-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpepkalc.py
197 lines (157 loc) · 6.96 KB
/
pepkalc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import argparse
from scipy.optimize import curve_fit
from scipy.special import erfc
import numpy as np
# Our amino acid conversion utilities
three = ["ALA", "ARG", "ASN", "ASP", "CYS", "GLN", "GLU", "GLY", "HIS",
"ILE", "LEU", "LYS", "MET", "PHE", "PRO", "SER", "THR", "TRP", "TYR", "VAL"]
one = ["A", "R", "N", "D", "C", "Q", "E", "G", "H", "I",
"L", "K", "M", "F", "P", "S", "T", "W", "Y", "V"]
aadict = {}
for i in range(len(three)):
aadict[three[i]] = one[i]
aadict[one[i]] = three[i]
def one2three2one(aa):
"""
Amino acid 1to3 conversion
"""
return(aadict[aa.upper()])
def get_diagonal(matrix, n=0):
z = np.zeros(matrix.shape, int)
for i in range(len(z) - n):
z[i, i + n] = True
return matrix[z > 0]
def smallmatrixlimits(ires, cutoff, len):
ileft = max(1, ires - cutoff)
iright = min(ileft + 2 * cutoff, len)
if iright == len:
ileft = max(1, iright - 2 * cutoff)
return (ileft, iright)
def smallmatrixpos(ires, cutoff, len):
resi = cutoff + 1
if ires < cutoff + 1:
resi = ires
if ires > len - cutoff:
resi = min(len, 2 * cutoff + 1) - (len - ires)
return resi
def hasselbalch(pH, pK, nH):
return (10 ** (pK - pH)) ** nH / (1. + (10 ** (pK - pH)) ** nH)
def k(ion, T, eps):
return np.sqrt((8.0 * np.pi * ion * 0.2003457539870666) / (eps * T * 0.0019872041))
def W1(r, ion, T, eps):
kappa = k(ion, T, eps)
x = kappa * r / np.sqrt(6.0)
return 332.286 * np.sqrt(6.0 / np.pi) * (1 - np.sqrt(np.pi) * x * np.exp(x ** 2) * erfc(x)) / (eps * r)
def WP(ze, c, ion, T, eps):
kappa = k(ion, T, eps)
r = 11.8 / pow(c, 1.0 / 3.0) # in Angstroms
return ze * ze * np.exp(-kappa * r) / (eps * r)
def W(ds, ion, eps, weight=None):
k = np.sqrt(ion) / 3.08
ds[ds == 0] = 1
tmp = 332.286 / (eps * ds) * np.exp(- k * ds)
return np.average(tmp, axis=2, weights=weight)
def w2logp(x, R, T):
return x * 4181.2 / (R * T * np.log(10))
# Argument parsing
parser = argparse.ArgumentParser()
parser.add_argument("--sequence", default='nMDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEAc', help="Protein sequence in one-letter FASTA format. [n] denotes N-terminus. [c] denotes C-terminus. Default [nMDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEAc].")
parser.add_argument("--temperature", default=283.15, help="Temperature in [K]. Default [283.15].")
parser.add_argument("--ionicstrength", default=0.0, help="Ionic strength in [M]. Default [0.0].")
parser.add_argument("--epsilon", default=83.83, help="Dielecttric permittivity. Default [83.83].")
parser.add_argument("--gca", default=5.0, help="Charge shift distance due to side chain [A]. Default [5.0].")
parser.add_argument("--gcb", default=7.5, help="The effective residue separation [A]. Default [7.5].")
parser.add_argument("--cutoff", default=2, help="Explicit calculation cutoff. Default [2].")
parser.add_argument("--ncycles", default=3, help="The number of super-cycles. Default [3].")
parser.add_argument("--nooutput", action='store_true', default=False, help="Do not generate output file. Default [False].")
parser.add_argument("--silent", action='store_true', default=False, help="Do not print calculation output. Default [False].")
args = parser.parse_args()
if not args.silent:
print (args)
# Variables init
seq = args.sequence
temp = float(args.temperature)
ion = float(args.ionicstrength)
eps = float(args.epsilon)
gca = float(args.gca)
gcb = float(args.gcb)
cutoff = int(args.cutoff)
ncycles = int(args.ncycles)
pK0 = {"n": 7.5, "C": 8.6, "D": 4.0, "E": 4.4,
"H": 6.6, "K": 10.4, "R": 12.0, "Y": 9.6, "c": 3.5}
q0 = {"n": 0.0, "C": -1.0, "D": -1.0, "E": -1.0,
"H": 0.0, "K": 0.0, "R": 0.0, "Y": -1.0, "c": -1.0}
pos = np.array([i for i in xrange(len(seq)) if seq[i] in pK0.keys()])
sites = ''.join([seq[i] for i in pos])
l = np.array([abs(pos - pos[i]) for i in range(len(pos))])
d = gca + np.sqrt(l) * gcb
tmp = W1(d, ion, temp, eps)
R = 8.314472
pHstep = 0.2
pHs = np.arange(1.0, 13.01, pHstep)
neg = np.array([i for i in range(len(pos)) if seq[pos[i]] in 'CDEYc'])
#print('distancematrix: ', ds.shape)
I = np.diag(np.ones(len(pos)))
tmp[I == 1] = 0
ww = w2logp(tmp, R, temp) / 2
chargesempty = np.zeros(pos.shape[0])
if len(neg):
chargesempty[neg] = -1
pK0s = [pK0[c] for c in sites]
nH0s = [0.9 for c in sites]
titration = np.zeros((len(pos), len(pHs)))
smallN = min(2 * cutoff + 1, len(pos))
smallI = np.diag(np.ones(smallN))
alltuples = [[int(c) for c in np.binary_repr(i, smallN)]
for i in xrange(2 ** (smallN))]
gmatrix = [np.zeros((smallN, smallN)) for p in range(len(pHs))]
if len(sites) <= 2 * cutoff + 1:
ncycles = 1
titration = np.array([[hasselbalch(pHs[p], pK0s[i], nH0s[i])
for i in range(len(pos))] for p in range(len(pHs))]).transpose()
Qs = titration.copy()
for icycle in range(ncycles):
# print icycle + 1
fractionhold = titration.transpose()
for ires in range(1, len(pos) + 1):
(ileft, iright) = smallmatrixlimits(ires, cutoff, len(pos))
resi = smallmatrixpos(ires, cutoff, len(pos))
for p in range(len(pHs)):
fraction = fractionhold[p].copy()
fraction[ileft - 1: iright] = 0
charges = chargesempty + fraction
ww0 = np.diag(np.dot(ww, charges) * 2)
gmatrixfull = ww + ww0 + pHs[p] * I - np.diag(pK0s)
gmatrix[p] = gmatrixfull[ileft - 1: iright, ileft - 1: iright]
E_all = np.array([sum([10 ** -(gmatrix[p] * np.outer(c, c)).sum()
for c in alltuples]) for p in range(len(pHs))])
E_sel = np.array([sum([10 ** -(gmatrix[p] * np.outer(c, c)).sum()
for c in alltuples if c[resi - 1] == 1]) for p in range(len(pHs))])
titration[ires - 1] = E_sel / E_all
Qs[ires-1] = titration[ires - 1] + q0[sites[ires-1]]
sol = np.array([curve_fit(hasselbalch, pHs, titration[i], [
pK0s[i], nH0s[i]])[0] for i in range(len(pK0s))])
(pKs, nHs) = sol.transpose()
first = 0
if not seq[0] == 'n':
first = 1
# Compute the overall charge
Q = np.sum(Qs, axis=0)
G = -1.0 * w2logp(Q, R, temp)
# Print the header
if not args.silent:
print '%s, %s, %s, %s' % ('RES','pKa', 'dpKa', 'n')
for i in range(len(sol)):
if not args.silent:
print '%s, %f, %f, %f' % (seq[pos[i]] + str(pos[i] + first), pKs[i], pKs[i] - pK0s[i], nHs[i]) #pKs[i]#, pKs[i] - pK0s[i], nHs[i]
if not args.nooutput:
outfile = open(seq[pos[i]] + str(pos[i] + first) + '_titration.dat', 'w')
outfile.close()
if not args.nooutput:
outfile2 = open('Total_Q.dat', 'w')
outfile3 = open('Total_G.dat', 'w')
for p in range(len(pHs)):
outfile2.write('%7.7f, %7.7f\n' % (pHs[p], Q[p]))
outfile3.write('%7.7f, %7.7f\n' % (pHs[p], G[p]))
outfile2.close()
outfile3.close()