-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkmeans_video.py
81 lines (67 loc) · 2.75 KB
/
kmeans_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import numpy as np
import cv2
import matplotlib.pyplot as plt
import os
def region_of_interest(img):
height = img.shape[0]
width = img.shape[1]
mask = np.ones_like(img)*255
poly = np.array([[ # Polígono para fazer a máscara (feito sob medida da)
(0, 0),
(width, 0),
(width, 210),
(0, 210), ]], np.int32)
masked = cv2.fillPoly(mask, poly, 0) # return none --> preenche a região
# Ou exclusivo para ignorar oq estiver fora da mask
masked_image = cv2.bitwise_and(img, mask)
return masked_image
cap = cv2.VideoCapture("pista2.MP4")
# "C://Users//Paulo Rodrigues//Desktop//Self-Driving Cars Course//test2.mp4")
# print("passou")
while(cap.isOpened()):
# frame by frame of video
ret, pista = cap.read() # creating empty image of same size
image = cv2.GaussianBlur(pista, (15, 15), 0)
height, width, no_use = image.shape
# Fazer uma cópia das dimensões da imagem
empty_img = np.zeros((height, width), np.uint8)
# APPLY K-MEANS CLUSTERING:
Z = image.reshape((-1, 3)) # flatten the image
# need to convert to np.float32
Z = np.float32(Z)
# define criteria,
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER,
8, 1.0) # type, max iteration, epsilon
K = 4 # number of clusters required(K) -- Episilon = required accuracy
flags = cv2.KMEANS_RANDOM_CENTERS
ret, label, center = cv2.kmeans(
Z, K, None, criteria, 8, flags) # apply kmeans()
# Args: Attempts - Number of initializations to get the best compactiness
# Flags: can be cv2.KMEANS_PP_CENTERS or cv2.KMEANS_RANDOM_CENTERS
# OUTPUTS: Compactiness d^2 of the centers , label array, centers
# Now convert back into uint8, and make original image # Reconstruct image
center = np.uint8(center)
res = center[label.flatten()] # Reconstruct the image data
res2 = res.reshape((image.shape))
# CONVERTED TO A LUV IMAGE AND MADE EMPTY IMAGE, A MASK
blur = cv2.GaussianBlur(res2, (15, 15), 0)
kernel = np.ones((3, 3), np.uint8)
blur = cv2.morphologyEx(blur, cv2.MORPH_CLOSE, kernel, iterations=3)
gray = cv2.cvtColor(blur, cv2.COLOR_RGB2GRAY)
LUV = cv2.cvtColor(blur, cv2.COLOR_RGB2LUV)
l = LUV[:, :, 0]
v1 = l > 80
v2 = l < 150
value_final = v1 & v2
empty_img[value_final] = 255
empty_img[LUV[:, :100, :]] = 0
final_masked = cv2.line(empty_img, (40, height), (400, height), 255, 120)
final_mask = region_of_interest(final_masked)
cv2.namedWindow('original', cv2.WINDOW_NORMAL)
cv2.imshow('original', pista)
cv2.namedWindow('tried_extraction', cv2.WINDOW_NORMAL)
cv2.imshow('tried_extraction', final_mask)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()