diff --git a/README.md b/README.md index 0aeb212..fb292db 100644 --- a/README.md +++ b/README.md @@ -143,7 +143,7 @@ For more details see our [contribution policy](http://photon-hdf5.readthedocs.or ## Authors & Contributors -List of contributors (by lines of code): +List of contributors: - Antonino Ingargiola (@tritemio) - Ted Laurence (@talaurence) @@ -151,6 +151,7 @@ List of contributors (by lines of code): - Xavier Michalet (@smXplorer) - Anders Barth (@AndersBarth) - Biswajit Pradhan (@biswajitSM) We thank also @ncodina for providing PTU files and helping in testing the PTU decoder in phconvert. diff --git a/phconvert/pqreader.py b/phconvert/pqreader.py index c17ff23..cdbe1d6 100644 --- a/phconvert/pqreader.py +++ b/phconvert/pqreader.py @@ -80,6 +80,10 @@ def load_ptu(filename, ovcfunc=None): detectors, timestamps, nanotimes = process_t3records( t3records, time_bit=10, dtime_bit=15, ch_bit=6, special_bit=True, ovcfunc=_correct_overflow_nsync) + elif record_type in ('rtTimeHarp260NT2','rtTimeHarp260PT2'): + detectors, timestamps, nanotimes = process_t2records(t3records, + time_bit=25, ch_bit=6, special_bit=True, + ovcfunc=_correct_overflow_nsync) else: msg = ('Sorry, decoding "%s" record type is not implemented!' % record_type) @@ -89,6 +93,9 @@ def load_ptu(filename, ovcfunc=None): ctime_t = time.strptime(tags['File_CreatingTime']['value'], "%Y-%m-%d %H:%M:%S") creation_time = time.strftime("%Y-%m-%d %H:%M:%S", ctime_t) + hw_type = tags['HW_Type'] + if isinstance(hw_type, list): + hw_type = hw_type[0] meta = {'timestamps_unit': timestamps_unit, 'nanotimes_unit': nanotimes_unit, 'acquisition_duration': acquisition_duration, @@ -96,11 +103,41 @@ def load_ptu(filename, ovcfunc=None): 'software': tags['CreatorSW_Name']['data'], 'software_version': tags['CreatorSW_Version']['data'], 'creation_time': creation_time, - 'hardware_name': tags['HW_Type']['data'], + 'hardware_name': hw_type['data'], 'tags': tags} return timestamps, detectors, nanotimes, meta +def load_phu(filename, ovcfunc=None): + """Load data from a PicoQuant .phu file. + + Arguments: + filename (string): the path of the PTU file to be loaded. + ovcfunc (function or None): function to use for overflow/rollover + correction of timestamps. If None, it defaults to the + fastest available implementation for the current machine. + + Returns: + A tuple of timestamps, detectors, nanotimes (integer arrays) and a + dictionary with metadata containing the keys + 'timestamps_unit', 'nanotimes_unit', 'acquisition_duration' and + 'tags'. The value of 'tags' is an OrderedDict of tags contained + in the PTU file header. Each item in the OrderedDict has 'idx', 'type' + and 'value' keys. Some tags also have a 'data' key. + + """ + assert os.path.isfile(filename), "File '%s' not found." % filename + + histograms, histo_resolution, tags = \ + phu_reader(filename) + + + acquisition_duration = tags['MeasDesc_AcquisitionTime']['value'] * 1e-3 #in s + meta = {'acquisition_duration': acquisition_duration, + 'tags': tags} + return histograms, histo_resolution, meta + + def load_ht3(filename, ovcfunc=None): """Load data from a PicoQuant .ht3 file. @@ -434,7 +471,7 @@ def pt3_reader(filename): def ptu_reader(filename): - """Load raw t3 records and metadata from a PTU file. + """Load raw t3 or t2 records and metadata from a PTU file. """ # All the info about the PTU format has been inferred from PicoQuant demo: # https://github.com/PicoQuant/PicoQuant-Time-Tagged-File-Format-Demos/blob/master/PTU/cc/ptudemo.cc @@ -496,7 +533,15 @@ def ptu_reader(filename): tags[tagname] = tag while offset < tag_end_offset: tagname, tag, offset = _ptu_read_tag(s, offset, _ptu_tag_type_r) - tags[tagname] = tag + #it is possible that a tag is being present multiple times (as many as blocks of saved histograms) + #so if this tag appears a second time, one makes it a list and we append the new tag + #in the appended list + if tagname in tags.keys(): + if not isinstance(tags[tagname], list): + tags[tagname]=[tags[tagname]] + tags[tagname].append(tag) + else: + tags[tagname] = tag # Make sure we have read the last tag assert list(tags.keys())[-1] == FileTagEnd @@ -512,6 +557,99 @@ def ptu_reader(filename): record_type = _ptu_rec_type_r[tags['TTResultFormat_TTTRRecType']['value']] return t3records, timestamps_unit, nanotimes_unit, record_type, tags +def phu_reader(filename): + """Load histogram records and metadata from a PHU file. + """ + # All the info about the PHU format has been inferred from PicoQuant demo: + # https://github.com/PicoQuant/PicoQuant-Time-Tagged-File-Format-Demos/blob/master/PHU/Matlab/Read_PHU.m + #this format header is simalarly encoded as ptu files see ptu_reader + + # Constants used to decode the header + FileTagEnd = "Header_End" # Last tag of the header (BLOCKEND) + # Tag Types + _ptu_tag_type = dict( + tyEmpty8 = 0xFFFF0008, + tyBool8 = 0x00000008, + tyInt8 = 0x10000008, + tyBitSet64 = 0x11000008, + tyColor8 = 0x12000008, + tyFloat8 = 0x20000008, + tyTDateTime = 0x21000008, + tyFloat8Array = 0x2001FFFF, + tyAnsiString = 0x4001FFFF, + tyWideString = 0x4002FFFF, + tyBinaryBlob = 0xFFFFFFFF, + ) + + # Record Types + _ptu_rec_type = dict( + rtPicoHarpT3 = 0x00010303, # (SubID = $00 ,RecFmt: $01) (V1), T-Mode: $03 (T3), HW: $03 (PicoHarp) + rtPicoHarpT2 = 0x00010203, # (SubID = $00 ,RecFmt: $01) (V1), T-Mode: $02 (T2), HW: $03 (PicoHarp) + rtHydraHarpT3 = 0x00010304, # (SubID = $00 ,RecFmt: $01) (V1), T-Mode: $03 (T3), HW: $04 (HydraHarp) + rtHydraHarpT2 = 0x00010204, # (SubID = $00 ,RecFmt: $01) (V1), T-Mode: $02 (T2), HW: $04 (HydraHarp) + rtHydraHarp2T3 = 0x01010304, # (SubID = $01 ,RecFmt: $01) (V2), T-Mode: $03 (T3), HW: $04 (HydraHarp) + rtHydraHarp2T2 = 0x01010204, # (SubID = $01 ,RecFmt: $01) (V2), T-Mode: $02 (T2), HW: $04 (HydraHarp) + rtTimeHarp260NT3 = 0x00010305, # (SubID = $00 ,RecFmt: $01) (V1), T-Mode: $03 (T3), HW: $05 (TimeHarp260N) + rtTimeHarp260NT2 = 0x00010205, # (SubID = $00 ,RecFmt: $01) (V1), T-Mode: $02 (T2), HW: $05 (TimeHarp260N) + rtTimeHarp260PT3 = 0x00010306, # (SubID = $00 ,RecFmt: $01) (V1), T-Mode: $03 (T3), HW: $06 (TimeHarp260P) + rtTimeHarp260PT2 = 0x00010206, # (SubID = $00 ,RecFmt: $01) (V1), T-Mode: $02 (T2), HW: $06 (TimeHarp260P) + ) + + # Reverse mappings + _ptu_tag_type_r = {v: k for k, v in _ptu_tag_type.items()} + _ptu_rec_type_r = {v: k for k, v in _ptu_rec_type.items()} + + # Load only the first few bytes to see is file is valid + with open(filename, 'rb') as f: + magic = f.read(8).rstrip(b'\0') + version = f.read(8).rstrip(b'\0') + if magic!= b'PQHISTO': + raise IOError("This file is not a valid PHU file. " + "Magic: '%s'." % magic) + + # Now load the entire file + with open(filename, 'rb') as f: + s = f.read() + + # Decode the header and save data in the OrderedDict `tags` + # Each item in `tags` is a dict as returned by _ptu_read_tag() + offset = 16 + tag_end_offset = s.find(FileTagEnd.encode()) + len(FileTagEnd) + + tags = OrderedDict() + tagname, tag, offset = _ptu_read_tag(s, offset, _ptu_tag_type_r) + tags[tagname] = tag + while offset < tag_end_offset: + tagname, tag, offset = _ptu_read_tag(s, offset, _ptu_tag_type_r) + #it is possible that a tag is being present multiple times (as many as blocks of saved histograms) + #so if this tag appears a second time, one makes it a list and we affect the new tag + #in the appended list + if 'HistResDscr' in tagname: #there is as many of these as number of saved curves/histograms + if tagname not in tags.keys():#creata the list of the given tagname + tags[tagname]=[] + tags[tagname].append(tag) + else: + tags[tagname] = tag + + # Make sure we have read the last tag + assert list(tags.keys())[-1] == FileTagEnd + + #one as to loop over the different curves (histogram) stored in the phu file + Ncurves=tags['HistoResult_NumberOfCurves']['value'] + Nbins=tags['HistResDscr_HistogramBins'][0]['value'] # all Nbins should be equa between the Ncurves but there is as many tags as curves + histograms=np.zeros((Nbins,Ncurves), dtype='uint32') + + #populate histograms and Get some metadata + + histo_resolution=[] + for ind_curve in range(Ncurves): + histograms[:,ind_curve]=np.frombuffer(s, dtype='uint32', + count=tags['HistResDscr_HistogramBins'][ind_curve]['value'], + offset=tags['HistResDscr_DataOffset'][ind_curve]['value']) + histo_resolution.append(tags['HistResDscr_MDescResolution'][ind_curve]['value']) + + + return histograms, histo_resolution, tags def t3r_reader(filename): """Load raw t3 records and metadata from a PT3 file. @@ -618,16 +756,22 @@ def t3r_reader(filename): def _ptu_print_tags(tags): """Print a table of tags from a PTU file header.""" - line = '{:30s} %s {:8} {:12} ' for n in tags: - value_fmt = '{:>20}' - if tags[n]['type'] == 'tyFloat8': - value_fmt = '{:20.4g}' - endline = '\n' - if tags[n]['type'] == 'tyAnsiString': - endline = tags[n]['data'] + '\n' # hic sunt leones - print((line % value_fmt).format(n, tags[n]['value'], tags[n]['idx'], - tags[n]['type']), end=endline) + start = 'D' # mark for duplicated tags + tags_n = tags[n] + if not isinstance(tags[n], list): + tags_n = [tags_n] + start = ' ' + for tag in tags_n: + if tag['type'] == 'tyFloat8': + value = f'{tag["value"]:20.4g}' + else: + value = f'{tag["value"]:>20}' + endline = '\n' + if tag['type'] == 'tyAnsiString': + endline = tag['data'] + '\n' + line = f'{start} {tag["offset"]:4} {n:28s} {value} {tag["idx"]:8} {tag["type"]:12} ' + print(line, end=endline) def _ptu_read_tag(s, offset, tag_type_r): @@ -644,6 +788,7 @@ def _ptu_read_tag(s, offset, tag_type_r): tagname = tag_struct[0].rstrip(b'\0').decode() keys = ('idx', 'type', 'value') tag = {k: v for k, v in zip(keys, tag_struct[1:])} + tag['offset'] = offset # Recover the name of the type (a string) tag['type'] = tag_type_r[tag['type']] @@ -753,7 +898,20 @@ def process_t3records(t3records, time_bit=10, dtime_bit=15, - **detectors** (*arrays of uint8*): detector number. When `special_bit = True` the highest bit in `detectors` will be the special bit. + + Notes: + The bit allocation in the record is, starting from the MSB: + special: 1 + channel: 6 + dtime: 15 + nsync: 10 + If the special bit is clear, it's a regular event record. + If the special bit is set, the following interpretation of the channel code is given: + + code 63 (all bits ones) identifies a sync count overflow, increment the sync count overflow accumulator. For HydraHarp V1 ($00010304) it means always one overflow. For all other types the number of overflows can be read from nsync value. + codes from 1 to 15 identify markers, the individual bits are external markers. """ + if special_bit: ch_bit += 1 assert ch_bit <= 8 @@ -767,6 +925,20 @@ def process_t3records(t3records, time_bit=10, dtime_bit=15, np.right_shift(t3records, time_bit), 2**dtime_bit - 1).astype('uint16') + """ + if detectors is above 64 then it is a special record. + + detectors==127 =>overflow + detectors==65 => Marker 1 event + detectors==66 => Marker 2 event + ... + detectors==79 => Marker 15 event + else if + detectors==0 => regular event regular detector 0 + detectors==1 => regular event regular detector 1 + detectors==2 => regular event regular detector 2 + ... + """ dt = np.dtype([('low16', 'uint16'), ('high16', 'uint16')]) t3records_low16 = np.frombuffer(t3records, dt)['low16'] # View timestamps = t3records_low16.astype(np.int64) # Copy