Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU, Di Tommaso P, Nahnsen S. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020 Mar;38(3):276-278. doi: 10.1038/s41587-020-0439-x. PubMed PMID: 32055031.
Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computational workflows. Nat Biotechnol. 2017 Apr 11;35(4):316-319. doi: 10.1038/nbt.3820. PubMed PMID: 28398311.
-
py_fasta_validator, MIT
Edwards, R.A. 2019. fasta_validate: a fast and efficient fasta validator written in pure C. doi: https://doi.org/10.5281/zenodo.2532044
-
GenomeTools, ISC
Gremme G, Steinbiss S, Kurtz S. 2013. "GenomeTools: A Comprehensive Software Library for Efficient Processing of Structured Genome Annotations," in IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 10, no. 3, pp. 645-656, May 2013, doi: https://doi.org/10.1109/TCBB.2013.68
-
samtools, MIT/Expat
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, Li H. 2021. Twelve years of SAMtools and BCFtools, GigaScience, Volume 10, Issue 2, February 2021, giab008, https://doi.org/10.1093/gigascience/giab008
-
NCBI FCS, License
Astashyn A, Tvedte ES, Sweeney D, Sapojnikov V, Bouk N, Joukov V, Mozes E, Strope PK, Sylla PM, Wagner L, Bidwell SL, Clark K, Davis EW, Smith-White B, Hlavina W, Pruitt KD, Schneider VA, Murphy TD. 2023. Rapid and sensitive detection of genome contamination at scale with FCS-GX. bioRxiv 2023.06.02.543519; doi: https://doi.org/10.1101/2023.06.02.543519
-
Krona, License
Ondov BD, Bergman NH, Phillippy AM. 2011. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics. 2011 Sep 30;12:385. doi: https://doi.org/10.1186/1471-2105-12-385
-
assemblathon_stats, CC BY-NC-SA 3.0
github/PlantandFoodResearch/assemblathon2-analysis/a93cba2
Forked from: https://github.com/ucdavis-bioinformatics/assemblathon2-analysis
-
gfastats, MIT
Giulio Formenti, Linelle Abueg, Angelo Brajuka, Nadolina Brajuka, Cristóbal Gallardo-Alba, Alice Giani, Olivier Fedrigo, Erich D Jarvis, Gfastats: conversion, evaluation and manipulation of genome sequences using assembly graphs, Bioinformatics, Volume 38, Issue 17, September 2022, Pages 4214–4216, https://doi.org/10.1093/bioinformatics/btac460
-
BUSCO, MIT
Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. 2021. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes, Molecular Biology and Evolution, Volume 38, Issue 10, October 2021, Pages 4647–4654, https://doi.org/10.1093/molbev/msab199
-
GffRead, MIT
Pertea G, Pertea M. GFF Utilities: GffRead and GffCompare. F1000Res. 2020 Apr 28;9:ISCB Comm J-304. doi: http://doi.org/10.12688/f1000research.23297.2. PMID: 32489650; PMCID: PMC7222033.
-
tidk, MIT
-
SeqKit, MIT
Shen W, Le S, Li Y, Hu F. 2016. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS ONE 11(10): e0163962. https://doi.org/10.1371/journal.pone.0163962
-
LAI, GPL v3
Ou S, Chen J, Jiang N. 2018. Assessing genome assembly quality using the LTR Assembly Index (LAI), Nucleic Acids Research, Volume 46, Issue 21, 30 November 2018, Page e126, https://doi.org/10.1093/nar/gky730
-
LTR_FINDER_parallel, MIT
Ou S, Jiang N 2019. LTR_FINDER_parallel: parallelization of LTR_FINDER enabling rapid identification of long terminal repeat retrotransposons. Mobile DNA 10, 48 (2019). https://doi.org/10.1186/s13100-019-0193-0
-
LTRharvest, ISC
Ellinghaus, D, Kurtz, S & Willhoeft, U 2008. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics 9, 18 (2008). https://doi.org/10.1186/1471-2105-9-18
-
LTR_retriever, GPL v3
Shujun O, Ning J 2018. LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons, Plant Physiology, 176, 2 (2018). https://doi.org/10.1104/pp.17.01310
-
Kraken 2, MIT
Wood DE, Salzberg SL, Wood DE, Lu J, Langmead B. 2019. Improved metagenomic analysis with Kraken 2. Genome Biol 20, 257 (2019). https://doi.org/10.1186/s13059-019-1891-0
-
juicebox.js, MIT
Robinson JT, Turner D, Durand NC, Thorvaldsdóttir H, Mesirov JP, Aiden EL. 2018. Juicebox.js Provides a Cloud-Based Visualization System for Hi-C Data. Cell Syst. 2018 Feb 28;6(2):256-258.e1. doi: https://doi.org/10.1016/j.cels.2018.01.001. Epub 2018 Feb 7. PMID: 29428417; PMCID: PMC6047755.
-
fastp, MIT
Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor, Bioinformatics, Volume 34, Issue 17, 01 September 2018, Pages i884–i890, https://doi.org/10.1093/bioinformatics/bty560
-
FastQC, GPL v3
-
run-assembly-visualizer.sh, MIT
Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, Shamim MS, Machol I, Lander, Aiden AP, Aiden EL 2017. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds.Science356, 92-95(2017). doi: https://doi.org/10.1126/science.aal3327. Available at: https://github.com/aidenlab/3d-dna/commit/63029aa3bc5ba9bbdad9dd9771ace583cc95e273
-
hic_qc, AGPL v3
https://github.com/phasegenomics/hic_qc/commit/6881c3390fd4afb85009a52918b4d068100c58b4
-
JUICEBOX_SCRIPTS, AGPL v3
-
bwa-mem, GPL v3
Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. https://doi.org/10.48550/arXiv.1303.3997
-
Matlock, AGPL v3
https://github.com/phasegenomics/matlock; https://quay.io/biocontainers/matlock:20181227--h4b03ef3_3
-
samblaster, MIT
Faust GG, Hall IM. 2014. SAMBLASTER: fast duplicate marking and structural variant read extraction, Bioinformatics, Volume 30, Issue 17, September 2014, Pages 2503–2505, https://doi.org/10.1093/bioinformatics/btu314
-
Circos, GPL v3
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R. Horsman D, ... Marra MA. 2009. Circos: an information aesthetic for comparative genomics. Genome research, 19(9), 1639-1645. https://doi.org/10.1101/gr.092759.109
-
MUMmer, Artistic 2.0
Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. 2018. MUMmer4: A fast and versatile genome alignment system. PLoS Comput Biol. 2018 Jan 26;14(1):e1005944. doi: https://doi.org/10.1371/journal.pcbi.1005944. PMID: 29373581; PMCID: PMC5802927.
-
Plotsr, MIT
Goel M, Schneeberger K. 2022. plotsr: visualizing structural similarities and rearrangements between multiple genomes. Bioinformatics. 2022 May 13;38(10):2922-2926. doi: https://doi.org/10.1093/bioinformatics/btac196. PMID: 35561173; PMCID: PMC9113368.
-
Syri, MIT
Goel M, Sun H, Jiao WB, Schneeberger K. 2019. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 2019 Dec 16;20(1):277. doi: https://doi.org/10.1186/s13059-019-1911-0. PMID: 31842948; PMCID: PMC6913012.
-
Minimap2, MIT
Li H. 2021. New strategies to improve minimap2 alignment accuracy, Bioinformatics, Volume 37, Issue 23, December 2021, Pages 4572–4574, doi: https://doi.org/10.1093/bioinformatics/btab705
-
Merqury, United States Government Work
Rhie, A., Walenz, B.P., Koren, S. et al. 2020. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol 21, 245. doi: https://doi.org/10.1186/s13059-020-02134-9
-
OrthoFinder, GPL v3
Emms, D.M., Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20, 238 (2019). doi: 10.1186/s13059-019-1832-y
-
Anaconda Software Distribution. Computer software. Vers. 2-2.4.0. Anaconda, Nov. 2016. Web.
-
Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, Valieris R, Köster J; Bioconda Team. Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat Methods. 2018 Jul;15(7):475-476. doi: 10.1038/s41592-018-0046-7. PubMed PMID: 29967506.
-
da Veiga Leprevost F, Grüning B, Aflitos SA, Röst HL, Uszkoreit J, Barsnes H, Vaudel M, Moreno P, Gatto L, Weber J, Bai M, Jimenez RC, Sachsenberg T, Pfeuffer J, Alvarez RV, Griss J, Nesvizhskii AI, Perez-Riverol Y. BioContainers: an open-source and community-driven framework for software standardization. Bioinformatics. 2017 Aug 15;33(16):2580-2582. doi: 10.1093/bioinformatics/btx192. PubMed PMID: 28379341; PubMed Central PMCID: PMC5870671.
-
Merkel, D. (2014). Docker: lightweight linux containers for consistent development and deployment. Linux Journal, 2014(239), 2. doi: 10.5555/2600239.2600241.
-
Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute. PLoS One. 2017 May 11;12(5):e0177459. doi: 10.1371/journal.pone.0177459. eCollection 2017. PubMed PMID: 28494014; PubMed Central PMCID: PMC5426675.