diff --git a/scripts/adaptiveV_correlations.R b/scripts/adaptiveV_correlations.R index 7c3567e..c56aa5e 100644 --- a/scripts/adaptiveV_correlations.R +++ b/scripts/adaptiveV_correlations.R @@ -52,7 +52,7 @@ library(readr) # load data ---- # demos, proto order, groups, full cnb + cat cnb (missing rapid tests aka AIM, CPT, GNG, DIGSYM) -all_cnb <- read.csv("data/inputs/cnb_merged/cnb_merged_20221003.csv",na.strings=c(""," ","NA")) # 288 rows as of 10/3/22 +all_cnb <- read.csv("data/inputs/cnb_merged/cnb_merged_20221005.csv",na.strings=c(""," ","NA")) # 288 rows as of 10/5/22 x <- all_cnb # full CNB for itemwise DISC tasks @@ -2251,17 +2251,16 @@ no_good$sum <- rowSums(no_good[,2:18],na.rm = T) # max: 6 tests flagged, 10/3/20 # NA for rows with SMVE below 5% { - lower_names <- tolower(c("ADT","AIM","CPF","CPT","CPW","DDISC","DIGSYM","EDISC","ER40", - "GNG","MEDF","PLOT","PMAT","PRA","PVRT","RDISC","SVOLT")) + lower_names <- tolower(names(no_good[,2:18])) xx <- all_cnb x <- left_join(xx,no_good[,1:18],by=c("bblid"="BBLID")) - # 1:18 of x are demos, 19:91 are full CNB, 92:137 are CAT CNB, 138:154 are no_good + # 1:18 of x are demos, 19:91 are full CNB, 92:[140] are CAT CNB, 141:157 are no_good for (i in 1:length(lower_names)) { tname <- lower_names[i] for (j in 1:nrow(x)) { - if (!is.na(x[j,i+137]) & x[j,i+137] == 1) { # need to update this number everytime more columns are added to all_cnb + if (!is.na(x[j,i+140]) & x[j,i+140] == 1) { # need to update this number every time more columns are added to all_cnb, use bracketed number from above comment x[j,grepl(tname,colnames(x))] <- NA } } @@ -2272,15 +2271,38 @@ no_good$sum <- rowSums(no_good[,2:18],na.rm = T) # max: 6 tests flagged, 10/3/20 # * Multivariate Outlier Removal ---- +# ** Extreme Outliers (seen from scatters) ---- +# basically checking the people that would have been flagged in multivariate outlier removal (removing anyone whose difference between Full/CAT scores are > 3 SD) + +# outlier_pra <- x_all %>% filter(pra_cr_Oreg < -4) %>% dplyr::select(bblid:proto_4,pra_cr,pra.1.00.d.cat_default,pra_cr_Oreg,pra.1.00.d.cat_default_Oreg) +# i checked the BBLIDs (23230,105176,122277) that have 0 for pra_cr and they all have C1 on their CNB notes, ignoring these peoples' PRA data for now +# x[which(x$pra_cr == 0),grepl("^pra",colnames(x))] <- NA + +# also checking the PRA outlier that has a near 0 on Full but very low score on CAT +# outlier_pra2 <- x_all %>% filter(pra_cr_Oreg > -0.15, pra.1.00.d.cat_default_Oreg < -3.5) %>% dplyr::select(bblid:proto_4,pra_cr,pra.1.00.d.cat_default,pra_cr_Oreg,pra.1.00.d.cat_default_Oreg) +# BBLID 95116: C1 on Full and CAT CNB +# x[which(x$bblid == 95116),grepl("^pra",colnames(x))] <- NA + +# outlier_edisc <- x_all %>% filter(edisc_sum_Oreg > 1.85,edisc.1.00.cat_default_Oreg < -1) %>% dplyr::select(bblid:proto_4,edisc_sum,edisc.1.00.cat_default,edisc_sum_Oreg,edisc.1.00.cat_default_Oreg) +# BBLID (22016,23463) both have C1 on Full and CAT CNB notes, therefore ignoring for now + +# outlier_gng <- x_all %>% filter(gng_cr_Oreg < -3.9,GNG60.GNG60_CR_Oreg > 0) %>% dplyr::select(bblid:proto_4,gng_cr,GNG60.GNG60_CR,gng_cr_Oreg,GNG60.GNG60_CR_Oreg) +# BBLID 91335: glitches in the Full CNB, C3 good enough to remove? this will be captured by manual validation codes + +# outlier_plot <- x_all %>% filter(plot_pc_Oreg < -1.9,plot.1.00.cat_default_Oreg > 1) %>% dplyr::select(bblid:proto_4,plot_pc,plot.1.00.cat_default,plot_pc_Oreg,plot.1.00.cat_default_Oreg) +# BBLID 112598: C1 for both Full and CAT CNB + + + # Select relevant columns for scatters ---- temp <- x$gng_cr -temp[temp<100] <- NA +temp[temp<100] <- NA # 2 turned into NA with this, 10/3/22 x$gng_cr <- temp temp <- x$GNG60.GNG60_CR -temp[temp<50] <- NA +temp[temp<50] <- NA # 2 turned into NA with this, 10/3/22 x$GNG60.GNG60_CR <- temp cpt_acc <- x$cpt_ptp - x$cpt_pfp @@ -2339,7 +2361,7 @@ adt_cat <- ((x$adt.1.00.cat_same + x$adt.1.00.cat_different + x$adt.1.00.cat_dif cpf_cat <- ((x$cpf.1.00.v1.cat_target + x$cpf.1.00.v1.cat_foil)/2)*sqrt(2) cpw_cat <- ((x$cpw.1.00.v1.cat_target + x$cpw.1.00.v1.cat_foil)/2)*sqrt(2) volt_cat <- ((x$volt.1.00.v1.cat_targets + x$volt.1.00.v1.cat_foils)/2)*sqrt(2) -cpt_cat <- (x$CPT108.CATCPTT_TP/36) - (x$CPT108.CATCPTT_FP/72) # old data (only ~170 rows) +cpt_cat <- (x$CPT108.CATCPTT_TP/36) - (x$CPT108.CATCPTT_FP/72) # using the "real"/fixed cpf and er40 (still n=62 only) er40_2_cat <- ((x$er40.2.00.cat_neutral + x$er40.2.00.cat_emotive + x$er40.2.00.cat_emotive + x$er40.2.00.cat_emotive)/4)*sqrt(4) @@ -2445,19 +2467,18 @@ x_xl <- x99 x99_split <- left_join(x99_split,split_mem,by="bblid") } - -# rapid/shortened tests missing for CAT CNB (AIM,CPT,DIGSYM,GNG,) -# need to edit line above defining x99 when CAT shortened test are available - -sc <- matrix(NA,nrow(x99_split),ncol(x99_split)-6) - -for (i in 1:(ncol(x99_split)-6)) { - mod <- lm(x99_split[,(i+6)]~proto_3,data=x99_split,na.action=na.exclude) - sc[,i] <- scale(residuals(mod,na.action=na.exclude)) +# order regress +{ + sc <- matrix(NA,nrow(x99_split),ncol(x99_split)-6) + + for (i in 1:(ncol(x99_split)-6)) { + mod <- lm(x99_split[,(i+6)]~proto_3,data=x99_split,na.action=na.exclude) + sc[,i] <- scale(residuals(mod,na.action=na.exclude)) + } + + colnames(sc) <- paste0(colnames(x99_split[,7:ncol(x99_split)]),"_Oreg") } -colnames(sc) <- paste0(colnames(x99_split[,7:ncol(x99_split)]),"_Oreg") - x_all <- data.frame(x99_split,sc) x_TD <- data.frame(x99_split,sc) %>% filter(study_group %in% c("Healthy Controls")) x_PS <- data.frame(x99_split,sc) %>% filter(study_group %in% c("Psychosis")) @@ -2480,7 +2501,7 @@ x_MD <- data.frame(x99_split,sc) %>% filter(study_group %in% c("Mood-Anx-BP")) # * all individual tests printed out by condition ---- # overall -pdf("data/outputs/scatters/CNB-CAT_test-retest_scatter_matrices_ALL_bytest_221003.pdf",height=9,width=12) +pdf("data/outputs/scatters/CNB-CAT_test-retest_scatter_matrices_ALL_bytest_221005.pdf",height=9,width=12) pairs.panels(x_all %>% dplyr::select(matches("adt_pc_Oreg|adt_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_all %>% dplyr::select(matches("aim_tot_Oreg|S_AIM.AIMTOT_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # aim # pairs.panels(x_all %>% dplyr::select(matches("cpf_cr_Oreg|cpf_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) @@ -2495,17 +2516,20 @@ pairs.panels(x_all %>% dplyr::select(matches("ddisc_sum_Oreg|ddisc.1.00.cat_defa pairs.panels(x_all %>% dplyr::select(matches("dscor_Oreg|S_DIGSYM.DSCOR_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # digsym pairs.panels(x_all %>% dplyr::select(matches("dsmemcr_Oreg|S_DIGSYM.DSMEMCR_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # digsym mem pairs.panels(x_all %>% dplyr::select(matches("edisc_sum_Oreg|edisc.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) +pairs.panels(x_all %>% filter(bblid %notin% c(22016,23463)) %>% dplyr::select(matches("edisc_sum_Oreg|edisc.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # pairs.panels(x_all %>% dplyr::select(matches("er40_cr_Oreg|er40_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_all %>% dplyr::select(matches("er40_cr_Oreg|er40_2_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # new, corrected er40 (er40v2) # pairs.panels(x_all %>% dplyr::select(matches("er40_emo_SMVE_Oreg|er40.2.00.cat_emotive_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # er40 split, emotive items, by general SMVE # pairs.panels(x_all %>% dplyr::select(matches("er40_noe_SMVE_Oreg|er40.2.00.cat_neutral_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # er40 split, neutral items, by general SMVE pairs.panels(x_all %>% dplyr::select(matches("gng_cr_Oreg|GNG60.GNG60_CR_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # gng +pairs.panels(x_all %>% filter(bblid !=91335) %>% dplyr::select(matches("gng_cr_Oreg|GNG60.GNG60_CR_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_all %>% dplyr::select(matches("medf_pc_Oreg|medf_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # pairs.panels(x_all %>% dplyr::select(matches("medf_dif_SMVE_Oreg|medf.1.00.cat_different_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # medf split, dif items, by general SMVE # pairs.panels(x_all %>% dplyr::select(matches("medf_same_SMVE_Oreg|medf.1.00.cat_same_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # medf split, same items, by general SMVE pairs.panels(x_all %>% dplyr::select(matches("plot_pc_Oreg|plot.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_all %>% dplyr::select(matches("pmat_pc_Oreg|pmat.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_all %>% dplyr::select(matches("pra_cr_Oreg|pra.1.00.d.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # pra +pairs.panels(x_all %>% filter(pra_cr!=0, bblid!=95116) %>% dplyr::select(matches("pra_cr_Oreg|pra.1.00.d.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # pra with pra_cr==0 removed pairs.panels(x_all %>% dplyr::select(matches("pvrt_cr_Oreg|pvrt.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_all %>% dplyr::select(matches("rdisc_sum_Oreg|rdisc.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_all %>% dplyr::select(matches("volt_cr_Oreg|volt_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) @@ -2515,7 +2539,7 @@ dev.off() # TD -pdf("data/outputs/scatters/CNB-CAT_test-retest_scatter_matrices_TD_bytest_221003.pdf",height=9,width=12) +pdf("data/outputs/scatters/CNB-CAT_test-retest_scatter_matrices_TD_bytest_221005.pdf",height=9,width=12) pairs.panels(x_TD %>% dplyr::select(matches("adt_pc_Oreg|adt_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_TD %>% dplyr::select(matches("aim_tot_Oreg|S_AIM.AIMTOT_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # aim # pairs.panels(x_TD %>% dplyr::select(matches("cpf_cr_Oreg|cpf_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) @@ -2530,17 +2554,20 @@ pairs.panels(x_TD %>% dplyr::select(matches("ddisc_sum_Oreg|ddisc.1.00.cat_defau pairs.panels(x_TD %>% dplyr::select(matches("dscor_Oreg|S_DIGSYM.DSCOR_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # digsym pairs.panels(x_TD %>% dplyr::select(matches("dsmemcr_Oreg|S_DIGSYM.DSMEMCR_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # digsym mem pairs.panels(x_TD %>% dplyr::select(matches("edisc_sum_Oreg|edisc.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) +pairs.panels(x_TD %>% filter(bblid %notin% c(22016,23463)) %>% dplyr::select(matches("edisc_sum_Oreg|edisc.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # pairs.panels(x_TD %>% dplyr::select(matches("er40_cr_Oreg|er40_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_TD %>% dplyr::select(matches("er40_cr_Oreg|er40_2_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # new, corrected er40 (er40v2) # pairs.panels(x_TD %>% dplyr::select(matches("er40_emo_SMVE_Oreg|er40.2.00.cat_emotive_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # er40 split, emotive items, by general SMVE # pairs.panels(x_TD %>% dplyr::select(matches("er40_noe_SMVE_Oreg|er40.2.00.cat_neutral_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # er40 split, neutral items, by general SMVE pairs.panels(x_TD %>% dplyr::select(matches("gng_cr_Oreg|GNG60.GNG60_CR_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # gng +pairs.panels(x_TD %>% filter(bblid !=91335) %>% dplyr::select(matches("gng_cr_Oreg|GNG60.GNG60_CR_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_TD %>% dplyr::select(matches("medf_pc_Oreg|medf_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # pairs.panels(x_TD %>% dplyr::select(matches("medf_dif_SMVE_Oreg|medf.1.00.cat_different_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # medf split, dif items, by general SMVE # pairs.panels(x_TD %>% dplyr::select(matches("medf_same_SMVE_Oreg|medf.1.00.cat_same_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # medf split, same items, by general SMVE pairs.panels(x_TD %>% dplyr::select(matches("plot_pc_Oreg|plot.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_TD %>% dplyr::select(matches("pmat_pc_Oreg|pmat.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_TD %>% dplyr::select(matches("pra_cr_Oreg|pra.1.00.d.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # pra +pairs.panels(x_TD %>% filter(pra_cr!=0, bblid!=95116) %>% dplyr::select(matches("pra_cr_Oreg|pra.1.00.d.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # pra with pra_cr==0 removed pairs.panels(x_TD %>% dplyr::select(matches("pvrt_cr_Oreg|pvrt.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_TD %>% dplyr::select(matches("rdisc_sum_Oreg|rdisc.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_TD %>% dplyr::select(matches("volt_cr_Oreg|volt_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) @@ -2550,72 +2577,78 @@ dev.off() # PS -pdf("data/outputs/scatters/CNB-CAT_test-retest_scatter_matrices_PS_bytest_220810.pdf",height=9,width=12) +pdf("data/outputs/scatters/CNB-CAT_test-retest_scatter_matrices_PS_bytest_221005.pdf",height=9,width=12) pairs.panels(x_PS %>% dplyr::select(matches("adt_pc_Oreg|adt_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_PS %>% dplyr::select(matches("aim_tot_Oreg|S_AIM.AIMTOT_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # aim -pairs.panels(x_PS %>% dplyr::select(matches("cpf_cr_Oreg|cpf_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) +# pairs.panels(x_PS %>% dplyr::select(matches("cpf_cr_Oreg|cpf_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_PS %>% dplyr::select(matches("cpf_cr_Oreg|cpf_2_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # new, corrected cpf (cpfv2) -pairs.panels(x_PS %>% dplyr::select(matches("cpf_t_SMVE_Oreg|cpf_2_t_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # new, corrected cpf (cpfv2) -pairs.panels(x_PS %>% dplyr::select(matches("cpf_f_SMVE_Oreg|cpf_2_f_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # new, corrected cpf (cpfv2) +# pairs.panels(x_PS %>% dplyr::select(matches("cpf_t_SMVE_Oreg|cpf_2_t_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # new, corrected cpf (cpfv2) +# pairs.panels(x_PS %>% dplyr::select(matches("cpf_f_SMVE_Oreg|cpf_2_f_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # new, corrected cpf (cpfv2) pairs.panels(x_PS %>% dplyr::select(matches("cpt_acc_Oreg|cpt_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # cpt pairs.panels(x_PS %>% dplyr::select(matches("cpw_cr_Oreg|cpw_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) -pairs.panels(x_PS %>% dplyr::select(matches("cpw_t_SMVE_Oreg|cpw.1.00.v1.cat_target_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) -pairs.panels(x_PS %>% dplyr::select(matches("cpw_f_SMVE_Oreg|cpw.1.00.v1.cat_foil_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) +# pairs.panels(x_PS %>% dplyr::select(matches("cpw_t_SMVE_Oreg|cpw.1.00.v1.cat_target_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) +# pairs.panels(x_PS %>% dplyr::select(matches("cpw_f_SMVE_Oreg|cpw.1.00.v1.cat_foil_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_PS %>% dplyr::select(matches("ddisc_sum_Oreg|ddisc.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_PS %>% dplyr::select(matches("dscor_Oreg|S_DIGSYM.DSCOR_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # digsym pairs.panels(x_PS %>% dplyr::select(matches("dsmemcr_Oreg|S_DIGSYM.DSMEMCR_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # digsym mem pairs.panels(x_PS %>% dplyr::select(matches("edisc_sum_Oreg|edisc.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) -pairs.panels(x_PS %>% dplyr::select(matches("er40_cr_Oreg|er40_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) +pairs.panels(x_PS %>% filter(bblid %notin% c(22016,23463)) %>% dplyr::select(matches("edisc_sum_Oreg|edisc.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) +# pairs.panels(x_PS %>% dplyr::select(matches("er40_cr_Oreg|er40_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_PS %>% dplyr::select(matches("er40_cr_Oreg|er40_2_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # new, corrected er40 (er40v2) -pairs.panels(x_PS %>% dplyr::select(matches("er40_emo_SMVE_Oreg|er40.2.00.cat_emotive_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # er40 split, emotive items, by general SMVE -pairs.panels(x_PS %>% dplyr::select(matches("er40_noe_SMVE_Oreg|er40.2.00.cat_neutral_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # er40 split, neutral items, by general SMVE +# pairs.panels(x_PS %>% dplyr::select(matches("er40_emo_SMVE_Oreg|er40.2.00.cat_emotive_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # er40 split, emotive items, by general SMVE +# pairs.panels(x_PS %>% dplyr::select(matches("er40_noe_SMVE_Oreg|er40.2.00.cat_neutral_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # er40 split, neutral items, by general SMVE pairs.panels(x_PS %>% dplyr::select(matches("gng_cr_Oreg|GNG60.GNG60_CR_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # gng +pairs.panels(x_PS %>% filter(bblid !=91335) %>% dplyr::select(matches("gng_cr_Oreg|GNG60.GNG60_CR_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_PS %>% dplyr::select(matches("medf_pc_Oreg|medf_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) -pairs.panels(x_PS %>% dplyr::select(matches("medf_dif_SMVE_Oreg|medf.1.00.cat_different_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # medf split, dif items, by general SMVE -pairs.panels(x_PS %>% dplyr::select(matches("medf_same_SMVE_Oreg|medf.1.00.cat_same_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # medf split, same items, by general SMVE +# pairs.panels(x_PS %>% dplyr::select(matches("medf_dif_SMVE_Oreg|medf.1.00.cat_different_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # medf split, dif items, by general SMVE +# pairs.panels(x_PS %>% dplyr::select(matches("medf_same_SMVE_Oreg|medf.1.00.cat_same_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # medf split, same items, by general SMVE pairs.panels(x_PS %>% dplyr::select(matches("plot_pc_Oreg|plot.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_PS %>% dplyr::select(matches("pmat_pc_Oreg|pmat.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_PS %>% dplyr::select(matches("pra_cr_Oreg|pra.1.00.d.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # pra +pairs.panels(x_PS %>% filter(pra_cr!=0, bblid!=95116) %>% dplyr::select(matches("pra_cr_Oreg|pra.1.00.d.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # pra with pra_cr==0 removed pairs.panels(x_PS %>% dplyr::select(matches("pvrt_cr_Oreg|pvrt.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_PS %>% dplyr::select(matches("rdisc_sum_Oreg|rdisc.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_PS %>% dplyr::select(matches("volt_cr_Oreg|volt_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) -pairs.panels(x_PS %>% dplyr::select(matches("volt_t_SMVE_Oreg|volt.1.00.v1.cat_targets_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) -pairs.panels(x_PS %>% dplyr::select(matches("volt_f_SMVE_Oreg|volt.1.00.v1.cat_foils_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) +# pairs.panels(x_PS %>% dplyr::select(matches("volt_t_SMVE_Oreg|volt.1.00.v1.cat_targets_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) +# pairs.panels(x_PS %>% dplyr::select(matches("volt_f_SMVE_Oreg|volt.1.00.v1.cat_foils_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) dev.off() # MD -pdf("data/outputs/scatters/CNB-CAT_test-retest_scatter_matrices_MD_bytest_220810.pdf",height=9,width=12) +pdf("data/outputs/scatters/CNB-CAT_test-retest_scatter_matrices_MD_bytest_221005.pdf",height=9,width=12) pairs.panels(x_MD %>% dplyr::select(matches("adt_pc_Oreg|adt_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_MD %>% dplyr::select(matches("aim_tot_Oreg|S_AIM.AIMTOT_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # aim -pairs.panels(x_MD %>% dplyr::select(matches("cpf_cr_Oreg|cpf_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) +# pairs.panels(x_MD %>% dplyr::select(matches("cpf_cr_Oreg|cpf_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_MD %>% dplyr::select(matches("cpf_cr_Oreg|cpf_2_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # new, corrected cpf (cpfv2) -pairs.panels(x_MD %>% dplyr::select(matches("cpf_t_SMVE_Oreg|cpf_2_t_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # new, corrected cpf (cpfv2) -pairs.panels(x_MD %>% dplyr::select(matches("cpf_f_SMVE_Oreg|cpf_2_f_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # new, corrected cpf (cpfv2) +# pairs.panels(x_MD %>% dplyr::select(matches("cpf_t_SMVE_Oreg|cpf_2_t_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # new, corrected cpf (cpfv2) +# pairs.panels(x_MD %>% dplyr::select(matches("cpf_f_SMVE_Oreg|cpf_2_f_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # new, corrected cpf (cpfv2) pairs.panels(x_MD %>% dplyr::select(matches("cpt_acc_Oreg|cpt_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # cpt pairs.panels(x_MD %>% dplyr::select(matches("cpw_cr_Oreg|cpw_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) -pairs.panels(x_MD %>% dplyr::select(matches("cpw_t_SMVE_Oreg|cpw.1.00.v1.cat_target_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) -pairs.panels(x_MD %>% dplyr::select(matches("cpw_f_SMVE_Oreg|cpw.1.00.v1.cat_foil_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) +# pairs.panels(x_MD %>% dplyr::select(matches("cpw_t_SMVE_Oreg|cpw.1.00.v1.cat_target_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) +# pairs.panels(x_MD %>% dplyr::select(matches("cpw_f_SMVE_Oreg|cpw.1.00.v1.cat_foil_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_MD %>% dplyr::select(matches("ddisc_sum_Oreg|ddisc.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_MD %>% dplyr::select(matches("dscor_Oreg|S_DIGSYM.DSCOR_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # digsym pairs.panels(x_MD %>% dplyr::select(matches("dsmemcr_Oreg|S_DIGSYM.DSMEMCR_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # digsym mem pairs.panels(x_MD %>% dplyr::select(matches("edisc_sum_Oreg|edisc.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) -pairs.panels(x_MD %>% dplyr::select(matches("er40_cr_Oreg|er40_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) +pairs.panels(x_MD %>% filter(bblid %notin% c(22016,23463)) %>% dplyr::select(matches("edisc_sum_Oreg|edisc.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) +# pairs.panels(x_MD %>% dplyr::select(matches("er40_cr_Oreg|er40_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_MD %>% dplyr::select(matches("er40_cr_Oreg|er40_2_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # new, corrected er40 (er40v2) -pairs.panels(x_MD %>% dplyr::select(matches("er40_emo_SMVE_Oreg|er40.2.00.cat_emotive_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # er40 split, emotive items, by general SMVE -pairs.panels(x_MD %>% dplyr::select(matches("er40_noe_SMVE_Oreg|er40.2.00.cat_neutral_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # er40 split, neutral items, by general SMVE +# pairs.panels(x_MD %>% dplyr::select(matches("er40_emo_SMVE_Oreg|er40.2.00.cat_emotive_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # er40 split, emotive items, by general SMVE +# pairs.panels(x_MD %>% dplyr::select(matches("er40_noe_SMVE_Oreg|er40.2.00.cat_neutral_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # er40 split, neutral items, by general SMVE pairs.panels(x_MD %>% dplyr::select(matches("gng_cr_Oreg|GNG60.GNG60_CR_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # gng +pairs.panels(x_MD %>% filter(bblid !=91335) %>% dplyr::select(matches("gng_cr_Oreg|GNG60.GNG60_CR_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_MD %>% dplyr::select(matches("medf_pc_Oreg|medf_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) -pairs.panels(x_MD %>% dplyr::select(matches("medf_dif_SMVE_Oreg|medf.1.00.cat_different_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # medf split, dif items, by general SMVE -pairs.panels(x_MD %>% dplyr::select(matches("medf_same_SMVE_Oreg|medf.1.00.cat_same_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # medf split, same items, by general SMVE +# pairs.panels(x_MD %>% dplyr::select(matches("medf_dif_SMVE_Oreg|medf.1.00.cat_different_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # medf split, dif items, by general SMVE +# pairs.panels(x_MD %>% dplyr::select(matches("medf_same_SMVE_Oreg|medf.1.00.cat_same_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # medf split, same items, by general SMVE pairs.panels(x_MD %>% dplyr::select(matches("plot_pc_Oreg|plot.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_MD %>% dplyr::select(matches("pmat_pc_Oreg|pmat.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_MD %>% dplyr::select(matches("pra_cr_Oreg|pra.1.00.d.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # pra +pairs.panels(x_MD %>% filter(pra_cr!=0, bblid!=95116) %>% dplyr::select(matches("pra_cr_Oreg|pra.1.00.d.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # pra with pra_cr==0 removed pairs.panels(x_MD %>% dplyr::select(matches("pvrt_cr_Oreg|pvrt.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_MD %>% dplyr::select(matches("rdisc_sum_Oreg|rdisc.1.00.cat_default_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_MD %>% dplyr::select(matches("volt_cr_Oreg|volt_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) -pairs.panels(x_MD %>% dplyr::select(matches("volt_t_SMVE_Oreg|volt.1.00.v1.cat_targets_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) -pairs.panels(x_MD %>% dplyr::select(matches("volt_f_SMVE_Oreg|volt.1.00.v1.cat_foils_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) +# pairs.panels(x_MD %>% dplyr::select(matches("volt_t_SMVE_Oreg|volt.1.00.v1.cat_targets_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) +# pairs.panels(x_MD %>% dplyr::select(matches("volt_f_SMVE_Oreg|volt.1.00.v1.cat_foils_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) dev.off() @@ -2623,20 +2656,20 @@ dev.off() # for AdaptiveV vs Extralong (XL) comparison # overall -pdf("data/outputs/scatters/CNB-CAT_test-retest_scatter_matrices_ALL_bytest_forXL_221003.pdf",height=9,width=12) +pdf("data/outputs/scatters/CNB-CAT_test-retest_scatter_matrices_ALL_bytest_forXL_221005.pdf",height=9,width=12) pairs.panels(x_xl %>% dplyr::select(matches("adt_pc|adt_cat")),lm=TRUE,scale=TRUE,ci=TRUE) -pairs.panels(x_xl %>% dplyr::select(matches("aim_tot_Oreg|S_AIM.AIMTOT_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # aim -pairs.panels(x_xl %>% dplyr::select(matches("cpf_cr|cpf_cat")),lm=TRUE,scale=TRUE,ci=TRUE) +pairs.panels(x_xl %>% dplyr::select(matches("aim_tot|S_AIM.AIMTOT")),lm=TRUE,scale=TRUE,ci=TRUE) # aim +# pairs.panels(x_xl %>% dplyr::select(matches("cpf_cr|cpf_cat")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_xl %>% dplyr::select(matches("cpf_cr|cpf_2_cat")),lm=TRUE,scale=TRUE,ci=TRUE) # new, corrected cpf (cpfv2) -pairs.panels(x_xl %>% dplyr::select(matches("cpt_acc_Oreg|cpt_cat_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # cpt +pairs.panels(x_xl %>% dplyr::select(matches("cpt_acc|cpt_cat")),lm=TRUE,scale=TRUE,ci=TRUE) # cpt pairs.panels(x_xl %>% dplyr::select(matches("cpw_cr|cpw_cat")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_xl %>% dplyr::select(matches("ddisc_sum|ddisc.1.00.cat_default")),lm=TRUE,scale=TRUE,ci=TRUE) -pairs.panels(x_xl %>% dplyr::select(matches("dscor_Oreg|S_DIGSYM.DSCOR_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # digsym -pairs.panels(x_xl %>% dplyr::select(matches("dsmemcr_Oreg|S_DIGSYM.DSMEMCR_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # digsym mem +pairs.panels(x_xl %>% dplyr::select(matches("dscor|S_DIGSYM.DSCOR")),lm=TRUE,scale=TRUE,ci=TRUE) # digsym +pairs.panels(x_xl %>% dplyr::select(matches("dsmemcr|S_DIGSYM.DSMEMCR")),lm=TRUE,scale=TRUE,ci=TRUE) # digsym mem pairs.panels(x_xl %>% dplyr::select(matches("edisc_sum|edisc.1.00.cat_default")),lm=TRUE,scale=TRUE,ci=TRUE) -pairs.panels(x_xl %>% dplyr::select(matches("er40_cr|er40_cat")),lm=TRUE,scale=TRUE,ci=TRUE) +# pairs.panels(x_xl %>% dplyr::select(matches("er40_cr|er40_cat")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_xl %>% dplyr::select(matches("er40_cr|er40_2_cat")),lm=TRUE,scale=TRUE,ci=TRUE) # new, corrected er40 (er40v2) -pairs.panels(x_xl %>% dplyr::select(matches("gng_cr_Oreg|GNG60.GNG60_CR_Oreg")),lm=TRUE,scale=TRUE,ci=TRUE) # gng +pairs.panels(x_xl %>% dplyr::select(matches("gng_cr|GNG60.GNG60_CR")),lm=TRUE,scale=TRUE,ci=TRUE) # gng pairs.panels(x_xl %>% dplyr::select(matches("medf_pc|medf_cat")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_xl %>% dplyr::select(matches("plot_pc|plot.1.00.cat_default")),lm=TRUE,scale=TRUE,ci=TRUE) pairs.panels(x_xl %>% dplyr::select(matches("pmat_pc|pmat.1.00.cat_default")),lm=TRUE,scale=TRUE,ci=TRUE)