forked from XiaobingSuper/examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
68 lines (55 loc) · 2.52 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import torch
import torch.optim as optim
import torch.nn.functional as F
from torchvision import datasets, transforms
def train(rank, args, model, device, dataloader_kwargs):
torch.manual_seed(args.seed + rank)
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, num_workers=1,
**dataloader_kwargs)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
for epoch in range(1, args.epochs + 1):
train_epoch(epoch, args, model, device, train_loader, optimizer)
def test(args, model, device, dataloader_kwargs):
torch.manual_seed(args.seed)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, num_workers=1,
**dataloader_kwargs)
test_epoch(model, device, test_loader)
def train_epoch(epoch, args, model, device, data_loader, optimizer):
model.train()
pid = os.getpid()
for batch_idx, (data, target) in enumerate(data_loader):
optimizer.zero_grad()
output = model(data.to(device))
loss = F.nll_loss(output, target.to(device))
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('{}\tTrain Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
pid, epoch, batch_idx * len(data), len(data_loader.dataset),
100. * batch_idx / len(data_loader), loss.item()))
def test_epoch(model, device, data_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in data_loader:
output = model(data.to(device))
test_loss += F.nll_loss(output, target.to(device), reduction='sum').item() # sum up batch loss
pred = output.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.to(device)).sum().item()
test_loss /= len(data_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(data_loader.dataset),
100. * correct / len(data_loader.dataset)))