-
Notifications
You must be signed in to change notification settings - Fork 31
/
dkm.py
759 lines (701 loc) · 27.7 KB
/
dkm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
import math
import os
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
from dkm.utils import get_tuple_transform_ops
from einops import rearrange
from dkm.utils.local_correlation import local_correlation
class ConvRefiner(nn.Module):
def __init__(
self,
in_dim=6,
hidden_dim=16,
out_dim=2,
dw=False,
kernel_size=5,
hidden_blocks=3,
displacement_emb = None,
displacement_emb_dim = None,
local_corr_radius = None,
corr_in_other = None,
no_support_fm = False,
):
super().__init__()
self.block1 = self.create_block(
in_dim, hidden_dim, dw=dw, kernel_size=kernel_size
)
self.hidden_blocks = nn.Sequential(
*[
self.create_block(
hidden_dim,
hidden_dim,
dw=dw,
kernel_size=kernel_size,
)
for hb in range(hidden_blocks)
]
)
self.out_conv = nn.Conv2d(hidden_dim, out_dim, 1, 1, 0)
if displacement_emb:
self.has_displacement_emb = True
self.disp_emb = nn.Conv2d(2,displacement_emb_dim,1,1,0)
else:
self.has_displacement_emb = False
self.local_corr_radius = local_corr_radius
self.corr_in_other = corr_in_other
self.no_support_fm = no_support_fm
def create_block(
self,
in_dim,
out_dim,
dw=False,
kernel_size=5,
):
num_groups = 1 if not dw else in_dim
if dw:
assert (
out_dim % in_dim == 0
), "outdim must be divisible by indim for depthwise"
conv1 = nn.Conv2d(
in_dim,
out_dim,
kernel_size=kernel_size,
stride=1,
padding=kernel_size // 2,
groups=num_groups,
)
norm = nn.BatchNorm2d(out_dim)
relu = nn.ReLU(inplace=True)
conv2 = nn.Conv2d(out_dim, out_dim, 1, 1, 0)
return nn.Sequential(conv1, norm, relu, conv2)
def forward(self, x, y, flow):
"""Computes the relative refining displacement in pixels for a given image x,y and a coarse flow-field between them
Args:
x ([type]): [description]
y ([type]): [description]
flow ([type]): [description]
Returns:
[type]: [description]
"""
device = x.device
b,c,hs,ws = x.shape
with torch.no_grad():
x_hat = F.grid_sample(y, flow.permute(0, 2, 3, 1), align_corners=False)
if self.has_displacement_emb:
query_coords = torch.meshgrid(
(
torch.linspace(-1 + 1 / hs, 1 - 1 / hs, hs, device=device),
torch.linspace(-1 + 1 / ws, 1 - 1 / ws, ws, device=device),
)
)
query_coords = torch.stack((query_coords[1], query_coords[0]))
query_coords = query_coords[None].expand(b, 2, hs, ws)
in_displacement = flow-query_coords
emb_in_displacement = self.disp_emb(in_displacement)
if self.local_corr_radius:
#TODO: should corr have gradient?
if self.corr_in_other:
# Corr in other means take a kxk grid around the predicted coordinate in other image
local_corr = local_correlation(x,y,local_radius=self.local_corr_radius,flow = flow)
else:
# Otherwise we use the warp to sample in the first image
# This is actually different operations, especially for large viewpoint changes
local_corr = local_correlation(x, x_hat, local_radius=self.local_corr_radius,)
if self.no_support_fm:
x_hat = torch.zeros_like(x)
d = torch.cat((x, x_hat, emb_in_displacement, local_corr), dim=1)
else:
d = torch.cat((x, x_hat, emb_in_displacement), dim=1)
else:
if self.no_support_fm:
x_hat = torch.zeros_like(x)
d = torch.cat((x, x_hat), dim=1)
d = self.block1(d)
d = self.hidden_blocks(d)
d = self.out_conv(d)
certainty, displacement = d[:, :-2], d[:, -2:]
return certainty, displacement
class CosKernel(nn.Module): # similar to softmax kernel
def __init__(self, T, learn_temperature=False):
super().__init__()
self.learn_temperature = learn_temperature
if self.learn_temperature:
self.T = nn.Parameter(torch.tensor(T))
else:
self.T = T
def __call__(self, x, y, eps=1e-6):
c = torch.einsum("bnd,bmd->bnm", x, y) / (
x.norm(dim=-1)[..., None] * y.norm(dim=-1)[:, None] + eps
)
if self.learn_temperature:
T = self.T.abs() + 0.01
else:
T = torch.tensor(self.T, device=c.device)
K = ((c - 1.0) / T).exp()
return K
class CAB(nn.Module):
def __init__(self, in_channels, out_channels):
super(CAB, self).__init__()
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.conv1 = nn.Conv2d(
in_channels, out_channels, kernel_size=1, stride=1, padding=0
)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2d(
out_channels, out_channels, kernel_size=1, stride=1, padding=0
)
self.sigmod = nn.Sigmoid()
def forward(self, x):
x1, x2 = x # high, low (old, new)
x = torch.cat([x1, x2], dim=1)
x = self.global_pooling(x)
x = self.conv1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.sigmod(x)
x2 = x * x2
res = x2 + x1
return res
class RRB(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3):
super(RRB, self).__init__()
self.conv1 = nn.Conv2d(
in_channels, out_channels, kernel_size=1, stride=1, padding=0
)
self.conv2 = nn.Conv2d(
out_channels,
out_channels,
kernel_size=kernel_size,
stride=1,
padding=kernel_size // 2,
)
self.relu = nn.ReLU()
self.bn = nn.BatchNorm2d(out_channels)
self.conv3 = nn.Conv2d(
out_channels,
out_channels,
kernel_size=kernel_size,
stride=1,
padding=kernel_size // 2,
)
def forward(self, x):
x = self.conv1(x)
res = self.conv2(x)
res = self.bn(res)
res = self.relu(res)
res = self.conv3(res)
return self.relu(x + res)
class DFN(nn.Module):
def __init__(
self,
internal_dim,
feat_input_modules,
pred_input_modules,
rrb_d_dict,
cab_dict,
rrb_u_dict,
use_global_context=False,
global_dim=None,
terminal_module=None,
upsample_mode="bilinear",
align_corners=False,
):
super().__init__()
if use_global_context:
assert (
global_dim is not None
), "Global dim must be provided when using global context"
self.align_corners = align_corners
self.internal_dim = internal_dim
self.feat_input_modules = feat_input_modules
self.pred_input_modules = pred_input_modules
self.rrb_d = rrb_d_dict
self.cab = cab_dict
self.rrb_u = rrb_u_dict
self.use_global_context = use_global_context
if use_global_context:
self.global_to_internal = nn.Conv2d(global_dim, self.internal_dim, 1, 1, 0)
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.terminal_module = (
terminal_module if terminal_module is not None else nn.Identity()
)
self.upsample_mode = upsample_mode
self._scales = [int(key) for key in self.terminal_module.keys()]
def scales(self):
return self._scales.copy()
def forward(self, embeddings, feats, context, key):
feats = self.feat_input_modules[str(key)](feats)
embeddings = torch.cat([feats, embeddings], dim=1)
embeddings = self.rrb_d[str(key)](embeddings)
context = self.cab[str(key)]([context, embeddings])
context = self.rrb_u[str(key)](context)
preds = self.terminal_module[str(key)](context)
pred_coord = preds[:, -2:]
pred_certainty = preds[:, :-2]
return pred_coord, pred_certainty, context
class GP(nn.Module):
def __init__(
self,
kernel,
T=1,
learn_temperature=False,
only_attention=False,
gp_dim=64,
basis="fourier",
covar_size=5,
only_nearest_neighbour=False,
sigma_noise=0.1,
no_cov=False,
predict_features = False,
):
super().__init__()
self.K = kernel(T=T, learn_temperature=learn_temperature)
self.sigma_noise = sigma_noise
self.covar_size = covar_size
self.pos_conv = torch.nn.Conv2d(2, gp_dim, 1, 1)
self.only_attention = only_attention
self.only_nearest_neighbour = only_nearest_neighbour
self.basis = basis
self.no_cov = no_cov
self.dim = gp_dim
self.predict_features = predict_features
def get_local_cov(self, cov):
K = self.covar_size
b, h, w, h, w = cov.shape
hw = h * w
cov = F.pad(cov, 4 * (K // 2,)) # pad v_q
delta = torch.stack(
torch.meshgrid(
torch.arange(-(K // 2), K // 2 + 1), torch.arange(-(K // 2), K // 2 + 1)
),
dim=-1,
)
positions = torch.stack(
torch.meshgrid(
torch.arange(K // 2, h + K // 2), torch.arange(K // 2, w + K // 2)
),
dim=-1,
)
neighbours = positions[:, :, None, None, :] + delta[None, :, :]
points = torch.arange(hw)[:, None].expand(hw, K**2)
local_cov = cov.reshape(b, hw, h + K - 1, w + K - 1)[
:,
points.flatten(),
neighbours[..., 0].flatten(),
neighbours[..., 1].flatten(),
].reshape(b, h, w, K**2)
return local_cov
def reshape(self, x):
return rearrange(x, "b d h w -> b (h w) d")
def project_to_basis(self, x):
if self.basis == "fourier":
return torch.cos(8 * math.pi * self.pos_conv(x))
elif self.basis == "linear":
return self.pos_conv(x)
else:
raise ValueError(
"No other bases other than fourier and linear currently supported in public release"
)
def get_pos_enc(self, y):
b, c, h, w = y.shape
coarse_coords = torch.meshgrid(
(
torch.linspace(-1 + 1 / h, 1 - 1 / h, h, device=y.device),
torch.linspace(-1 + 1 / w, 1 - 1 / w, w, device=y.device),
)
)
coarse_coords = torch.stack((coarse_coords[1], coarse_coords[0]), dim=-1)[
None
].expand(b, h, w, 2)
coarse_coords = rearrange(coarse_coords, "b h w d -> b d h w")
coarse_embedded_coords = self.project_to_basis(coarse_coords)
return coarse_embedded_coords
def forward(self, x, y, **kwargs):
b, c, h1, w1 = x.shape
b, c, h2, w2 = y.shape
f = self.get_pos_enc(y)
if self.predict_features:
f = f + y[:,:self.dim] # Stupid way to predict features
b, d, h2, w2 = f.shape
#assert x.shape == y.shape
x, y, f = self.reshape(x), self.reshape(y), self.reshape(f)
K_xx = self.K(x, x)
K_yy = self.K(y, y)
K_xy = self.K(x, y)
K_yx = K_xy.permute(0, 2, 1)
sigma_noise = self.sigma_noise * torch.eye(h2 * w2, device=x.device)[None, :, :]
# Due to https://github.com/pytorch/pytorch/issues/16963 annoying warnings, remove batch if N large
if len(K_yy[0]) > 2000:
K_yy_inv = torch.cat([torch.linalg.inv(K_yy[k:k+1] + sigma_noise[k:k+1]) for k in range(b)])
else:
K_yy_inv = torch.linalg.inv(K_yy + sigma_noise)
mu_x = K_xy.matmul(K_yy_inv.matmul(f))
mu_x = rearrange(mu_x, "b (h w) d -> b d h w", h=h1, w=w1)
if not self.no_cov:
cov_x = K_xx - K_xy.matmul(K_yy_inv.matmul(K_yx))
cov_x = rearrange(cov_x, "b (h w) (r c) -> b h w r c", h=h1, w=w1, r=h1, c=w1)
local_cov_x = self.get_local_cov(cov_x)
local_cov_x = rearrange(local_cov_x, "b h w K -> b K h w")
gp_feats = torch.cat((mu_x, local_cov_x), dim=1)
else:
gp_feats = mu_x
return gp_feats
class Encoder(nn.Module):
def __init__(self, resnet):
super().__init__()
self.resnet = resnet
def forward(self, x):
x0 = x
b, c, h, w = x.shape
x = self.resnet.conv1(x)
x = self.resnet.bn1(x)
x1 = self.resnet.relu(x)
x = self.resnet.maxpool(x1)
x2 = self.resnet.layer1(x)
x3 = self.resnet.layer2(x2)
x4 = self.resnet.layer3(x3)
x5 = self.resnet.layer4(x4)
feats = {32: x5, 16: x4, 8: x3, 4: x2, 2: x1, 1: x0}
return feats
def train(self, mode=True):
super().train(mode)
for m in self.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
pass
class Decoder(nn.Module):
def __init__(
self, embedding_decoder, gps, proj, conv_refiner, transformers = None, detach=False, scales="all", pos_embeddings = None,
):
super().__init__()
self.embedding_decoder = embedding_decoder
self.gps = gps
self.proj = proj
self.conv_refiner = conv_refiner
self.detach = detach
if scales == "all":
self.scales = ["32", "16", "8", "4", "2", "1"]
else:
self.scales = scales
def upsample_preds(self, flow, certainty, query, support):
b, hs, ws, d = flow.shape
b, c, h, w = query.shape
flow = flow.permute(0, 3, 1, 2)
certainty = F.interpolate(
certainty, size=(h, w), align_corners=False, mode="bilinear"
)
flow = F.interpolate(
flow, size=(h, w), align_corners=False, mode="bilinear"
)
delta_certainty, delta_flow = self.conv_refiner["1"](query, support, flow)
flow = torch.stack(
(
flow[:, 0] + delta_flow[:, 0] / (4 * w),
flow[:, 1] + delta_flow[:, 1] / (4 * h),
),
dim=1,
)
flow = flow.permute(0, 2, 3, 1)
certainty = certainty + delta_certainty
return flow, certainty
def get_placeholder_flow(self, b, h, w, device):
coarse_coords = torch.meshgrid(
(
torch.linspace(-1 + 1 / h, 1 - 1 / h, h, device=device),
torch.linspace(-1 + 1 / w, 1 - 1 / w, w, device=device),
)
)
coarse_coords = torch.stack((coarse_coords[1], coarse_coords[0]), dim=-1)[
None
].expand(b, h, w, 2)
coarse_coords = rearrange(coarse_coords, "b h w d -> b d h w")
return coarse_coords
def forward(self, f1, f2, upsample = False, dense_flow = None, dense_certainty = None):
coarse_scales = self.embedding_decoder.scales()
all_scales = self.scales if not upsample else ["8", "4", "2", "1"]
sizes = {scale: f1[scale].shape[-2:] for scale in f1}
h, w = sizes[1]
b = f1[1].shape[0]
device = f1[1].device
coarsest_scale = int(all_scales[0])
old_stuff = torch.zeros(
b, self.embedding_decoder.internal_dim, *sizes[coarsest_scale], device=f1[coarsest_scale].device
)
dense_corresps = {}
if not upsample:
dense_flow = self.get_placeholder_flow(b, *sizes[coarsest_scale], device)
dense_certainty = 0.0
else:
dense_flow = F.interpolate(
dense_flow,
size=sizes[coarsest_scale],
align_corners=False,
mode="bilinear",
)
dense_certainty = F.interpolate(
dense_certainty,
size=sizes[coarsest_scale],
align_corners=False,
mode="bilinear",
)
for new_scale in all_scales:
ins = int(new_scale)
f1_s, f2_s = f1[ins], f2[ins]
if new_scale in self.proj:
f1_s, f2_s = self.proj[new_scale](f1_s), self.proj[new_scale](f2_s)
b, c, hs, ws = f1_s.shape
if ins in coarse_scales:
old_stuff = F.interpolate(
old_stuff, size=sizes[ins], mode="bilinear", align_corners=False
)
new_stuff = self.gps[new_scale](f1_s, f2_s, dense_flow=dense_flow)
dense_flow, dense_certainty, old_stuff = self.embedding_decoder(
new_stuff, f1_s, old_stuff, new_scale
)
if new_scale in self.conv_refiner:
delta_certainty, displacement = self.conv_refiner[new_scale](
f1_s, f2_s, dense_flow
)
dense_flow = torch.stack(
(
dense_flow[:, 0] + ins * displacement[:, 0] / (4 * w),
dense_flow[:, 1] + ins * displacement[:, 1] / (4 * h),
),
dim=1,
)
dense_certainty = (
dense_certainty + delta_certainty
) # predict both certainty and displacement
dense_corresps[ins] = {
"dense_flow": dense_flow,
"dense_certainty": dense_certainty,
}
if new_scale != "1":
dense_flow = F.interpolate(
dense_flow,
size=sizes[ins // 2],
align_corners=False,
mode="bilinear",
)
dense_certainty = F.interpolate(
dense_certainty,
size=sizes[ins // 2],
align_corners=False,
mode="bilinear",
)
if self.detach:
dense_flow = dense_flow.detach()
dense_certainty = dense_certainty.detach()
return dense_corresps
class RegressionMatcher(nn.Module):
def __init__(
self,
encoder,
decoder,
h=384,
w=512,
use_contrastive_loss = False,
alpha = 1,
beta = 0,
sample_mode = "threshold",
upsample_preds = False,
symmetric = False,
name = None,
use_soft_mutual_nearest_neighbours = False,
):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.w_resized = w
self.h_resized = h
self.og_transforms = get_tuple_transform_ops(resize=None, normalize=True)
self.use_contrastive_loss = use_contrastive_loss
self.alpha = alpha
self.beta = beta
self.sample_mode = sample_mode
self.upsample_preds = upsample_preds
self.symmetric = symmetric
self.name = name
self.sample_thresh = 0.05
self.upsample_res = (864,1152)
if use_soft_mutual_nearest_neighbours:
assert symmetric, "MNS requires symmetric inference"
self.use_soft_mutual_nearest_neighbours = use_soft_mutual_nearest_neighbours
def extract_backbone_features(self, batch, batched = True, upsample = True):
#TODO: only extract stride [1,2,4,8] for upsample = True
x_q = batch["query"]
x_s = batch["support"]
if batched:
X = torch.cat((x_q, x_s))
feature_pyramid = self.encoder(X)
else:
feature_pyramid = self.encoder(x_q), self.encoder(x_s)
return feature_pyramid
def sample(
self,
dense_matches,
dense_certainty,
num=10000,
):
if "threshold" in self.sample_mode:
upper_thresh = self.sample_thresh
dense_certainty = dense_certainty.clone()
dense_certainty[dense_certainty > upper_thresh] = 1
elif "pow" in self.sample_mode:
dense_certainty = dense_certainty**(1/3)
elif "naive" in self.sample_mode:
dense_certainty = torch.ones_like(dense_certainty)
matches, certainty = (
dense_matches.reshape(-1, 4),
dense_certainty.reshape(-1),
)
expansion_factor = 4 if "balanced" in self.sample_mode else 1
good_samples = torch.multinomial(certainty,
num_samples = min(expansion_factor*num, len(certainty)),
replacement=False)
good_matches, good_certainty = matches[good_samples], certainty[good_samples]
if "balanced" not in self.sample_mode:
return good_matches, good_certainty
from dkm.utils.kde import kde
density = kde(good_matches, std=0.1)
p = 1 / (density+1)
p[density < 10] = 1e-7 # Basically should have at least 10 perfect neighbours, or around 100 ok ones
balanced_samples = torch.multinomial(p,
num_samples = min(num,len(good_certainty)),
replacement=False)
return good_matches[balanced_samples], good_certainty[balanced_samples]
def forward(self, batch, batched = True, upsample = False):
feature_pyramid = self.extract_backbone_features(batch, batched=batched, upsample = upsample)
if batched:
f_q_pyramid = {
scale: f_scale.chunk(2)[0] for scale, f_scale in feature_pyramid.items()
}
f_s_pyramid = {
scale: f_scale.chunk(2)[1] for scale, f_scale in feature_pyramid.items()
}
else:
f_q_pyramid, f_s_pyramid = feature_pyramid
dense_corresps = self.decoder(f_q_pyramid, f_s_pyramid, upsample = upsample, **(batch["corresps"] if "corresps" in batch else {}))
if self.training and self.use_contrastive_loss:
return dense_corresps, (f_q_pyramid, f_s_pyramid)
else:
return dense_corresps
def forward_symmetric(self, batch, upsample = False, batched = True):
feature_pyramid = self.extract_backbone_features(batch, upsample = upsample, batched = batched)
f_q_pyramid = feature_pyramid
f_s_pyramid = {
scale: torch.cat((f_scale.chunk(2)[1], f_scale.chunk(2)[0]))
for scale, f_scale in feature_pyramid.items()
}
dense_corresps = self.decoder(f_q_pyramid, f_s_pyramid, upsample = upsample, **(batch["corresps"] if "corresps" in batch else {}))
return dense_corresps
def to_pixel_coordinates(self, matches, H_A, W_A, H_B, W_B):
kpts_A, kpts_B = matches[...,:2], matches[...,2:]
kpts_A = torch.stack((W_A/2 * (kpts_A[...,0]+1), H_A/2 * (kpts_A[...,1]+1)),axis=-1)
kpts_B = torch.stack((W_B/2 * (kpts_B[...,0]+1), H_B/2 * (kpts_B[...,1]+1)),axis=-1)
return kpts_A, kpts_B
def match(
self,
im1_path,
im2_path,
*args,
batched=False,
device = None
):
assert not (batched and self.upsample_preds), "Cannot upsample preds if in batchmode (as we don't have access to high res images). You can turn off upsample_preds by model.upsample_preds = False "
if isinstance(im1_path, (str, os.PathLike)):
im1, im2 = Image.open(im1_path), Image.open(im2_path)
else: # assume it is a PIL Image
im1, im2 = im1_path, im2_path
if device is None:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
symmetric = self.symmetric
self.train(False)
with torch.no_grad():
if not batched:
b = 1
w, h = im1.size
w2, h2 = im2.size
# Get images in good format
ws = self.w_resized
hs = self.h_resized
test_transform = get_tuple_transform_ops(
resize=(hs, ws), normalize=True
)
query, support = test_transform((im1, im2))
batch = {"query": query[None].to(device), "support": support[None].to(device)}
else:
b, c, h, w = im1.shape
b, c, h2, w2 = im2.shape
assert w == w2 and h == h2, "For batched images we assume same size"
batch = {"query": im1.to(device), "support": im2.to(device)}
hs, ws = self.h_resized, self.w_resized
finest_scale = 1
# Run matcher
if symmetric:
dense_corresps = self.forward_symmetric(batch, batched = True)
else:
dense_corresps = self.forward(batch, batched = True)
if self.upsample_preds:
hs, ws = self.upsample_res
low_res_certainty = F.interpolate(
dense_corresps[16]["dense_certainty"], size=(hs, ws), align_corners=False, mode="bilinear"
)
cert_clamp = 0
factor = 0.5
low_res_certainty = factor*low_res_certainty*(low_res_certainty < cert_clamp)
if self.upsample_preds:
test_transform = get_tuple_transform_ops(
resize=(hs, ws), normalize=True
)
query, support = test_transform((im1, im2))
query, support = query[None].to(device), support[None].to(device)
batch = {"query": query, "support": support, "corresps": dense_corresps[finest_scale]}
if symmetric:
dense_corresps = self.forward_symmetric(batch, upsample = True, batched=True)
else:
dense_corresps = self.forward(batch, batched = True, upsample=True)
query_to_support = dense_corresps[finest_scale]["dense_flow"]
dense_certainty = dense_corresps[finest_scale]["dense_certainty"]
# Get certainty interpolation
dense_certainty = dense_certainty - low_res_certainty
query_to_support = query_to_support.permute(
0, 2, 3, 1
)
# Create im1 meshgrid
query_coords = torch.meshgrid(
(
torch.linspace(-1 + 1 / hs, 1 - 1 / hs, hs, device=device),
torch.linspace(-1 + 1 / ws, 1 - 1 / ws, ws, device=device),
)
)
query_coords = torch.stack((query_coords[1], query_coords[0]))
query_coords = query_coords[None].expand(b, 2, hs, ws)
dense_certainty = dense_certainty.sigmoid() # logits -> probs
query_coords = query_coords.permute(0, 2, 3, 1)
if (query_to_support.abs() > 1).any() and True:
wrong = (query_to_support.abs() > 1).sum(dim=-1) > 0
dense_certainty[wrong[:,None]] = 0
query_to_support = torch.clamp(query_to_support, -1, 1)
if symmetric:
support_coords = query_coords
qts, stq = query_to_support.chunk(2)
q_warp = torch.cat((query_coords, qts), dim=-1)
s_warp = torch.cat((stq, support_coords), dim=-1)
warp = torch.cat((q_warp, s_warp),dim=2)
dense_certainty = torch.cat(dense_certainty.chunk(2), dim=3)[:,0]
else:
warp = torch.cat((query_coords, query_to_support), dim=-1)
if batched:
return (
warp,
dense_certainty
)
else:
return (
warp[0],
dense_certainty[0],
)