-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathgtsam_main.py
193 lines (157 loc) · 6.67 KB
/
gtsam_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
## main.py
## Author: Zongtai Luo
## Brief: run the posenet gtsam
from readOdometry import odometry
from readImage import readImage
import gen_data_cam
from gtsamSolver import PoseNetiSam
from train import trainer
import matplotlib.pyplot as plt
from tqdm import tqdm
import tensorflow as tf
import numpy as np
import pickle
import sys
import time
import os
import pdb
def main(pathOdom_,pathImage_,pathWeight_):
# file path
pathOdom = pathOdom_
pathImage = pathImage_
pathWeight = pathWeight_
# initilize the gtsam solver
iSam = PoseNetiSam()
# initilize posenet
poseNet = trainer(pathWeight,pathImage,100,False,True,True) # comment for debug
# initialize the plot tool
fig = plt.figure(1)
# parameter
resultsId = 1
iSamUpdateRate = 1 # times of updates in one iteration
timestamp = 0
startId = 0
# read data
images = readImage(pathImage)
datasource = gen_data_cam.get_data()
startTimestamp = images.getStartId() # start timestamp
endTimestamp = images.getEndId() # end timestamp
odom = odometry(pathOdom,startTimestamp,endTimestamp)
# sensor info
poseNetCov = [4.2,7.1,0.4]
# records of path
records = list()
groundTruth = list()
evalTime = list()
# prior info
priorMu = [-56,-79,-1.56]
priorCov = [10,10,10]
iSam.initialize(priorMu,priorCov) # adding prior
_,imgTimestamp,currGT = images.getImage(startId)
image = datasource.images[startId]
feed={tf.get_default_graph().get_tensor_by_name('Placeholder:0'): np.expand_dims(image, axis=0) }
tic = time.time()
measurement = poseNet.sess.run([tf.get_default_graph().get_tensor_by_name('fc9/fc9:0')], feed) # comment for debug
measurement_x = np.squeeze(measurement)[0]
measurement_y = np.squeeze(measurement)[1]
measurement_theta = np.squeeze(measurement)[-1]
measurement = np.array([measurement_x,measurement_y,measurement_theta])
startId += 1
iSam.addObs(measurement,poseNetCov) # adding first measurement # comment for debug
# iSam.addObs(currGT,poseNetCov) # comment for release
# iSam.printGraph()
currEstimate = iSam.update() # update the graph
evalTime.append(time.time()-tic)
# currEstimate = priorMu # comment for release
records.append(currEstimate)
groundTruth.append(currGT)
iterations = images.length()-1
# iterations = 50 # comment for release
# localization begins here
print("\nBegin localization:\n")
for i in tqdm(range(iterations)):
_,imgTimestamp,currGT = images.getImage(startId)
image = datasource.images[startId]
feed={tf.get_default_graph().get_tensor_by_name('Placeholder:0'): np.expand_dims(image, axis=0) }
tic = time.time()
# adding odometry
# BETA: matching the frequency with the sensor measurement, cumsum the motion to reduce factor. Gaussian Assumption of the odometry and independence are made
motionCum = [0,0,0]
motionCovCum = [0,0,0]
while timestamp<=imgTimestamp:
motion,motionCov,timestamp = odom.getOdometry()
motionCum = [motion[0]+motionCum[0],
motion[1]+motionCum[1],
motion[2]+motionCum[2]]
motionCovCum = [motionCov[0]+motionCovCum[0],
motionCov[1]+motionCovCum[1],
motionCov[2]+motionCovCum[2]]
# iSam.printGraph() # comment for release
# print("ready to step.\n")
iSam.step(motionCum,motionCovCum)
# getting measurement and update image timestamp
# measurement = poseNet.test(image,0,1) # comment for debug
# measurement = [measurement[0],measurement[1],measurement[-1]]
measurement = poseNet.sess.run([tf.get_default_graph().get_tensor_by_name('fc9/fc9:0')], feed) # comment for debug
measurement_x = np.squeeze(measurement)[0]
measurement_y = np.squeeze(measurement)[1]
measurement_theta = np.squeeze(measurement)[-1]
measurement = np.array([measurement_x,measurement_y,measurement_theta])
groundTruth.append(currGT)
# print("ready to add measurement.\n")
# adding measurement factor
iSam.addObs(measurement,poseNetCov) # comment for debug
# iSam.addObs(currGT,poseNetCov) # comment for release
# optimize factor graph
# print("ready to update.\n")
currentEst = iSam.update(iSamUpdateRate) # comment for debug
evalTime.append(time.time()-tic)
# currentEst = currGT # comment for release
records.append(currentEst)
# increment the Id
startId += 1
# plot tool for the calculated trajetory
x = records[-1][1]
y = records[-1][0]
plt.scatter(x,y,c='g') # plot line from x_t-1 to x_t
x = groundTruth[-1][1]
y = groundTruth[-1][0]
plt.scatter(x,y,c='r') # plot line of ground truth from x_t-1 to x_t
plt.scatter(measurement[1],measurement[0],c='b') # plot points of posenet prediction
if(i == 0):
plt.legend(['prediction',' ground truth','posenet prediction'])
# plt.draw() # comment if not dynamic plotting
# plt.pause(0.01) # whether need to pause?
# print("Done {} iterations, {} iterations in total".format(i+1,iterations))
# print mean and stddev error
error = np.zeros([images.length(),3])
for i in range(images.length()):
error[i,:] = abs(iSam.getEstimate(i+1)-np.array(groundTruth[i]))
meanErr = np.sum(error,axis=0)/len(error)
stdErr = np.std(error,axis=0)
print("The mean error is {} and standard deviation is {}.".format(meanErr,stdErr))
# store estimation
pickleOut = open('dict.{0}_estimation'.format(resultsId),'wb')
pickle.dump(np.asarray(records),pickleOut)
pickleOut.close()
# store ground truth
pickleOut = open('dict.{0}_groundTruth'.format(resultsId),'wb')
pickle.dump(np.asarray(groundTruth),pickleOut)
pickleOut.close()
# store evalTime
pickleOut = open('dict.{}_evalTime'.format(resultsId),'wb')
pickle.dump(np.asarray(evalTime),pickleOut)
pickleOut.close()
# save fig
fig.savefig("Trajectory{0}".format(resultsId))
if __name__=='__main__':
# use gpu 0
#os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# reading argument
argv = sys.argv
if len(argv) < 3:
argv = list()
argv.append('./nclt_03_31/odometry') # path to odometry
argv.append('./nclt_03_31/test/') # path to images
argv.append('/home/eecs568/eecs568/new_version/Mobile-Robotics/20180415-201632model_epoch_4.ckpt') # path to weights
main(argv[0],argv[1],argv[2])