4(self.act(self.conv4(x)))
return self.LogitAfterSecond(x)
def LogitAfterSecond(self, x):
x = self.bn5(self.act(self.conv5(x)))
x = x.view(-1, 128 * 4 * 4)
x = self.classifierXray(x)
if self.data == 'xray':
return torch.sigmoid(x)
else:
return torch.softmax(x, dim=1)
def adjust_learning_rate(optimizer, epoch, gammas, schedule):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr
assert len(gammas) == len(schedule), "length of gammas and schedule should be equal"
for (gamma, step) in zip(gammas, schedule):
if (epoch >= step):
lr = lr * gamma
else:
break
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def linear_rampup(current, rampup_length=args.epochs):
if rampup_length == 0:
return 1.0
else:
current = np.clip(current / rampup_length, 0.0, 1.0)
return float(current)
def computeAUROC(dataGT, dataPRED, classCount):
outAUROC = []
datanpGT = dataGT.cpu().numpy()
datanpPRED = dataPRED.cpu().numpy()
for i in range(classCount):
outAUROC.append(roc_auc_score(datanpGT[:, i], datanpPRED[:, i]))
return outAUROC
class SemiLossSum(object):
def __call__(self, outputs_x, targets_x, outputs_u, targets_u, epoch):
Lx = F.binary_cross_entropy(outputs_x, targets_x, reduction='sum')
Lu = F.mse_loss(outputs_u, targets_u, reduction='sum')
return Lx, Lu, args.lambda_u * linear_rampup(epoch)
def interleave_offsets(batch, nu):
groups = [batch // (nu + 1)] * (nu + 1)
for x in range(batch - sum(groups)):
groups[-x - 1] += 1
offsets = [0]
for g in groups:
offsets.append(offsets[-1] + g)
assert offsets[-1] == batch
return offsets
def interleave(xy, batch):
nu = len(xy) - 1
offsets = interleave_offsets(batch, nu)
xy = [[v[offsets[p]:offsets[p + 1]] for p in range(nu + 1)] for v in xy]
for i in range(1, nu + 1):
xy[0][i], xy[i][i] = xy[i][i], xy[0][i]
return [torch.cat(v, dim=0) for v in xy]
def save_checkpoint(state, is_best, checkpoint=args.out, filename='checkpoint.pth.tar'):
filepath = os.path.join(checkpoint, filename)
torch.save(state, filepath)
if is_best:
shutil.copyfile(filepath, os.path.join(checkpoint, 'model_best.pth.tar'))
def main():
print("Working for {} alpha : {} numOfLabelled : {}".format(args.mixup, args.alpha, args.howManyLabelled))
if not os.path.isdir(args.out):
mkdir_p(args.out)
minLoss = 100000
#Model and optimizer
model = Classifier(batch_size=args.batch_size, std=0.15, noise=args.noise, data=args.dataset)
if use_cuda: model = model.cuda()
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr)
#Transforms for the data
transformList = []
transformList_aug=[]
transformList_aug.append(transforms.RandomRotation(degrees=(-10,10)))
transformList_aug.append(transforms.RandomAffine(degrees=0,translate=(0.1,0.1)))
transformList_aug.append(transforms.ToTensor())
trans_aug = transforms.Compose(transformList_aug)
transformList.append(transforms.ToTensor())
transformSequence = transforms.Compose(transformList)
from get_dataLoader_images import get_dataLoader_mix
if args.augu:
labeled_trainloader, unlabeled_trainloader, val_loader, test_loader = get_dataLoader_mix(
transformSequence, trans_aug, labelled=args.howManyLabelled, batch_size=args.batch_size)
else:
labeled_trainloader, unlabeled_trainloader, val_loader, test_loader = get_dataLoader_mix(transformSequence,
transformSequence,
labelled=args.howManyLabelled,
batch_size=args.batch_size)
ntrain = len(labeled_trainloader.dataset)
train_criterion = SemiLossSum()
criterion=nn.BCELoss()
start_epoch = 0
# Resume
title = 'latent-mixing'
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isfile(args.resume), 'Error: no checkpoint directory found!'
args.out = os.path.dirname(args.resume)
checkpoint = torch.load(args.resume)
best_acc = checkpoint['best_acc']
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
logger = Logger(os.path.join(args.out, 'log.txt'), title=title, resume=True)
else:
logger = Logger(os.path.join(args.out, 'log.txt'), title=title)
logger.set_names(
['Train Loss', 'Train Loss X', 'Train Loss U', 'Valid Loss', 'Valid AUC', 'Test Loss', 'Test AUC'])
writer = SummaryWriter(args.out)
step = 0
test_AUCS = []
val_AUCS = []
best_AUC = 0
for epoch in range(start_epoch, args.epochs):
current_learning_rate = adjust_learning_rate(optimizer, epoch, args.gammas, args.schedule)
print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, current_learning_rate))
train_loss, train_loss_x, train_loss_u = train(labeled_trainloader, unlabeled_trainloader, model, optimizer,
train_criterion, epoch, use_cuda, args.mixup, args.noSharp)
_, train_auc = validate(labeled_trainloader, model, criterion, epoch, use_cuda, mode='Train Stats')
val_loss, val_auc = validate(val_loader, model, criterion, epoch, use_cuda, mode='Valid Stats')
test_loss, test_auc = validate(test_loader, model, criterion, epoch, use_cuda, mode='Test Stats ')
step = args.val_iteration * (epoch + 1)
writer.add_scalar('losses/train_loss', train_loss, step)
writer.add_scalar('losses/valid_loss', val_loss, step)
writer.add_scalar('losses/test_loss', test_loss, step)
# writer.add_scalar('accuracy/train_acc', train_auc, step)
writer.add_scalar('accuracy/val_acc', val_auc, step)
writer.add_scalar('accuracy/test_acc', test_auc, step)
# append logger file
logger.append([train_loss, train_loss_x, train_loss_u, val_loss, val_auc, test_loss, test_auc])
# save model
is_best = val_auc > best_AUC
best_AUC = max(val_auc, best_AUC)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'acc': val_auc,
'best_acc': best_AUC,
'optimizer' : optimizer.state_dict(),
}, is_best)
test_AUCS.append(test_auc)
val_AUCS.append(val_auc)
logger.close()
writer.close()
indx = np.argmax(val_AUCS)
print('Best Val AUC: {} | Best Test AUC (at best val): {}'.format(val_AUCS[indx], test_AUCS[indx]))
print('Best Test AUC: {} | Mean Test AUC: {}'.format(np.max(test_AUCS), np.mean(test_AUCS[-20:])))
def train(labeled_trainloader, unlabeled_trainloader, model, optimizer, criterion, epoch, use_cuda, mixup='input', noSharp=False, alr=None):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
losses_x = AverageMeter()
losses_u = AverageMeter()
ws = AverageMeter()
end = time.time()
alrr = 0.
# bar = Bar('Training', max=args.val_iteration)
labeled_train_iter = iter(labeled_trainloader)
unlabeled_train_iter = iter(unlabeled_trainloader)
model.train()
for batch_idx in range(args.val_iteration):
try:
inputs_x, targets_x = labeled_train_iter.next()
except:
labeled_train_iter = iter(labeled_trainloader)
inputs_x, targets_x = labeled_train_iter.next()
try:
(inputs_u, inputs_u2), _ = unlabeled_train_iter.next()
except:
unlabeled_train_iter = iter(unlabeled_trainloader)
(inputs_u, inputs_u2), _ = unlabeled_train_iter.next()
# measure data loading time
data_time.update(time.time() - end)
batch_size = inputs_x.size(0)
if use_cuda:
inputs_x, targets_x = inputs_x.cuda(), targets_x.cuda(non_blocking=True)
inputs_u = inputs_u.cuda()
inputs_u2 = inputs_u2.cuda()
with torch.no_grad():
# compute guessed labels of unlabel samples
outputs_u = model(inputs_u)
outputs_u2 = model(inputs_u2)
p = (outputs_u + outputs_u2) / 2
if not noSharp:
pt = p**(1/args.T)
targets_u = pt / pt.sum(dim=1, keepdim=True)
else:
targets_u = p
targets_u = targets_u.detach()
# mixup
def mixupF(all_inputs, idx, l):
input_a, input_b = all_inputs, all_inputs[idx]
mixed_input = l * input_a + (1 - l) * input_b
#interleave labeled and unlabed samples between batches to get correct batchnorm calculation
mixed_input = list(torch.split(mixed_input, batch_size))
mixed_input = interleave(mixed_input, batch_size)
return mixed_input
all_targets = torch.cat([targets_x, targets_u, targets_u], dim=0)
l = np.random.beta(args.alpha, args.alpha)
l = max(l, 1-l)
idx = torch.randperm(all_targets.size(0))
target_a, target_b = all_targets, all_targets[idx]
mixed_target = l * target_a + (1 - l) * target_b
if mixup == 'input':
layer_mix = 0
elif mixup == 'mixup_hidden':
layer_mix = random.randint(0, 2)
elif mixup == 'only_hidden':
layer_mix = random.randint(1,2)
elif mixup == 'fixHidden05':
layer_mix = 0.5
elif mixup == 'fixHidden1':
layer_mix = 1
elif mixup == 'fixHidden15':
layer_mix = 1.5
elif mixup == 'fixHidden2':
layer_mix = 2
else:
print("Unidentified mixup strategy!")
quit()
out_x, out_u, out_u2 = inputs_x, inputs_u, inputs_u2
if layer_mix == 0:
all_inputs = torch.cat([out_x, out_u, out_u2], dim=0)
mixed_input = mixupF(all_inputs, idx, l)
logits = [model(mixed_input[0])]
for input in mixed_input[1:]:
logits.append(model(input))
elif layer_mix == 0.5:
all_inputs = torch.cat([out_x, out_u, out_u2], dim=0)
mixed_input = list(torch.split(all_inputs, batch_size))
mixed_input = interleave(mixed_input, batch_size)
out_x, out_u, out_u2 = model.HiddenAfterHalf(mixed_input[0]), model.HiddenAfterHalf(mixed_input[1]), model.HiddenAfterHalf(mixed_input[2])
logits = [out_x]
logits.append(out_u)
logits.append(out_u2)
logits = interleave(logits, batch_size)
out_x = logits[0]
out_u = logits[1]
out_u2 = logits[2]
all_latents = torch.cat([out_x, out_u, out_u2], dim=0)
mixed_latents = mixupF(all_latents, idx, l)
logits = [model.LogitAfterHalf(mixed_latents[0])]
for input in mixed_latents[1:]:
logits.append(model.LogitAfterHalf(input))
elif layer_mix == 1:
all_inputs = torch.cat([out_x, out_u, out_u2], dim=0)
mixed_input = list(torch.split(all_inputs, batch_size))
mixed_input = interleave(mixed_input, batch_size)
out_x, out_u, out_u2 = model.HiddenAfterFirst(mixed_input[0]), model.HiddenAfterFirst(mixed_input[1]), model.HiddenAfterFirst(mixed_input[2])
logits = [out_x]
logits.append(out_u)
logits.append(out_u2)
logits = interleave(logits, batch_size)
out_x = logits[0]
out_u = logits[1]
out_u2 = logits[2]
all_latents = torch.cat([out_x, out_u, out_u2], dim=0)
mixed_latents = mixupF(all_latents, idx, l)
logits = [model.LogitAfterFirst(mixed_latents[0])]
for input in mixed_latents[1:]:
logits.append(model.LogitAfterFirst(input))
elif layer_mix == 1.5:
all_inputs = torch.cat([out_x, out_u, out_u2], dim=0)
mixed_input = list(torch.split(all_inputs, batch_size))
mixed_input = interleave(mixed_input, batch_size)
out_x, out_u, out_u2 = model.HiddenAfterOneAndHalf(mixed_input[0]), model.HiddenAfterOneAndHalf(mixed_input[1]), model.HiddenAfterOneAndHalf(mixed_input[2])
logits = [out_x]
logits.append(out_u)
logits.append(out_u2)
logits = interleave(logits, batch_size)
out_x = logits[0]
out_u = logits[1]
out_u2 = logits[2]
all_latents = torch.cat([out_x, out_u, out_u2], dim=0)
mixed_latents = mixupF(all_latents, idx, l)
logits = [model.LogitAfterOneAndHalf(mixed_latents[0])]
for input in mixed_latents[1:]:
logits.append(model.LogitAfterOneAndHalf(input))
elif layer_mix == 2:
all_inputs = torch.cat([out_x, out_u, out_u2], dim=0)
mixed_input = list(torch.split(all_inputs, batch_size))
mixed_input = interleave(mixed_input, batch_size)
out_x, out_u, out_u2 = model.HiddenAfterSecond(mixed_input[0]), model.HiddenAfterSecond(
mixed_input[1]), model.HiddenAfterSecond(mixed_input[2])
logits = [out_x]
logits.append(out_u)
logits.append(out_u2)
logits = interleave(logits, batch_size)
out_x = logits[0]
out_u = logits[1]
out_u2 = logits[2]
all_latents = torch.cat([out_x, out_u, out_u2], dim=0)
mixed_latents = mixupF(all_latents, idx, l)
logits = [model.LogitAfterSecond(mixed_latents[0])]
for input in mixed_latents[1:]:
logits.append(model.LogitAfterSecond(input))
# put interleaved samples back
logits = interleave(logits, batch_size)
logits_x = logits[0]
logits_u = torch.cat(logits[1:], dim=0)
Lx, Lu, w = criterion(logits_x, mixed_target[:batch_size], logits_u, mixed_target[batch_size:], epoch+batch_idx/args.val_iteration)
loss = Lx + w * Lu
# record loss
losses.update(loss.item(), inputs_x.size(0))
losses_x.update(Lx.item(), inputs_x.size(0))
losses_u.update(Lu.item(), inputs_x.size(0))
ws.update(w, inputs_x.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# # uncomment this if you want to plot progress
# bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | Loss_x: {loss_x:.4f} | Loss_u: {loss_u:.4f} | W: {w:.4f}'.format(
# batch=batch_idx + 1,
# size=args.val_iteration,
# data=data_time.avg,
# bt=batch_time.avg,
# total=bar.elapsed_td,
# eta=bar.eta_td,
# loss=losses.avg,
# loss_x=losses_x.avg,
# loss_u=losses_u.avg,
# w=ws.avg
# )
# bar.next()
# bar.finish()
return (losses.avg, losses_x.avg, losses_u.avg,)
def validate(valloader, model, criterion, epoch, use_cuda, mode):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
# bar = Bar(f'{mode}', max=len(valloader))
outGT = torch.FloatTensor().cuda()
outPRED = torch.FloatTensor().cuda()
total_val_loss = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(valloader):
# measure data loading time
data_time.update(time.time() - end)
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda(non_blocking=True)
# compute output
outputs = model(inputs)
loss = criterion(outputs, targets)
total_val_loss += loss.item()
losses.update(loss.item(), inputs.size(0))
outGT = torch.cat((outGT, targets.detach()), 0)
outPRED = torch.cat((outPRED, outputs.detach()), 0)
aurocIndividual = computeAUROC(outGT, outPRED, 14)
aurocMean = np.array(aurocIndividual).mean()
return total_val_loss, aurocMean
if __name__ == '__main__':
main()