-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlane_thresholding_video.py
74 lines (64 loc) · 2.44 KB
/
lane_thresholding_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import cv2
import matplotlib.pyplot as plt
import numpy as np
print(cv2.__version__)
def region_of_interest(canny):
height = canny.shape[0]
width = canny.shape[1]
mask = np.zeros_like(canny)
poly = np.array([[ # Polígono para fazer a máscara (feito sob medida)
(0, height),
(30, 210),
(200, 205),
(width, 250),
(width, height), ]], np.int32)
cv2.fillPoly(mask, poly, 255) # return none --> preenche a região
# Ou exclusivo para ignorar oq estiver fora da mask
masked_image = cv2.bitwise_and(canny, mask)
return masked_image
# The problem is with my video?
s = 1
cap = cv2.VideoCapture("pista2.mp4") # colocar o vídeo
while(cap.isOpened()):
ret, pista = cap.read() # Iniciando video
print(f"frame {s} ")
s = s+1
gray = cv2.cvtColor(pista, cv2.COLOR_BGR2GRAY) # transforma para cinza
blur4 = cv2.GaussianBlur(gray, (9, 9), 0) # aplicar blur
# aplicar canny edges detector (um conjunto de operações)
canny4 = cv2.Canny(blur4, 50, 150)
# mascarar a região de interesse(na imagem foi feito no olho)
a = region_of_interest(canny4)
kernel = np.ones((3, 3), np.uint8)
# Suavizar e juntar as linhas
opening = cv2.morphologyEx(a, cv2.MORPH_CLOSE, kernel, iterations=5)
linhas = cv2.HoughLinesP(opening, 2, np.pi/180, 100,
np.array([]), minLineLength=15, maxLineGap=10)
# line_fit = []
# if linhas is not None:
# for linha in linhas:
# for x1, y1, x2, y2 in linha:
# fit = np.polyfit((x1, x2), (y1, y2), 1)
# slope = fit[0]
# intercept = fit[1]
# line_fit.append((slope, intercept))
# reta_media = np.average(line_fit, axis=0)
# slope, intercept = reta_media
# y1 = 350 # opening.shape[0]
# y2 = int(y1*3/5)
# x1 = int((y1-intercept)/slope)
# x2 = int((y2-intercept)/slope)
# coord = [x1, x2, y1, y2]
line_image = np.zeros_like(pista)
if linhas is not None:
for linha in linhas:
for x1, y1, x2, y2 in linha:
line_image = cv2.line(
line_image, (x1, y1), (x2, y2), (255, 0, 0), 3)
# Can iterate over the image to increase the number of lines!
imagem = cv2.addWeighted(pista, 0.8, line_image, 1, 1)
cv2.imshow('resultado', imagem)
if cv2.waitKey(20) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()