-
Notifications
You must be signed in to change notification settings - Fork 4
/
PrototypeDev.py
356 lines (314 loc) · 14.7 KB
/
PrototypeDev.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:light
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.4.2
# kernelspec:
# display_name: Python 3
# language: python
# name: python3
# ---
import dash
from dash import dash_table
import dash_html_components as html
import dash_core_components as dcc
import plotly.graph_objects as go
import plotly.express as px
import datetime
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import ETFunctions
import matplotlib.dates as mdates
import GraphHelpers as GH
from bisect import bisect_left, bisect_right
# %matplotlib inline
# +
# Data extracted from CropData.cs InitialiseCropData() method
CropCoefficients = pd.read_excel('C:\\GitHubRepos\\Overseer-testing\\CropCoefficients\\CropCoefficients.xlsx')
CropCoefficients.set_index(['CropName'],inplace=True)
Categories = CropCoefficients.Category.drop_duplicates().values
CatFilt = (CropCoefficients.loc[:,'Category'] != 'Undefined') & (CropCoefficients.loc[:,'Category'] != 'Pasture')
CropCoefficients = CropCoefficients.loc[CatFilt,:]
LincolnMet = pd.read_csv('C:\GitHubRepos\Weather\Broadfields\LincolnClean.met',delimiter = '\t')
LincolnMet.name = 'Lincoln'
GoreMet = pd.read_csv('C:\GitHubRepos\Weather\OtherLocations\GoreClean.met',delimiter = '\t')
GoreMet.name = 'Gore'
WhatatuMet = pd.read_csv('C:\GitHubRepos\Weather\OtherLocations\WhatatuClean.met',delimiter = '\t')
WhatatuMet.name = 'Napier'
PukekoheMet = pd.read_csv('C:\GitHubRepos\Weather\OtherLocations\PukekoheClean.met',delimiter = '\t')
PukekoheMet.name = 'Pukekohe'
metFiles ={'Pukekohe':PukekoheMet,'Whatatu':WhatatuMet,'Lincoln':LincolnMet,'Gore':GoreMet}
for f in metFiles.keys():
metFiles[f].loc[:,'Date'] = pd.to_datetime(metFiles[f].loc[:,'Date'])
metFiles[f].set_index('Date',inplace=True)
# +
BiomassScaller = []
Covers = []
Xo_Biomass = 50
b_Biomass = Xo_Biomass*0.2
A_cov = 1
T_mat = Xo_Biomass*2
T_sen = T_mat-30
Xo_cov = T_mat * 0.25
b_cov = Xo_cov * 0.2
Tts = range(150)
for tt in Tts:
BiomassScaller.append(1/(1+np.exp(-((tt-Xo_Biomass)/(b_Biomass)))))
cover = 0
if tt < T_sen:
cover = A_cov * 1/(1+np.exp(-((tt-Xo_cov)/b_cov)))
else:
if tt < T_mat:
cover = A_cov * (1-(tt-T_sen)/(T_mat-T_sen))
Covers.append(cover)
DMscaller = pd.DataFrame(index=Tts,data=BiomassScaller,columns=['scaller'])
DMscaller.loc[:,'cover'] = Covers
print(DMscaller.loc[99,'scaller'])
plt.plot(DMscaller.loc[:,'scaller'])
plt.plot(DMscaller.loc[:,'cover'])
DMscaller.loc[:,'max'] = DMscaller.max(axis=1)
Methods = ['Seed','Seedling','Vegetative','EarlyReproductive','LateReproductive','Maturity','Late']
PrpnMaxDM = [0.0066,0.03,0.5,0.75,0.95,0.9933,0.9995]
StagePropns = pd.DataFrame(index = Methods, data = PrpnMaxDM,columns=['PrpnMaxDM'])
for p in StagePropns.index:
TTatProp = bisect_left(DMscaller.scaller,StagePropns.loc[p,'PrpnMaxDM'])
StagePropns.loc[p,'PrpnTt'] = TTatProp/T_mat
plt.plot(StagePropns.loc[p,'PrpnTt']*T_mat,StagePropns.loc[p,'PrpnMaxDM'],'o',color='k')
plt.text(StagePropns.loc[p,'PrpnTt']*T_mat+3,StagePropns.loc[p,'PrpnMaxDM'],p,verticalalignment='top')
plt.plot([StagePropns.loc[p,'PrpnTt']*T_mat]*2,[0,DMscaller.loc[round(StagePropns.loc[p,'PrpnTt'] * T_mat),'max']],'--',color='k',lw=1)
plt.ylabel('Relative DM accumulation')
plt.xlabel('Temperature accumulation')
# -
Xo_Biomass
# +
def CalcCovers(Tts, A_cov, Xo_cov, b_cov,T_sen,T_mat):
Covers = []
for tt in Tts:
cover = 0
if tt < T_sen:
cover = A_cov * 1/(1+np.exp(-((tt-Xo_cov)/b_cov)))
else:
if tt < T_mat:
cover = A_cov * (1-(tt-T_sen)/(T_mat-T_sen))
Covers.append(cover)
return Covers
def CalcBiomass(Tts,Xo_Biomass,b_Biomass):
BiomassScaller = []
for tt in Tts:
BiomassScaller.append(1/(1+np.exp(-((tt-Xo_Biomass)/(b_Biomass)))))
return BiomassScaller
def NDilution(An,Bn,c,R):
return An * (1 + Bn * np.exp(c*R))
def MakeDate(DateString,CheckDate):
Date = datetime.datetime(2000,int(datetime.datetime.strptime(DateString.split('-')[1],'%b').month),int(DateString.split('-')[0]))
if CheckDate == '':
CheckDate = datetime.datetime(2000,1,1)
if Date < CheckDate:
Date = datetime.datetime(2001,int(datetime.datetime.strptime(DateString.split('-')[1],'%b').month),int(DateString.split('-')[0]))
return Date
def tt(x,b):
return max(0,x-b)
def firstIndex(series,threshold):
pos=0
passed = False
while passed == False:
if series.iloc[pos] < threshold:
passed = True
pos +=1
return pos
def DeriveParamsAndGraph(ax,Met,Establish,Harvest,EstablishStage,HarvestStage,totalN):
## Calculate median thermaltime for location
FirstYear = int(Met.Year[0])
years = [int(x) for x in Met.Year.drop_duplicates().values[1:-1]]
day = int(Establish.split('-')[0])
month = datetime.datetime.strptime(Establish.split('-')[1],'%b').month
FirstDate = datetime.datetime(FirstYear,month,day)
Met.loc[:,'tt'] = [tt(x,5) for x in Met.Temp]
TT = pd.DataFrame(columns = years,index = range(1,368))
for y in years:
start = Establish + '-' + str(y)
end = Harvest + '-' + str(y+1)
duration = (datetime.datetime.strptime(end,'%d-%b-%Y') - datetime.datetime.strptime(start,'%d-%b-%Y')).days
try:
TT.loc[:,y] = Met.loc[start:,'tt'].cumsum().values[:367]
except:
do = 'nothing'
TTmed = (TT.median(axis=1))/30 # (TT.median(axis=1)-[5*x for x in TT.index])/30
TTmed.index = pd.date_range(start=Establish+'-2000',periods=367,freq='D',name='Date')
TTmed.name = 'Tt'
## Calculate date variables
EstabDate = MakeDate(Establish,'')
HarvestDate = MakeDate(Harvest,EstabDate)
print(HarvestDate)
## Calculate model parameters
Tt_Harv = TTmed[HarvestDate]
Tt_estab = Tt_Harv * (StagePropns.loc[EstablishStage,'PrpnTt']/StagePropns.loc[HarvestStage,'PrpnTt'])
Xo_Biomass = (Tt_Harv + Tt_estab) *.5 * (1/StagePropns.loc[HarvestStage,'PrpnTt'])
b_Biomass = Xo_Biomass * .2
# Calculate fitted patterns
CropPatterns = pd.DataFrame(TTmed+Tt_estab)
CropPatterns.loc[:,'biomass'] = CalcBiomass(CropPatterns.Tt.values,Xo_Biomass,b_Biomass) * 1/(StagePropns.loc[HarvestStage,'PrpnMaxDM']) * totalN
CropPatterns = CropPatterns.iloc[:duration,:]
plt.plot(CropPatterns.index,CropPatterns.biomass,color='green')
#plt.plot(CropPatterns.index,CropPatterns.nitrogen)
ax.xaxis.set_major_locator(mdates.MonthLocator(interval=1))
ax.xaxis.set_major_formatter(mdates.DateFormatter('%b'))
plt.xlim(EstabDate,HarvestDate)
return CropPatterns
#plt.ylim(0,1.1)
def MineralisationGraph(ax,Met,Establish,Harvest,EstablishStage,HarvestStage,p,col):
## Calculate median thermaltime for location
FirstYear = int(Met.Year[0])
years = [int(x) for x in Met.Year.drop_duplicates().values[1:-1]]
day = int(Establish.split('-')[0])
month = datetime.datetime.strptime(Establish.split('-')[1],'%b').month
FirstDate = datetime.datetime(FirstYear,month,day)
Met.loc[:,'tt'] = [tt(x,5) for x in Met.Temp]
TT = pd.DataFrame(columns = years,index = range(1,368))
for y in years:
start = Establish + '-' + str(y)
end = Establish + '-' + str(y+1)
try:
TT.loc[:,y] = Met.loc[start:,'tt'].cumsum().values[:367]
except:
do = 'nothing'
TTmed = (TT.median(axis=1))/30 # (TT.median(axis=1)-[5*x for x in TT.index])/30
TTmed.index = pd.date_range(start=Establish+'-2000',periods=367,freq='D',name='Date')
TTmed.name = 'Tt'
## Calculate date variables
EstabDate = MakeDate(Establish,'')
HarvestDate = MakeDate(Harvest,EstabDate)
Tt_Harv = TTmed[HarvestDate]
Tt_estab = Tt_Harv * (StagePropns.loc[EstablishStage,'PrpnTt']/StagePropns.loc[HarvestStage,'PrpnTt'])
CropPatterns = pd.DataFrame(TTmed+Tt_estab)
CropPatterns.loc[:,'biomass'] = CropPatterns.Tt.values * p
plt.plot(CropPatterns.index,CropPatterns.biomass,color=col)
#plt.plot(CropPatterns.index,CropPatterns.nitrogen)
ax.xaxis.set_major_locator(mdates.MonthLocator(interval=1))
ax.xaxis.set_major_formatter(mdates.DateFormatter('%b'))
plt.xlim(EstabDate,HarvestDate)
return CropPatterns.loc[:HarvestDate,'biomass'].max()
#plt.ylim(0,1.1)
def Deficit(ax,Met,Establish,Harvest,EstablishStage,HarvestStage,r,m,InitialN,FinalN,TotalCropN,splits,Eff):
## Calculate median thermaltime for location
FirstYear = int(Met.Year[0])
years = [int(x) for x in Met.Year.drop_duplicates().values[1:-1]]
day = int(Establish.split('-')[0])
month = datetime.datetime.strptime(Establish.split('-')[1],'%b').month
FirstDate = datetime.datetime(FirstYear,month,day)
Met.loc[:,'tt'] = [tt(x,5) for x in Met.Temp]
TT = pd.DataFrame(columns = years,index = range(1,368))
for y in years:
start = Establish + '-' + str(y)
end = Harvest + '-' + str(y+1)
duration = (datetime.datetime.strptime(end,'%d-%b-%Y') - datetime.datetime.strptime(start,'%d-%b-%Y')).days
try:
TT.loc[:,y] = Met.loc[start:,'tt'].cumsum().values[:367]
except:
do = 'nothing'
TTmed = (TT.median(axis=1))/30 # (TT.median(axis=1)-[5*x for x in TT.index])/30
TTmed.index = pd.date_range(start=Establish+'-2000',periods=367,freq='D',name='Date')
TTmed.name = 'Tt'
## Calculate date variables
EstabDate = MakeDate(Establish,'')
HarvestDate = MakeDate(Harvest,EstabDate)
## Calculate model parameters
Tt_Harv = TTmed[HarvestDate]
Tt_estab = Tt_Harv * (StagePropns.loc[EstablishStage,'PrpnTt']/StagePropns.loc[HarvestStage,'PrpnTt'])
Xo_Biomass = (Tt_Harv + Tt_estab) *.5 * (1/StagePropns.loc[HarvestStage,'PrpnTt'])
b_Biomass = Xo_Biomass * .2
# Calculate fitted patterns
CropPatterns = pd.DataFrame(TTmed+Tt_estab)
CropPatterns.loc[:,'biomass'] = CalcBiomass(CropPatterns.Tt.values,Xo_Biomass,b_Biomass) * 1/(StagePropns.loc[HarvestStage,'PrpnMaxDM']) * TotalCropN
CropPatterns.loc[:,'residue'] = CropPatterns.Tt.values * r
CropPatterns.loc[:,'mineralisation'] = CropPatterns.Tt.values * m
CropPatterns.loc[:,'mineral'] = InitialN
CropPatterns = CropPatterns.iloc[:duration,:]
NFertReq = (CropPatterns.loc[:,'biomass'].max() + FinalN) - InitialN - CropPatterns.loc[:,'mineralisation'].max() - CropPatterns.loc[:,'residue'].max()
NFertReq = NFertReq * 1/Eff
NFertReq = np.ceil(NFertReq)
NAppn = NFertReq/splits
plength = duration/(splits + 1)
xlocs = [0]
plength = np.ceil(duration/(splits + 1))
xlocs = []
for x in range(1,int(splits+1)):
xlocs.append(x * plength)
FertApplied = 0
FertAppNo = 0
maxSoilN = max(InitialN,FinalN + NAppn)
for d in range(1,CropPatterns.index.size):
PotentialN = CropPatterns.iloc[d-1,4]+CropPatterns.iloc[:,2].diff()[d]+CropPatterns.iloc[:,3].diff()[d]-CropPatterns.iloc[:,1].diff()[d]
CropPatterns.iloc[d,4] = PotentialN
if (CropPatterns.iloc[d-1,4] > CropPatterns.iloc[d,4]) and (PotentialN < FinalN) and (FertApplied < NFertReq): #and ((CropPatterns.iloc[d-1,4]-CropPatterns.iloc[d,4])<0):
CropPatterns.iloc[d,4] += NAppn * Eff
FertApplied += NAppn
plt.plot([CropPatterns.index[d]]*2,[CropPatterns.iloc[d-1,4],CropPatterns.iloc[d,4]],'-',color='k',lw=3)
recString = CropPatterns.index[d].strftime('%d-%b') +'\n' +str(int(NAppn)) + ' kg/ha'
plt.text(CropPatterns.index[int(xlocs[FertAppNo])],maxSoilN*1.1,recString,fontsize=8,rotation=0,horizontalalignment='center',verticalalignment='bottom')
plt.arrow(CropPatterns.index[int(xlocs[FertAppNo])],maxSoilN*1.1,
(CropPatterns.index[d]-CropPatterns.index[int(xlocs[FertAppNo])]).days,
CropPatterns.iloc[d,4]-maxSoilN*1.1,
length_includes_head = True,)
if FertAppNo == 0:
FirstFertDay = d
FertAppNo += 1
plt.text(0.02,0.05,'Total N Fert = ' + str(int(np.ceil(NFertReq))) + ' kg/ha',transform=ax.transAxes,horizontalalignment='left',fontsize=8)
plt.plot(CropPatterns.index,CropPatterns.mineral,color='blue')
plt.text(CropPatterns.index[1],CropPatterns.iloc[0,4]*1.1,'Initial N \n' + str(int(InitialN))+ 'kg/ha',
fontsize=8,horizontalalignment='left',verticalalignment='bottom',color='blue')
plt.plot([CropPatterns.index[1],CropPatterns.index[30]], [CropPatterns.iloc[0,4]]*2,'--',color='blue')
plt.text(CropPatterns.index[-1],CropPatterns.iloc[-1,4]*1.1,'Trigger N \n' + str(int(FinalN))+ 'kg/ha',
fontsize=8,horizontalalignment='right',verticalalignment='bottom',color='purple')
plt.plot([CropPatterns.index[FirstFertDay],CropPatterns.index[-1]], [CropPatterns.iloc[-1,4]]*2,'--',color='purple')
ax.xaxis.set_major_locator(mdates.MonthLocator(interval=1))
ax.xaxis.set_major_formatter(mdates.DateFormatter('%b'))
plt.xlim(EstabDate,HarvestDate)
plt.ylim(0,maxSoilN*1.5)
return CropPatterns
# -
HarvestedYield = 70 # t/ha fresh weight
RejectProportion = 0.1 # Proportion of tubers left in feild
TotalProduct = HarvestedYield * (1 + RejectProportion)
DryYield = TotalProduct * 1000 * 0.22 # dry matter content of tubers
StoverYield = DryYield * 1/0.9 - DryYield # Harvest index
RootYield = (StoverYield+DryYield) * 0.1
ProductN = DryYield * 0.015
StoverN = StoverYield * 0.022
RootN = RootYield * 0.01
totalN = ProductN + StoverN + RootN
ResCoeff = 0.5
SOMCoeff = 2.75
InitN = 30
FinalN = 35
Splits = 3
GasLosses = 0.1
LeachingLosses = 0.0
Eff = 1- (GasLosses + LeachingLosses)
Fig = plt.figure(figsize=(7,5))
ax = Fig.add_subplot(2,2,1)
DeriveParamsAndGraph(ax,LincolnMet,'15-Oct','1-Mar','Seed','Maturity',totalN)
plt.ylabel('kgN/ha')
plt.ylim(0,350)
plt.text(0.02,0.98,'Crop N Uptake \n ' + str(int(totalN)) +' kg/ha',transform=ax.transAxes,verticalalignment='top',color='green')
ax = Fig.add_subplot(2,2,2)
MinN = MineralisationGraph(ax,LincolnMet,'15-Oct','1-Mar','Seed','Maturity',ResCoeff,'teal')
plt.ylabel('kgN/ha')
plt.ylim(0,50)
plt.text(0.02,0.98,'Crop residue N Mineralisation \n' + str(int(MinN)) +' kg/ha',
transform=ax.transAxes,verticalalignment='top',color='teal')
ax = Fig.add_subplot(2,2,3)
SOMN = MineralisationGraph(ax,LincolnMet,'15-Oct','1-Mar','Seed','Maturity',SOMCoeff,'brown')
plt.ylabel('kgN/ha')
plt.ylim(0,200)
plt.text(0.02,0.98,'Soil Organic N Mineralisation\n' + str(int(SOMN)) +' kg/ha',transform=ax.transAxes,verticalalignment='top',color='brown')
ax = Fig.add_subplot(2,2,4)
CropPats = Deficit(ax,LincolnMet,'15-Oct','1-Mar','Seed','Maturity',ResCoeff,SOMCoeff,InitN,FinalN,totalN,Splits,Eff)
plt.ylabel('kgN/ha')
plt.text(0.02,0.92,'Soil Mineral N',transform=ax.transAxes,color='blue')
plt.tight_layout()