-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_cifar_sweep.sh
30 lines (20 loc) · 1.36 KB
/
run_cifar_sweep.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#!/bin/bash
#SBATCH -n 1 # Number of cores
#SBATCH -N 1 # Ensure that all cores are on one machine
#SBATCH -t 0-10:00 # Runtime in D-HH:MM, minimum of 10 minutes
#SBATCH -p kempner_h100 # Partition to submit to
#SBATCH --account kempner_pehlevan_lab
#SBATCH --cpus-per-gpu=1
#SBATCH --gres=gpu:1
#SBATCH --mem-per-gpu=80G
#SBATCH -o log_files/myoutput_%j.out # File to which STDOUT will be written, %j inserts jobid
#SBATCH -e log_files/myerrors_%j.err # File to which STDERR will be written, %j inserts jobid
module load cuda/12.2.0-fasrc01
module load cudnn/8.9.2.26_cuda12-fasrc01
module load Mambaforge/22.11.1-fasrc01
#mamba activate scaling_laws_mamba
nvidia-smi
## THIS SWEEP USED IN THE PAPER
#/n/home08/bbordelon/.conda/envs/flax/bin/python train_vit_cifar.py --save_model --gamma_zero 0.1 --width 16 --heads 16 --depth 32 --beta 4.0 --scale_exp 1.0 --steps 75000 --lr 0.2 --batch_size 64
/n/home08/bbordelon/.conda/envs/flax/bin/python train_vit_vary_depth_cifar.py --save_model --gamma_zero 0.1 --width 8 --heads 8 --depth 32 --depth_exp 1.0 --beta 6.0 --scale_exp 1.0 --steps 500000 --lr 0.2 --batch_size 64
#/n/home08/bbordelon/.conda/envs/flax/bin/python train_vit_vary_depth_cifar.py --save_model --gamma_zero 0.1 --width 16 --heads 16 --depth 64 --beta 4.0 --scale_exp 0.5 --depth_exp 0.5 --steps 75000 --lr 0.2 --batch_size 64