-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_net.py
284 lines (244 loc) · 10.2 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import os
import sys
from collections import OrderedDict
import torch
from torch.nn.parallel import DistributedDataParallel
import time
import datetime
from fvcore.common.timer import Timer
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer, PeriodicCheckpointer
from detectron2.config import get_cfg
from detectron2.data import (
MetadataCatalog,
build_detection_test_loader,
)
from detectron2.engine import default_argument_parser, default_setup, launch
from detectron2.evaluation import (
inference_on_dataset,
print_csv_format,
LVISEvaluator,
COCOEvaluator,
)
from detectron2.modeling import build_model
from detectron2.solver import build_lr_scheduler, build_optimizer
from detectron2.utils.events import (
CommonMetricPrinter,
EventStorage,
JSONWriter,
TensorboardXWriter,
)
from detectron2.data.dataset_mapper import DatasetMapper
from detectron2.data.build import build_detection_train_loader
from detectron2.utils.logger import setup_logger
from torch.cuda.amp import GradScaler
sys.path.insert(0, 'third_party/CenterNet2/projects/CenterNet2/')
from centernet.config import add_centernet_config
sys.path.insert(0, 'third_party/Deformable-DETR')
from detic.config import add_detic_config
from detic.data.custom_build_augmentation import build_custom_augmentation
from detic.data.custom_dataset_dataloader import build_custom_train_loader
from detic.data.custom_dataset_mapper import CustomDatasetMapper, DetrDatasetMapper
from detic.custom_solver import build_custom_optimizer
from detic.evaluation.oideval import OIDEvaluator
from detic.evaluation.custom_coco_eval import CustomCOCOEvaluator
from detic.modeling.utils import reset_cls_test
logger = logging.getLogger("detectron2")
def do_test(cfg, model):
results = OrderedDict()
for d, dataset_name in enumerate(cfg.DATASETS.TEST):
if cfg.MODEL.RESET_CLS_TESTS:
reset_cls_test(
model,
cfg.MODEL.TEST_CLASSIFIERS[d],
cfg.MODEL.TEST_NUM_CLASSES[d])
# mapper = None if cfg.INPUT.TEST_INPUT_TYPE == 'default' \
# else DatasetMapper(
# cfg, False, augmentations=build_custom_augmentation(cfg, False))
mapper = DatasetMapper(cfg, False, augmentations=build_custom_augmentation(cfg, False))
data_loader = build_detection_test_loader(cfg, dataset_name, mapper=mapper)
output_folder = os.path.join(
cfg.OUTPUT_DIR, "inference_{}".format(dataset_name))
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
if evaluator_type == "lvis" or cfg.GEN_PSEDO_LABELS:
evaluator = LVISEvaluator(dataset_name, cfg, True, output_folder)
elif evaluator_type == 'coco':
if dataset_name == 'coco_generalized_zeroshot_val':
# Additionally plot mAP for 'seen classes' and 'unseen classes'
evaluator = CustomCOCOEvaluator(dataset_name, cfg, True, output_folder)
else:
evaluator = COCOEvaluator(dataset_name, cfg, True, output_folder)
elif evaluator_type == 'oid':
evaluator = OIDEvaluator(dataset_name, cfg, True, output_folder)
else:
assert 0, evaluator_type
results[dataset_name] = inference_on_dataset(
model, data_loader, evaluator)
if comm.is_main_process():
logger.info("Evaluation results for {} in csv format:".format(
dataset_name))
print_csv_format(results[dataset_name])
if len(results) == 1:
results = list(results.values())[0]
return results
def do_train(cfg, model, resume=False):
model.train()
if cfg.SOLVER.USE_CUSTOM_SOLVER:
optimizer = build_custom_optimizer(cfg, model)
else:
assert cfg.SOLVER.OPTIMIZER == 'SGD'
assert cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE != 'full_model'
assert cfg.SOLVER.BACKBONE_MULTIPLIER == 1.
optimizer = build_optimizer(cfg, model)
scheduler = build_lr_scheduler(cfg, optimizer)
checkpointer = DetectionCheckpointer(
model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=scheduler
)
start_iter = checkpointer.resume_or_load(
cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1
if not resume or (not os.path.exists(os.path.join(cfg.OUTPUT_DIR, "last_checkpoint"))):
start_iter = 0
max_iter = cfg.SOLVER.MAX_ITER if cfg.SOLVER.TRAIN_ITER < 0 else cfg.SOLVER.TRAIN_ITER
periodic_checkpointer = PeriodicCheckpointer(
checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter
)
writers = (
[
CommonMetricPrinter(max_iter),
JSONWriter(os.path.join(cfg.OUTPUT_DIR, "metrics.json")),
TensorboardXWriter(cfg.OUTPUT_DIR),
]
if comm.is_main_process()
else []
)
use_custom_mapper = cfg.WITH_IMAGE_LABELS
MapperClass = CustomDatasetMapper if use_custom_mapper else DatasetMapper
mapper = MapperClass(cfg, True) if cfg.INPUT.CUSTOM_AUG == '' else \
DetrDatasetMapper(cfg, True) if cfg.INPUT.CUSTOM_AUG == 'DETR' else \
MapperClass(cfg, True, augmentations=build_custom_augmentation(cfg, True))
if cfg.DATALOADER.SAMPLER_TRAIN in ['TrainingSampler', 'RepeatFactorTrainingSampler']:
data_loader = build_detection_train_loader(cfg, mapper=mapper)
else:
data_loader = build_custom_train_loader(cfg, mapper=mapper)
if cfg.FP16:
scaler = GradScaler()
logger.info("Starting training from iteration {}".format(start_iter))
with EventStorage(start_iter) as storage:
step_timer = Timer()
data_timer = Timer()
start_time = time.perf_counter()
for data, iteration in zip(data_loader, range(start_iter, max_iter)):
data_time = data_timer.seconds()
storage.put_scalars(data_time=data_time)
step_timer.reset()
iteration = iteration + 1
storage.step()
loss_dict = model(data, iteration)
losses = sum(
loss for k, loss in loss_dict.items())
assert torch.isfinite(losses).all(), loss_dict
# loss_dict_reduced = {k: v.item() \
# for k, v in comm.reduce_dict(loss_dict).items()}
# losses_reduced = sum(loss for loss in loss_dict_reduced.values())
# if comm.is_main_process():
# storage.put_scalars(
# total_loss=losses_reduced, **loss_dict_reduced)
if comm.is_main_process():
storage.put_scalars(
total_loss=losses, **loss_dict)
optimizer.zero_grad()
if cfg.FP16:
scaler.scale(losses).backward()
scaler.step(optimizer)
scaler.update()
else:
losses.backward()
optimizer.step()
storage.put_scalar(
"lr", optimizer.param_groups[0]["lr"], smoothing_hint=False)
step_time = step_timer.seconds()
storage.put_scalars(time=step_time)
data_timer.reset()
scheduler.step()
if (cfg.TEST.EVAL_PERIOD > 0
and iteration % cfg.TEST.EVAL_PERIOD == 0
and iteration != max_iter):
do_test(cfg, model)
comm.synchronize()
cfg["iteration"] = iteration
if iteration > 0 and \
(iteration % 1000 == 0 or iteration == max_iter):
periodic_checkpointer.save(str(iteration).zfill(8) + "_last_checkpoint", **cfg)
# periodic_checkpointer.save("last_checkpoint", **cfg)
if iteration - start_iter > 5 and \
(iteration % 20 == 0 or iteration == max_iter):
for writer in writers:
writer.write()
periodic_checkpointer.step(iteration)
total_time = time.perf_counter() - start_time
logger.info(
"Total training time: {}".format(
str(datetime.timedelta(seconds=int(total_time)))))
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_centernet_config(cfg)
add_detic_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
if '/auto' in cfg.OUTPUT_DIR:
file_name = os.path.basename(args.config_file)[:-5]
cfg.OUTPUT_DIR = cfg.OUTPUT_DIR.replace('/auto', '/{}'.format(file_name))
logger.info('OUTPUT_DIR: {}'.format(cfg.OUTPUT_DIR))
cfg.freeze()
default_setup(cfg, args)
setup_logger(output=cfg.OUTPUT_DIR, \
distributed_rank=comm.get_rank(), name="detic")
return cfg
def main(args):
cfg = setup(args)
model = build_model(cfg)
logger.info("Model:\n{}".format(model))
if args.eval_only:
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
return do_test(cfg, model)
distributed = comm.get_world_size() > 1
if distributed:
model = DistributedDataParallel(
model, device_ids=[comm.get_local_rank()], broadcast_buffers=False,
find_unused_parameters=cfg.FIND_UNUSED_PARAM
)
do_train(cfg, model, resume=args.resume)
return do_test(cfg, model)
if __name__ == "__main__":
args = default_argument_parser()
args = args.parse_args()
if args.num_machines == 1:
args.dist_url = 'tcp://127.0.0.1:{}'.format(
torch.randint(11111, 60000, (1,))[0].item())
else:
if args.dist_url == 'host':
args.dist_url = 'tcp://{}:12345'.format(
os.environ['SLURM_JOB_NODELIST'])
elif not args.dist_url.startswith('tcp'):
tmp = os.popen(
'echo $(scontrol show job {} | grep BatchHost)'.format(
args.dist_url)
).read()
tmp = tmp[tmp.find('=') + 1: -1]
args.dist_url = 'tcp://{}:12345'.format(tmp)
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)