-
Notifications
You must be signed in to change notification settings - Fork 0
/
helper.py
609 lines (520 loc) · 24.5 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
from shutil import copyfile
import math
import torch
from torch.autograd import Variable
import logging
import sklearn.metrics.pairwise as smp
from torch.nn.functional import log_softmax
import torch.nn.functional as F
import time
logger = logging.getLogger("logger")
import os
import json
import numpy as np
import config
import copy
import utils.csv_record
class Helper:
def __init__(self, current_time, params, name):
self.current_time = current_time
self.target_model = None
self.local_model = None
self.train_data = None
self.test_data = None
self.poisoned_data = None
self.test_data_poison = None
self.params = params
self.name = name
self.best_loss = math.inf
self.folder_path = f'saved_models/model_{self.name}_{current_time}'
try:
os.mkdir(self.folder_path)
except FileExistsError:
logger.info('Folder already exists')
logger.addHandler(logging.FileHandler(filename=f'{self.folder_path}/log.txt'))
logger.addHandler(logging.StreamHandler())
logger.setLevel(logging.DEBUG)
logger.info(f'current path: {self.folder_path}')
if not self.params.get('environment_name', False):
self.params['environment_name'] = self.name
self.params['current_time'] = self.current_time
self.params['folder_path'] = self.folder_path
self.fg= FoolsGold(use_memory=self.params['fg_use_memory'])
def save_checkpoint(self, state, is_best, filename='checkpoint.pth.tar'):
if not self.params['save_model']:
return False
torch.save(state, filename)
if is_best:
copyfile(filename, 'model_best.pth.tar')
@staticmethod
def model_global_norm(model):
squared_sum = 0
for name, layer in model.named_parameters():
squared_sum += torch.sum(torch.pow(layer.data, 2))
return math.sqrt(squared_sum)
@staticmethod
def model_dist_norm(model, target_params):
squared_sum = 0
for name, layer in model.named_parameters():
squared_sum += torch.sum(torch.pow(layer.data - target_params[name].data, 2))
return math.sqrt(squared_sum)
@staticmethod
def model_max_values(model, target_params):
squared_sum = list()
for name, layer in model.named_parameters():
squared_sum.append(torch.max(torch.abs(layer.data - target_params[name].data)))
return squared_sum
@staticmethod
def model_max_values_var(model, target_params):
squared_sum = list()
for name, layer in model.named_parameters():
squared_sum.append(torch.max(torch.abs(layer - target_params[name])))
return sum(squared_sum)
@staticmethod
def get_one_vec(model, variable=False):
size = 0
for name, layer in model.named_parameters():
if name == 'decoder.weight':
continue
size += layer.view(-1).shape[0]
if variable:
sum_var = Variable(torch.cuda.FloatTensor(size).fill_(0))
else:
sum_var = torch.cuda.FloatTensor(size).fill_(0)
size = 0
for name, layer in model.named_parameters():
if name == 'decoder.weight':
continue
if variable:
sum_var[size:size + layer.view(-1).shape[0]] = (layer).view(-1)
else:
sum_var[size:size + layer.view(-1).shape[0]] = (layer.data).view(-1)
size += layer.view(-1).shape[0]
return sum_var
@staticmethod
def model_dist_norm_var(model, target_params_variables, norm=2):
size = 0
for name, layer in model.named_parameters():
size += layer.view(-1).shape[0]
sum_var = torch.FloatTensor(size).fill_(0)
sum_var= sum_var.to(config.device)
size = 0
for name, layer in model.named_parameters():
sum_var[size:size + layer.view(-1).shape[0]] = (
layer - target_params_variables[name]).view(-1)
size += layer.view(-1).shape[0]
return torch.norm(sum_var, norm)
def cos_sim_loss(self, model, target_vec):
model_vec = self.get_one_vec(model, variable=True)
target_var = Variable(target_vec, requires_grad=False)
# target_vec.requires_grad = False
cs_sim = torch.nn.functional.cosine_similarity(
self.params['scale_weights'] * (model_vec - target_var) + target_var, target_var, dim=0)
# cs_sim = cs_loss(model_vec, target_vec)
logger.info("los")
logger.info(cs_sim.data[0])
logger.info(torch.norm(model_vec - target_var).data[0])
loss = 1 - cs_sim
return 1e3 * loss
def model_cosine_similarity(self, model, target_params_variables,
model_id='attacker'):
cs_list = list()
cs_loss = torch.nn.CosineSimilarity(dim=0)
for name, data in model.named_parameters():
if name == 'decoder.weight':
continue
model_update = 100 * (data.view(-1) - target_params_variables[name].view(-1)) + target_params_variables[
name].view(-1)
cs = F.cosine_similarity(model_update,
target_params_variables[name].view(-1), dim=0)
# logger.info(torch.equal(layer.view(-1),
# target_params_variables[name].view(-1)))
# logger.info(name)
# logger.info(cs.data[0])
# logger.info(torch.norm(model_update).data[0])
# logger.info(torch.norm(fake_weights[name]))
cs_list.append(cs)
cos_los_submit = 1 * (1 - sum(cs_list) / len(cs_list))
logger.info(model_id)
logger.info((sum(cs_list) / len(cs_list)).data[0])
return 1e3 * sum(cos_los_submit)
def accum_similarity(self, last_acc, new_acc):
cs_list = list()
cs_loss = torch.nn.CosineSimilarity(dim=0)
# logger.info('new run')
for name, layer in last_acc.items():
cs = cs_loss(Variable(last_acc[name], requires_grad=False).view(-1),
Variable(new_acc[name], requires_grad=False).view(-1))
# logger.info(torch.equal(layer.view(-1),
# target_params_variables[name].view(-1)))
# logger.info(name)
# logger.info(cs.data[0])
# logger.info(torch.norm(model_update).data[0])
# logger.info(torch.norm(fake_weights[name]))
cs_list.append(cs)
cos_los_submit = 1 * (1 - sum(cs_list) / len(cs_list))
# logger.info("AAAAAAAA")
# logger.info((sum(cs_list)/len(cs_list)).data[0])
return sum(cos_los_submit)
@staticmethod
def dp_noise(param, sigma):
noised_layer = torch.cuda.FloatTensor(param.shape).normal_(mean=0, std=sigma)
return noised_layer
def accumulate_weight(self, weight_accumulator, epochs_submit_update_dict, state_keys,num_samples_dict):
"""
return Args:
updates: dict of (num_samples, update), where num_samples is the
number of training samples corresponding to the update, and update
is a list of variable weights
"""
if self.params['aggregation_methods'] == config.AGGR_FOOLSGOLD:
updates = dict()
for i in range(0, len(state_keys)):
local_model_gradients = epochs_submit_update_dict[state_keys[i]][0] # agg 1 interval
num_samples = num_samples_dict[state_keys[i]]
updates[state_keys[i]] = (num_samples, copy.deepcopy(local_model_gradients))
return None, updates
else:
updates = dict()
for i in range(0, len(state_keys)):
local_model_update_list = epochs_submit_update_dict[state_keys[i]]
update= dict()
num_samples=num_samples_dict[state_keys[i]]
for name, data in local_model_update_list[0].items():
update[name] = torch.zeros_like(data)
for j in range(0, len(local_model_update_list)):
local_model_update_dict= local_model_update_list[j]
for name, data in local_model_update_dict.items():
weight_accumulator[name].add_(local_model_update_dict[name])
update[name].add_(local_model_update_dict[name])
detached_data= data.cpu().detach().numpy()
# print(detached_data.shape)
detached_data=detached_data.tolist()
# print(detached_data)
local_model_update_dict[name]=detached_data # from gpu to cpu
updates[state_keys[i]]=(num_samples,update)
return weight_accumulator,updates
def init_weight_accumulator(self, target_model):
weight_accumulator = dict()
for name, data in target_model.state_dict().items():
weight_accumulator[name] = torch.zeros_like(data)
return weight_accumulator
def average_shrink_models(self, weight_accumulator, target_model, epoch_interval):
"""
Perform FedAvg algorithm and perform some clustering on top of it.
"""
for name, data in target_model.state_dict().items():
if self.params.get('tied', False) and name == 'decoder.weight':
continue
if 'num_batches_tracked' in name:
continue
update_per_layer = weight_accumulator[name] * (self.params["eta"] / self.params["no_models"])
# update_per_layer = weight_accumulator[name] * (self.params["eta"] / self.params["number_of_total_participants"])
# update_per_layer = update_per_layer * 1.0 / epoch_interval
if self.params['diff_privacy']:
update_per_layer.add_(self.dp_noise(data, self.params['sigma']))
data.add_(update_per_layer)
return True
def foolsgold_update(self,target_model,updates):
client_grads = []
alphas = []
names = []
for name, data in updates.items():
client_grads.append(data[1]) # gradient
alphas.append(data[0]) # num_samples
names.append(name)
adver_ratio = 0
for i in range(0, len(names)):
_name = names[i]
if _name in self.params['adversary_list']:
adver_ratio += alphas[i]
adver_ratio = adver_ratio / sum(alphas)
poison_fraction = adver_ratio * self.params['poisoning_per_batch'] / self.params['batch_size']
logger.info(f'[foolsgold agg] training data poison_ratio: {adver_ratio} data num: {alphas}')
logger.info(f'[foolsgold agg] considering poison per batch poison_fraction: {poison_fraction}')
target_model.train()
# train and update
optimizer = torch.optim.SGD(target_model.parameters(), lr=self.params['lr'],
momentum=self.params['momentum'],
weight_decay=self.params['decay'])
optimizer.zero_grad()
agg_grads, wv,alpha = self.fg.aggregate_gradients(client_grads,names)
for i, (name, params) in enumerate(target_model.named_parameters()):
agg_grads[i]=agg_grads[i] * self.params["eta"]
if params.requires_grad:
params.grad = agg_grads[i].to(config.device)
optimizer.step()
wv=wv.tolist()
utils.csv_record.add_weight_result(names, wv, alpha)
return True, names, wv, alpha
def geometric_median_update(self, target_model, updates, maxiter=4, eps=1e-5, verbose=False, ftol=1e-6, max_update_norm= None):
"""Computes geometric median of atoms with weights alphas using Weiszfeld's Algorithm
"""
points = []
alphas = []
names = []
for name, data in updates.items():
points.append(data[1]) # update
alphas.append(data[0]) # num_samples
names.append(name)
adver_ratio=0
for i in range(0,len(names)):
_name= names[i]
if _name in self.params['adversary_list']:
adver_ratio+= alphas[i]
adver_ratio= adver_ratio/ sum(alphas)
poison_fraction= adver_ratio* self.params['poisoning_per_batch']/ self.params['batch_size']
logger.info(f'[rfa agg] training data poison_ratio: {adver_ratio} data num: {alphas}')
logger.info(f'[rfa agg] considering poison per batch poison_fraction: {poison_fraction}')
alphas = np.asarray(alphas, dtype=np.float64) / sum(alphas)
alphas = torch.from_numpy(alphas).float()
# alphas.float().to(config.device)
median = Helper.weighted_average_oracle(points, alphas)
num_oracle_calls = 1
# logging
obj_val = Helper.geometric_median_objective(median, points, alphas)
logs = []
log_entry = [0, obj_val, 0, 0]
logs.append(log_entry)
if verbose:
logger.info('Starting Weiszfeld algorithm')
logger.info(log_entry)
logger.info(f'[rfa agg] init. name: {names}, weight: {alphas}')
# start
wv=None
for i in range(maxiter):
prev_median, prev_obj_val = median, obj_val
weights = torch.tensor([alpha / max(eps, Helper.l2dist(median, p)) for alpha, p in zip(alphas, points)],
dtype=alphas.dtype)
weights = weights / weights.sum()
median = Helper.weighted_average_oracle(points, weights)
num_oracle_calls += 1
obj_val = Helper.geometric_median_objective(median, points, alphas)
log_entry = [i + 1, obj_val,
(prev_obj_val - obj_val) / obj_val,
Helper.l2dist(median, prev_median)]
logs.append(log_entry)
if verbose:
logger.info(log_entry)
if abs(prev_obj_val - obj_val) < ftol * obj_val:
break
logger.info(f'[rfa agg] iter: {i}, prev_obj_val: {prev_obj_val}, obj_val: {obj_val}, abs dis: { abs(prev_obj_val - obj_val)}')
logger.info(f'[rfa agg] iter: {i}, weight: {weights}')
wv=copy.deepcopy(weights)
alphas = [Helper.l2dist(median, p) for p in points]
update_norm = 0
for name, data in median.items():
update_norm += torch.sum(torch.pow(data, 2))
update_norm= math.sqrt(update_norm)
if max_update_norm is None or update_norm < max_update_norm:
for name, data in target_model.state_dict().items():
update_per_layer = median[name] * (self.params["eta"])
if self.params['diff_privacy']:
update_per_layer.add_(self.dp_noise(data, self.params['sigma']))
data.add_(update_per_layer)
is_updated = True
else:
logger.info('\t\t\tUpdate norm = {} is too large. Update rejected'.format(update_norm))
is_updated = False
utils.csv_record.add_weight_result(names, wv.cpu().numpy().tolist(), alphas)
return num_oracle_calls, is_updated, names, wv.cpu().numpy().tolist(),alphas
@staticmethod
def l2dist(p1, p2):
"""L2 distance between p1, p2, each of which is a list of nd-arrays"""
squared_sum = 0
for name, data in p1.items():
squared_sum += torch.sum(torch.pow(p1[name]- p2[name], 2))
return math.sqrt(squared_sum)
@staticmethod
def geometric_median_objective(median, points, alphas):
"""Compute geometric median objective."""
temp_sum= 0
for alpha, p in zip(alphas, points):
temp_sum += alpha * Helper.l2dist(median, p)
return temp_sum
# return sum([alpha * Helper.l2dist(median, p) for alpha, p in zip(alphas, points)])
@staticmethod
def weighted_average_oracle(points, weights):
"""Computes weighted average of atoms with specified weights
Args:
points: list, whose weighted average we wish to calculate
Each element is a list_of_np.ndarray
weights: list of weights of the same length as atoms
"""
tot_weights = torch.sum(weights)
weighted_updates= dict()
for name, data in points[0].items():
weighted_updates[name]= torch.zeros_like(data)
for w, p in zip(weights, points): # 对每一个agent
for name, data in weighted_updates.items():
temp = (w / tot_weights).float().to(config.device)
temp= temp* (p[name].float())
# temp = w / tot_weights * p[name]
if temp.dtype!=data.dtype:
temp = temp.type_as(data)
data.add_(temp)
return weighted_updates
def save_model(self, model=None, epoch=0, val_loss=0):
if model is None:
model = self.target_model
if self.params['save_model']:
# save_model
logger.info("saving model")
model_name = '{0}/model_last.pt.tar'.format(self.params['folder_path'])
saved_dict = {'state_dict': model.state_dict(), 'epoch': epoch,
'lr': self.params['lr']}
self.save_checkpoint(saved_dict, False, model_name)
if epoch in self.params['save_on_epochs']:
logger.info(f'Saving model on epoch {epoch}')
self.save_checkpoint(saved_dict, False, filename=f'{model_name}.epoch_{epoch}')
if val_loss < self.best_loss:
self.save_checkpoint(saved_dict, False, f'{model_name}.best')
self.best_loss = val_loss
def update_epoch_submit_dict(self,epochs_submit_update_dict,global_epochs_submit_dict, epoch,state_keys):
epoch_len= len(epochs_submit_update_dict[state_keys[0]])
for j in range(0, epoch_len):
per_epoch_dict = dict()
for i in range(0, len(state_keys)):
local_model_update_list = epochs_submit_update_dict[state_keys[i]]
local_model_update_dict = local_model_update_list[j]
per_epoch_dict[state_keys[i]]= local_model_update_dict
global_epochs_submit_dict[epoch+j]= per_epoch_dict
return global_epochs_submit_dict
def save_epoch_submit_dict(self, global_epochs_submit_dict):
with open(f'{self.folder_path}/epoch_submit_update.json', 'w') as outfile:
json.dump(global_epochs_submit_dict, outfile, ensure_ascii=False, indent=1)
def estimate_fisher(self, model, criterion,
data_loader, sample_size, batch_size=64):
# sample loglikelihoods from the dataset.
loglikelihoods = []
if self.params['type'] == 'text':
data_iterator = range(0, data_loader.size(0) - 1, self.params['bptt'])
hidden = model.init_hidden(self.params['batch_size'])
else:
data_iterator = data_loader
for batch_id, batch in enumerate(data_iterator):
data, targets = self.get_batch(data_loader, batch,
evaluation=False)
if self.params['type'] == 'text':
hidden = self.repackage_hidden(hidden)
output, hidden = model(data, hidden)
loss = criterion(output.view(-1, self.n_tokens), targets)
else:
output = model(data)
loss = log_softmax(output, dim=1)[range(targets.shape[0]), targets.data]
# loss = criterion(output.view(-1, ntokens
# output, hidden = model(data, hidden)
loglikelihoods.append(loss)
# loglikelihoods.append(
# log_softmax(output.view(-1, self.n_tokens))[range(self.params['batch_size']), targets.data]
# )
# if len(loglikelihoods) >= sample_size // batch_size:
# break
logger.info(loglikelihoods[0].shape)
# estimate the fisher information of the parameters.
loglikelihood = torch.cat(loglikelihoods).mean(0)
logger.info(loglikelihood.shape)
loglikelihood_grads = torch.autograd.grad(loglikelihood, model.parameters())
parameter_names = [
n.replace('.', '__') for n, p in model.named_parameters()
]
return {n: g ** 2 for n, g in zip(parameter_names, loglikelihood_grads)}
def consolidate(self, model, fisher):
for n, p in model.named_parameters():
n = n.replace('.', '__')
model.register_buffer('{}_estimated_mean'.format(n), p.data.clone())
model.register_buffer('{}_estimated_fisher'
.format(n), fisher[n].data.clone())
def ewc_loss(self, model, lamda, cuda=False):
try:
losses = []
for n, p in model.named_parameters():
# retrieve the consolidated mean and fisher information.
n = n.replace('.', '__')
mean = getattr(model, '{}_estimated_mean'.format(n))
fisher = getattr(model, '{}_estimated_fisher'.format(n))
# wrap mean and fisher in variables.
mean = Variable(mean)
fisher = Variable(fisher)
# calculate a ewc loss. (assumes the parameter's prior as
# gaussian distribution with the estimated mean and the
# estimated cramer-rao lower bound variance, which is
# equivalent to the inverse of fisher information)
losses.append((fisher * (p - mean) ** 2).sum())
return (lamda / 2) * sum(losses)
except AttributeError:
# ewc loss is 0 if there's no consolidated parameters.
return (
Variable(torch.zeros(1)).cuda() if cuda else
Variable(torch.zeros(1))
)
class FoolsGold(object):
def __init__(self, use_memory=False):
self.memory = None
self.memory_dict=dict()
self.wv_history = []
self.use_memory = use_memory
def aggregate_gradients(self, client_grads,names):
cur_time = time.time()
num_clients = len(client_grads)
grad_len = np.array(client_grads[0][-2].cpu().data.numpy().shape).prod()
# if self.memory is None:
# self.memory = np.zeros((num_clients, grad_len))
self.memory = np.zeros((num_clients, grad_len))
grads = np.zeros((num_clients, grad_len))
for i in range(len(client_grads)):
grads[i] = np.reshape(client_grads[i][-2].cpu().data.numpy(), (grad_len))
if names[i] in self.memory_dict.keys():
self.memory_dict[names[i]]+=grads[i]
else:
self.memory_dict[names[i]]=copy.deepcopy(grads[i])
self.memory[i]=self.memory_dict[names[i]]
# self.memory += grads
if self.use_memory:
wv, alpha = self.foolsgold(self.memory) # Use FG
else:
wv, alpha = self.foolsgold(grads) # Use FG
logger.info(f'[foolsgold agg] wv: {wv}')
self.wv_history.append(wv)
agg_grads = []
# Iterate through each layer
for i in range(len(client_grads[0])):
assert len(wv) == len(client_grads), 'len of wv {} is not consistent with len of client_grads {}'.format(len(wv), len(client_grads))
temp = wv[0] * client_grads[0][i].cpu().clone()
# Aggregate gradients for a layer
for c, client_grad in enumerate(client_grads):
if c == 0:
continue
temp += wv[c] * client_grad[i].cpu()
temp = temp / len(client_grads)
agg_grads.append(temp)
print('model aggregation took {}s'.format(time.time() - cur_time))
return agg_grads, wv, alpha
def foolsgold(self,grads):
"""
:param grads:
:return: compute similatiry and return weightings
"""
n_clients = grads.shape[0]
cs = smp.cosine_similarity(grads) - np.eye(n_clients)
maxcs = np.max(cs, axis=1)
# pardoning
for i in range(n_clients):
for j in range(n_clients):
if i == j:
continue
if maxcs[i] < maxcs[j]:
cs[i][j] = cs[i][j] * maxcs[i] / maxcs[j]
wv = 1 - (np.max(cs, axis=1))
wv[wv > 1] = 1
wv[wv < 0] = 0
alpha = np.max(cs, axis=1)
# Rescale so that max value is wv
wv = wv / np.max(wv)
wv[(wv == 1)] = .99
# Logit function
wv = (np.log(wv / (1 - wv)) + 0.5)
wv[(np.isinf(wv) + wv > 1)] = 1
wv[(wv < 0)] = 0
# wv is the weight
return wv,alpha