forked from WongKinYiu/yolov7
-
Notifications
You must be signed in to change notification settings - Fork 1
/
detect_api.py
229 lines (200 loc) · 9.83 KB
/
detect_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import argparse
import time
from pathlib import Path
import cv2
import numpy as np
import torch
from numpy import random
from models.experimental import attempt_load
from utils.datasets import letterbox
from utils.general import check_img_size, non_max_suppression, apply_classifier, \
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, TracedModel
class Detect:
def __init__(self, weights, conf_thres=0.25, iou_thres=0.45, classes=None, device="", view_img=True, save_dir=None,
trace=True):
self.weights = weights
self.save_dir = save_dir
self.trace = trace
self.save = False if self.save_dir is None else True
self.device, self.model = self.init(weights, device)
self.stride = int(self.model.stride.max()) # model stride
self.half = self.device.type != 'cpu' # half precision only supported on CUDA
self.conf_thres, self.iou_thres, self.classes, self.agnostic_nms = conf_thres, iou_thres, classes, False
# Get names and colors
self.names = self.model.module.names if hasattr(self.model, 'module') else self.model.names
self.colors = [[random.randint(0, 255) for _ in range(3)] for _ in self.names]
# Second-stage classifier
# if classify:
# modelc = load_classifier(name='resnet101', n=2) # initialize
# modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
# else:
self.classify = False
self.modelc = None
self.view_img = view_img
def init(self, weights, device):
# Initialize
set_logging()
device = select_device(device)
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
return device, model
def init_size(self, size):
# if trace:
new_size = check_img_size(size, s=self.stride) # check img_size
if self.trace:
self.model = TracedModel(self.model, self.device, size)
if self.half:
self.model.half() # to FP16
# Run inference
if self.device.type != 'cpu':
self.model(torch.zeros(1, 3, new_size, new_size).to(self.device).type_as(
next(self.model.parameters()))) # run once
def get_pt_cv_data(self, img0, img_size, img_return=False):
# print(f'image {self.count}/{self.nf} {path}: ', end='')
# Padded resize
img = letterbox(img0, img_size, stride=self.stride)[0]
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
return img
def detect_image(self, im0s, imgsz, path=None):
save = path != None
img = self.get_pt_cv_data(im0s, imgsz)
# old_img_w = old_img_h = imgsz
# old_img_b = 1
img = torch.from_numpy(img).to(self.device)
img = img.half() if self.half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# lag source
'''# Warmup
if self.device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
old_img_b = img.shape[0]
old_img_h = img.shape[2]
old_img_w = img.shape[3]
for i in range(3):
self.model(img, augment=False)[0]'''
# Inference
# t1 = time_synchronized()
pred = self.model(img, augment=False)[0]
# t2 = time_synchronized()
# Apply NMS
pred = non_max_suppression(pred, self.conf_thres, self.iou_thres, classes=self.classes,
agnostic=self.agnostic_nms)
# t3 = time_synchronized()
# Apply Classifier
if self.classify:
pred = apply_classifier(pred, self.modelc, img, im0s)
p, s, im0 = path, '', im0s
# Process detections
result = []
cnt = 1
for i, det in enumerate(pred): # detections per image
if save and self.save_dir != None:
p = Path(p) # to Path
save_path = str(self.save_dir / p.name) # img.jpg
txt_path = str(self.save_dir / 'labels' / p.stem) + ('') # img.txt
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
#print(det)
# for *xyxy, conf, cls in reversed(det):
# print(*xyxy)
det = sorted(det, key=lambda x: x[0])
#for *xyxy, conf, cls in reversed(a):
# print(*xyxy)
#print(a)
# Write results
for *xyxy, conf, cls in det:
cache_result = []
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf)
if conf <= 0.3:
continue
cache_result.append(int(line[0].item()))
for j in range(1, 5):
cache_result.append(line[j])
cache_result.append(line[5].item())
if line[0] != 1: # injected
cache_result.append(cnt)
# print(cache_result)
result.append(cache_result)
# Write to file
if save:
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
# Add bbox to image
if save or self.view_img:
add = ""
if line[0] != 1: # injected
add = str(cnt)
cnt += 1
label = f'{add}{self.names[int(cls)]} {conf:.2f}'
if conf > 0.3: # todo fuck out this out of api
plot_one_box(xyxy, im0, label=label, color=self.colors[int(cls)], line_thickness=1)
# print(result)
# Print time (inference + NMS)
# print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS')
# Stream results
# Save results (image with detections)
if save:
cv2.imwrite(save_path, im0)
print(f" The image with the result is saved in: {save_path}")
return result, im0
def detect(self, source, imgsz, save_img=False):
# print(imgsz)
# webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
# ('rtsp://', 'rtmp://', 'http://', 'https://'))
self.init_size(imgsz)
# Set Dataloader
# dataset = LoadImages(source, img_size=imgsz, stride=self.stride)
t0 = time.time()
import os
# for path, img, im0s, _ in dataset:
for file in os.scandir(source):
# Read image
im0s = cv2.imread(file.path) # BGR
self.detect_image(im0s, imgsz, file.path)
print(f'Done. ({time.time() - t0:.3f}s)')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()
import os, shutil
for file in os.scandir("./runs/detect"):
if file.name.startswith("test"):
shutil.rmtree(file.path)
print(f"removed {file.path}")
# check_requirements(exclude=('pycocotools', 'thop'))
# Directories
# print(opt.classes)
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
(save_dir / 'labels').mkdir(parents=True, exist_ok=True) # make dir
detect = Detect(opt.weights, opt.conf_thres, opt.iou_thres, opt.classes, device=opt.device, save_dir=save_dir)
with torch.no_grad():
if opt.update: # update all models (to fix SourceChangeWarning)
for opt.weights in ['yolov7.pt']:
detect.detect(opt.source, opt.img_size)
strip_optimizer(opt.weights)
else:
detect.detect(opt.source, opt.img_size)