-
Notifications
You must be signed in to change notification settings - Fork 11
/
lanms.h
234 lines (200 loc) · 5.77 KB
/
lanms.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#pragma once
#include "clipper/clipper.hpp"
// locality-aware NMS
namespace lanms {
namespace cl = ClipperLib;
struct Polygon {
cl::Path poly;
float score;
};
float paths_area(const ClipperLib::Paths &ps) {
float area = 0;
for (auto &&p: ps)
area += cl::Area(p);
return area;
}
float poly_iou(const Polygon &a, const Polygon &b) {
cl::Clipper clpr;
clpr.AddPath(a.poly, cl::ptSubject, true);
clpr.AddPath(b.poly, cl::ptClip, true);
cl::Paths inter, uni;
clpr.Execute(cl::ctIntersection, inter, cl::pftEvenOdd);
clpr.Execute(cl::ctUnion, uni, cl::pftEvenOdd);
auto inter_area = paths_area(inter),
uni_area = paths_area(uni);
return std::abs(inter_area) / std::max(std::abs(uni_area), 1.0f);
}
bool should_merge(const Polygon &a, const Polygon &b, float iou_threshold) {
return poly_iou(a, b) > iou_threshold;
}
/**
* Incrementally merge polygons
*/
class PolyMerger {
public:
PolyMerger(): score(0), nr_polys(0) {
memset(data, 0, sizeof(data));
}
/**
* Add a new polygon to be merged.
*/
void add(const Polygon &p_given) {
Polygon p;
if (nr_polys > 0) {
// vertices of two polygons to merge may not in the same order;
// we match their vertices by choosing the ordering that
// minimizes the total squared distance.
// see function normalize_poly for details.
p = normalize_poly(get(), p_given);
} else {
p = p_given;
}
assert(p.poly.size() == 4);
auto &poly = p.poly;
auto s = p.score;
data[0] += poly[0].X * s;
data[1] += poly[0].Y * s;
data[2] += poly[1].X * s;
data[3] += poly[1].Y * s;
data[4] += poly[2].X * s;
data[5] += poly[2].Y * s;
data[6] += poly[3].X * s;
data[7] += poly[3].Y * s;
score += p.score;
nr_polys += 1;
}
inline std::int64_t sqr(std::int64_t x) { return x * x; }
Polygon normalize_poly(
const Polygon &ref,
const Polygon &p) {
std::int64_t min_d = std::numeric_limits<std::int64_t>::max();
size_t best_start = 0, best_order = 0;
for (size_t start = 0; start < 4; start ++) {
size_t j = start;
std::int64_t d = (
sqr(ref.poly[(j + 0) % 4].X - p.poly[(j + 0) % 4].X)
+ sqr(ref.poly[(j + 0) % 4].Y - p.poly[(j + 0) % 4].Y)
+ sqr(ref.poly[(j + 1) % 4].X - p.poly[(j + 1) % 4].X)
+ sqr(ref.poly[(j + 1) % 4].Y - p.poly[(j + 1) % 4].Y)
+ sqr(ref.poly[(j + 2) % 4].X - p.poly[(j + 2) % 4].X)
+ sqr(ref.poly[(j + 2) % 4].Y - p.poly[(j + 2) % 4].Y)
+ sqr(ref.poly[(j + 3) % 4].X - p.poly[(j + 3) % 4].X)
+ sqr(ref.poly[(j + 3) % 4].Y - p.poly[(j + 3) % 4].Y)
);
if (d < min_d) {
min_d = d;
best_start = start;
best_order = 0;
}
d = (
sqr(ref.poly[(j + 0) % 4].X - p.poly[(j + 3) % 4].X)
+ sqr(ref.poly[(j + 0) % 4].Y - p.poly[(j + 3) % 4].Y)
+ sqr(ref.poly[(j + 1) % 4].X - p.poly[(j + 2) % 4].X)
+ sqr(ref.poly[(j + 1) % 4].Y - p.poly[(j + 2) % 4].Y)
+ sqr(ref.poly[(j + 2) % 4].X - p.poly[(j + 1) % 4].X)
+ sqr(ref.poly[(j + 2) % 4].Y - p.poly[(j + 1) % 4].Y)
+ sqr(ref.poly[(j + 3) % 4].X - p.poly[(j + 0) % 4].X)
+ sqr(ref.poly[(j + 3) % 4].Y - p.poly[(j + 0) % 4].Y)
);
if (d < min_d) {
min_d = d;
best_start = start;
best_order = 1;
}
}
Polygon r;
r.poly.resize(4);
auto j = best_start;
if (best_order == 0) {
for (size_t i = 0; i < 4; i ++)
r.poly[i] = p.poly[(j + i) % 4];
} else {
for (size_t i = 0; i < 4; i ++)
r.poly[i] = p.poly[(j + 4 - i - 1) % 4];
}
r.score = p.score;
return r;
}
Polygon get() const {
Polygon p;
auto &poly = p.poly;
poly.resize(4);
auto score_inv = 1.0f / std::max(1e-8f, score);
poly[0].X = data[0] * score_inv;
poly[0].Y = data[1] * score_inv;
poly[1].X = data[2] * score_inv;
poly[1].Y = data[3] * score_inv;
poly[2].X = data[4] * score_inv;
poly[2].Y = data[5] * score_inv;
poly[3].X = data[6] * score_inv;
poly[3].Y = data[7] * score_inv;
assert(score > 0);
p.score = score;
return p;
}
private:
std::int64_t data[8];
float score;
std::int32_t nr_polys;
};
/**
* The standard NMS algorithm.
*/
std::vector<Polygon> standard_nms(std::vector<Polygon> &polys, float iou_threshold) {
size_t n = polys.size();
if (n == 0)
return {};
std::vector<size_t> indices(n);
std::iota(std::begin(indices), std::end(indices), 0);
std::sort(std::begin(indices), std::end(indices), [&](size_t i, size_t j) { return polys[i].score > polys[j].score; });
std::vector<size_t> keep;
while (indices.size()) {
size_t p = 0, cur = indices[0];
keep.emplace_back(cur);
for (size_t i = 1; i < indices.size(); i ++) {
if (!should_merge(polys[cur], polys[indices[i]], iou_threshold)) {
indices[p ++] = indices[i];
}
}
indices.resize(p);
}
std::vector<Polygon> ret;
for (auto &&i: keep) {
ret.emplace_back(polys[i]);
}
return ret;
}
std::vector<Polygon>
merge_quadrangle_n9(const float *data, size_t n, float iou_threshold) {
using cInt = cl::cInt;
// first pass
std::vector<Polygon> polys;
for (size_t i = 0; i < n; i ++) {
auto p = data + i * 9;
Polygon poly{
{
{cInt(p[0]), cInt(p[1])},
{cInt(p[2]), cInt(p[3])},
{cInt(p[4]), cInt(p[5])},
{cInt(p[6]), cInt(p[7])},
},
p[8],
};
if (polys.size()) {
// merge with the last one
auto &bpoly = polys.back();
if (should_merge(poly, bpoly, iou_threshold)) {
PolyMerger merger;
merger.add(bpoly);
merger.add(poly);
bpoly = merger.get();
} else {
polys.emplace_back(poly);
}
} else {
polys.emplace_back(poly);
}
}
return standard_nms(polys, iou_threshold);
}
}