-
Notifications
You must be signed in to change notification settings - Fork 0
/
CLQ_head_align_iou_pred.py
767 lines (675 loc) · 32.7 KB
/
CLQ_head_align_iou_pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, Scale, bias_init_with_prob, normal_init
from mmcv.runner import force_fp32
from mmdet.core import (anchor_inside_flags, bbox2distance, bbox_overlaps,
build_assigner, build_sampler, distance2bbox,
images_to_levels, multi_apply, multiclass_nms,
reduce_mean, unmap)
from ..builder import HEADS, build_loss
from .anchor_head import AnchorHead
from mmcv.ops import DeformConv2d
def weighted_binary_cross_entropy(pred, label, weight, avg_factor=None):
if pred.dim() != label.dim():
label, weight = _expand_binary_labels(label, weight, pred.size(-1))
if avg_factor is None:
avg_factor = max(torch.sum(weight > 0).float().item(), 1.)
return F.binary_cross_entropy_with_logits(
pred, label.float(), weight.float(),
reduction='sum')[None] / avg_factor
def _expand_binary_labels(labels, label_weights, label_channels):
bin_labels = labels.new_full((labels.size(0), label_channels), 0)
inds = torch.nonzero(labels >= 1).squeeze()
if inds.numel() > 0:
bin_labels[inds, labels[inds] - 1] = 1
bin_label_weights = label_weights.view(-1, 1).expand(
label_weights.size(0), label_channels)
return bin_labels, bin_label_weights
class FeatureAlignment(nn.Module):
"""Feature Adaption Module.
Feature Adaption Module is implemented based on DCN v1.
It uses anchor shape prediction rather than feature map to
predict offsets of deformable conv layer.
Args:
in_channels (int): Number of channels in the input feature map.
out_channels (int): Number of channels in the output feature map.
kernel_size (int): Deformable conv kernel size.
deformable_groups (int): Deformable conv group size.
"""
def __init__(self,
in_channels,
out_channels,
kernel_size=3,
deformable_groups=4):
super(FeatureAlignment, self).__init__()
offset_channels = kernel_size * kernel_size * 2
self.conv_offset = nn.Conv2d(
4, deformable_groups * offset_channels, 1, bias=False)
self.conv_adaption = DeformConv2d(
in_channels,
out_channels,
kernel_size=kernel_size,
padding=(kernel_size - 1) // 2,
deformable_groups=deformable_groups)
self.relu = nn.ReLU(inplace=True)
def init_weights(self):
normal_init(self.conv_offset, std=0.1)
normal_init(self.conv_adaption, std=0.01)
def forward(self, x, shape):
offset = self.conv_offset(shape)
x = self.relu(self.conv_adaption(x, offset))
return x
class Integral(nn.Module):
"""A fixed layer for calculating integral result from distribution.
This layer calculates the target location by :math: `sum{P(y_i) * y_i}`,
P(y_i) denotes the softmax vector that represents the discrete distribution
y_i denotes the discrete set, usually {0, 1, 2, ..., reg_max}
Args:
reg_max (int): The maximal value of the discrete set. Default: 16. You
may want to reset it according to your new dataset or related
settings.
"""
def __init__(self, reg_max=16):
super(Integral, self).__init__()
self.reg_max = reg_max
self.register_buffer('project',
torch.linspace(0, self.reg_max, self.reg_max + 1))
def forward(self, x):
"""Forward feature from the regression head to get integral result of
bounding box location.
Args:
x (Tensor): Features of the regression head, shape (N, 4*(n+1)),
n is self.reg_max.
Returns:
x (Tensor): Integral result of box locations, i.e., distance
offsets from the box center in four directions, shape (N, 4).
"""
x = F.softmax(x.reshape(-1, self.reg_max + 1), dim=1)
x = F.linear(x, self.project.type_as(x)).reshape(-1, 4)
return x
@HEADS.register_module()
class CLQ_Head_align_iou_pred(AnchorHead):
"""Generalized Focal Loss V2: Learning Reliable Localization Quality
Estimation for Dense Object Detection.
clq head structure is similar with clq head, however clq uses
the statistics of learned distribution to guide the
localization quality estimation (LQE)
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
stacked_convs (int): Number of conv layers in cls and reg tower.
Default: 4.
conv_cfg (dict): dictionary to construct and config conv layer.
Default: None.
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='GN', num_groups=32, requires_grad=True).
loss_qfl (dict): Config of Quality Focal Loss (QFL).
reg_max (int): Max value of integral set :math: `{0, ..., reg_max}`
in QFL setting. Default: 16.
reg_topk (int): top-k statistics of distribution to guide LQE
reg_channels (int): hidden layer unit to generate LQE
Example:
>>> self = clqHead(11, 7)
>>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]]
>>> cls_quality_score, bbox_pred = self.forward(feats)
>>> assert len(cls_quality_score) == len(self.scales)
"""
def __init__(self,
num_classes,
in_channels,
stacked_convs=4,
conv_cfg=None,
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True),
loss_dfl=dict(type='DistributionFocalLoss', loss_weight=0.25),
reg_max=16,
reg_topk=4,
reg_channels=64,
add_mean=True,
**kwargs):
self.stacked_convs = stacked_convs
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.reg_max = reg_max
self.reg_topk = reg_topk
self.reg_channels = reg_channels
self.add_mean = add_mean
self.total_dim = reg_topk
if add_mean:
self.total_dim += 1
print('total dim = ', self.total_dim * 4)
super(CLQ_Head_align_iou_pred, self).__init__(num_classes, in_channels, **kwargs)
self.sampling = False
if self.train_cfg:
self.assigner = build_assigner(self.train_cfg.assigner)
# SSD sampling=False so use PseudoSampler
sampler_cfg = dict(type='PseudoSampler')
self.sampler = build_sampler(sampler_cfg, context=self)
self.integral = Integral(self.reg_max)
self.loss_dfl = build_loss(loss_dfl)
self.weight_iou_preds_switch=False
def _init_layers(self):
"""Initialize layers of the head."""
self.relu = nn.ReLU(inplace=True)
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
self.cls_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
self.reg_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
assert self.num_anchors == 1, 'anchor free version'
self.clq_cls = nn.Conv2d(
self.feat_channels, self.cls_out_channels, 3, padding=1)
self.clq_reg = nn.Conv2d(
self.feat_channels, 4 * (self.reg_max + 1), 3, padding=1)
self.scales = nn.ModuleList(
[Scale(1.0) for _ in self.anchor_generator.strides])
# conf_vector = [nn.Conv2d(4 * self.total_dim, self.reg_channels, 1)]
# conf_vector += [self.relu]
# conf_vector += [nn.Conv2d(self.reg_channels, 1, 1), nn.Sigmoid()]
#
# self.reg_conf = nn.Sequential(*conf_vector)
self.deformable_groups = 4
self.use_feature_alignment = True
if self.use_feature_alignment:
self.feature_alignment = FeatureAlignment(
self.feat_channels,
self.feat_channels,
kernel_size=3,
deformable_groups=self.deformable_groups)
self.retina_iou = nn.Conv2d(self.feat_channels, 1, 3, padding=1)
def init_weights(self):
"""Initialize weights of the head."""
for m in self.cls_convs:
normal_init(m.conv, std=0.01)
for m in self.reg_convs:
normal_init(m.conv, std=0.01)
# for m in self.reg_conf:
# if isinstance(m, nn.Conv2d):
# normal_init(m, std=0.01)
bias_cls = bias_init_with_prob(0.01)
normal_init(self.clq_cls, std=0.01, bias=bias_cls)
normal_init(self.clq_reg, std=0.01)
#init_weight:
normal_init(self.retina_iou, std=0.01)
if self.use_feature_alignment:
self.feature_alignment.init_weights()
def forward(self, feats):
"""Forward features from the upstream network.
Args:
feats (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
tuple: Usually a tuple of classification scores and bbox prediction
cls_scores (list[Tensor]): Classification and quality (IoU)
joint scores for all scale levels, each is a 4D-tensor,
the channel number is num_classes.
bbox_preds (list[Tensor]): Box distribution logits for all
scale levels, each is a 4D-tensor, the channel number is
4*(n+1), n is max value of integral set.
"""
return multi_apply(self.forward_single, feats, self.scales)
def forward_single(self, x, scale):
"""Forward feature of a single scale level.
Args:
x (Tensor): Features of a single scale level.
scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize
the bbox prediction.
Returns:
tuple:
cls_score (Tensor): Cls and quality joint scores for a single
scale level the channel number is num_classes.
bbox_pred (Tensor): Box distribution logits for a single scale
level, the channel number is 4*(n+1), n is max value of
integral set.
"""
cls_feat = x
reg_feat = x
# for cls_conv in self.cls_convs:
# cls_feat = cls_conv(cls_feat)
for reg_conv in self.reg_convs:
reg_feat = reg_conv(reg_feat)
bbox_pred = scale(self.clq_reg(reg_feat)).float()
# feature_align : lpf add
if self.use_feature_alignment:
shape = bbox_pred.shape # (N,4*(reg_max+1),H,W)
bbox_pred_tmp = bbox_pred.permute(0, 2, 3,
1).reshape(-1, 4 * (self.reg_max + 1)) # (batch*H*W , 4*(reg_max+1))
pos_bbox_pred_corners_1 = self.integral(bbox_pred_tmp) ## 68-dimension--> 4dimension (N,4)
pos_bbox_pred_corners_1 = pos_bbox_pred_corners_1.reshape(shape[0], shape[2], shape[3], 4).permute(0, 3, 1,
2).contiguous()
# print(bbox_pred.shape,pos_bbox_pred_corners_1.shape)
cls_feat = self.feature_alignment(cls_feat, pos_bbox_pred_corners_1) # bbox_pred.exp() or bbox_pred()
for cls_conv in self.cls_convs:
cls_feat = cls_conv(cls_feat)
quality_score = self.retina_iou(cls_feat) # V2 change remove sigmoid()
cls_score = (self.clq_cls(cls_feat).sigmoid())*((quality_score.sigmoid()).pow(0.3)) ##add hyper-parameter alpha to quality_score : lpf
return cls_score, bbox_pred,quality_score
def anchor_center(self, anchors):
"""Get anchor centers from anchors.
Args:
anchors (Tensor): Anchor list with shape (N, 4), "xyxy" format.
Returns:
Tensor: Anchor centers with shape (N, 2), "xy" format.
"""
anchors_cx = (anchors[:, 2] + anchors[:, 0]) / 2
anchors_cy = (anchors[:, 3] + anchors[:, 1]) / 2
return torch.stack([anchors_cx, anchors_cy], dim=-1)
def loss_single(self, anchors, cls_score, bbox_pred, quality_score,labels, label_weights,
bbox_targets, stride, num_total_samples):
"""Compute loss of a single scale level.
Args:
anchors (Tensor): Box reference for each scale level with shape
(N, num_total_anchors, 4).
cls_score (Tensor): Cls and quality joint scores for each scale
level has shape (N, num_classes, H, W).
bbox_pred (Tensor): Box distribution logits for each scale
level with shape (N, 4*(n+1), H, W), n is max value of integral
set.
labels (Tensor): Labels of each anchors with shape
(N, num_total_anchors).
label_weights (Tensor): Label weights of each anchor with shape
(N, num_total_anchors)
bbox_targets (Tensor): BBox regression targets of each anchor wight
shape (N, num_total_anchors, 4).
stride (tuple): Stride in this scale level.
num_total_samples (int): Number of positive samples that is
reduced over all GPUs.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
assert stride[0] == stride[1], 'h stride is not equal to w stride!'
quality_score=quality_score.permute(0, 2, 3, 1).reshape(-1)
anchors = anchors.reshape(-1, 4)
cls_score = cls_score.permute(0, 2, 3,
1).reshape(-1, self.cls_out_channels)
bbox_pred = bbox_pred.permute(0, 2, 3,
1).reshape(-1, 4 * (self.reg_max + 1))
bbox_targets = bbox_targets.reshape(-1, 4)
labels = labels.reshape(-1)
label_weights = label_weights.reshape(-1)
assert quality_score.shape==labels.shape , 'iou_preds.shape != labels.shape' #lpf add
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes
bg_class_ind = self.num_classes
pos_inds = ((labels >= 0)
& (labels < bg_class_ind)).nonzero().squeeze(1)
score = label_weights.new_zeros(labels.shape)
if len(pos_inds) > 0:
pos_bbox_targets = bbox_targets[pos_inds]
pos_bbox_pred = bbox_pred[pos_inds]
pos_anchors = anchors[pos_inds]
pos_anchor_centers = self.anchor_center(pos_anchors) / stride[0]
weight_targets = cls_score.detach()
weight_targets = weight_targets.max(dim=1)[0][pos_inds]
pos_bbox_pred_corners = self.integral(pos_bbox_pred)
pos_decode_bbox_pred = distance2bbox(pos_anchor_centers,
pos_bbox_pred_corners)
pos_decode_bbox_targets = pos_bbox_targets / stride[0]
score[pos_inds] = bbox_overlaps(
pos_decode_bbox_pred.detach(),
pos_decode_bbox_targets,
is_aligned=True)
pred_corners = pos_bbox_pred.reshape(-1, self.reg_max + 1)
target_corners = bbox2distance(pos_anchor_centers,
pos_decode_bbox_targets,
self.reg_max).reshape(-1)
#iou_pred_loss: only positive samples
weight_iou = 1.0
if self.weight_iou_preds_switch==False:
weight_targets_iou_pred = label_weights[pos_inds]
num_total_samples_iou_pred=num_total_samples
# print('debug,loss_iou',num_total_samples,weight_targets_iou_pred.sum()) #check check
loss_iou = weight_iou * weighted_binary_cross_entropy(quality_score[pos_inds], score[pos_inds], weight_targets_iou_pred,
avg_factor=num_total_samples_iou_pred)
else:
##need to normalization in loss function by avg_factor
weight_targets_iou_pred = weight_targets
# print('debug:iou_preds',iou_preds[pos_inds],)
loss_iou = weight_iou * weighted_binary_cross_entropy(quality_score[pos_inds], score[pos_inds], weight_targets_iou_pred,
avg_factor=1.0)
# regression loss
loss_bbox = self.loss_bbox(
pos_decode_bbox_pred,
pos_decode_bbox_targets,
weight=weight_targets,
avg_factor=1.0)
# dfl loss
loss_dfl = self.loss_dfl(
pred_corners,
target_corners,
weight=weight_targets[:, None].expand(-1, 4).reshape(-1),
avg_factor=4.0)
else:
loss_bbox = bbox_pred.sum() * 0
loss_dfl = bbox_pred.sum() * 0
weight_targets = torch.tensor(0).cuda()
loss_iou = quality_score.sum() * 0
# cls (qfl) loss
loss_cls = self.loss_cls(
cls_score, (labels, score),
weight=label_weights,
avg_factor=num_total_samples)
return loss_cls, loss_bbox, loss_dfl,loss_iou, weight_targets.sum()
@force_fp32(apply_to=('cls_scores', 'bbox_preds'))
def loss(self,
cls_scores,
bbox_preds,
quality_score,
gt_bboxes,
gt_labels,
img_metas,
gt_bboxes_ignore=None):
"""Compute losses of the head.
Args:
cls_scores (list[Tensor]): Cls and quality scores for each scale
level has shape (N, num_classes, H, W).
bbox_preds (list[Tensor]): Box distribution logits for each scale
level with shape (N, 4*(n+1), H, W), n is max value of integral
set.
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]): class indices corresponding to each box
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
gt_bboxes_ignore (list[Tensor] | None): specify which bounding
boxes can be ignored when computing the loss.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
assert len(featmap_sizes) == self.anchor_generator.num_levels
device = cls_scores[0].device
anchor_list, valid_flag_list = self.get_anchors(
featmap_sizes, img_metas, device=device)
label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
cls_reg_targets = self.get_targets(
anchor_list,
valid_flag_list,
gt_bboxes,
img_metas,
gt_bboxes_ignore_list=gt_bboxes_ignore,
gt_labels_list=gt_labels,
label_channels=label_channels)
if cls_reg_targets is None:
return None
(anchor_list, labels_list, label_weights_list, bbox_targets_list,
bbox_weights_list, num_total_pos, num_total_neg) = cls_reg_targets
num_total_samples = reduce_mean(
torch.tensor(num_total_pos).cuda()).item()
num_total_samples = max(num_total_samples, 1.0)
losses_cls, losses_bbox, losses_dfl,losses_iou,\
avg_factor = multi_apply(
self.loss_single,
anchor_list,
cls_scores,
bbox_preds,
quality_score,
labels_list,
label_weights_list,
bbox_targets_list,
self.anchor_generator.strides,
num_total_samples=num_total_samples)
avg_factor = sum(avg_factor)
avg_factor = reduce_mean(avg_factor).item()
losses_bbox = list(map(lambda x: x / avg_factor, losses_bbox))
losses_dfl = list(map(lambda x: x / avg_factor, losses_dfl))
if self.weight_iou_preds_switch:
losses_iou=list(map(lambda x: x / avg_factor, losses_iou))
return dict(
loss_cls=losses_cls, loss_bbox=losses_bbox, loss_dfl=losses_dfl,losses_iou=losses_iou)
def _get_bboxes_single(self,
cls_scores,
bbox_preds,
mlvl_anchors,
img_shape,
scale_factor,
cfg,
rescale=False,
with_nms=True):
"""Transform outputs for a single batch item into labeled boxes.
Args:
cls_scores (list[Tensor]): Box scores for a single scale level
has shape (num_classes, H, W).
bbox_preds (list[Tensor]): Box distribution logits for a single
scale level with shape (4*(n+1), H, W), n is max value of
integral set.
mlvl_anchors (list[Tensor]): Box reference for a single scale level
with shape (num_total_anchors, 4).
img_shape (tuple[int]): Shape of the input image,
(height, width, 3).
scale_factor (ndarray): Scale factor of the image arange as
(w_scale, h_scale, w_scale, h_scale).
cfg (mmcv.Config | None): Test / postprocessing configuration,
if None, test_cfg would be used.
rescale (bool): If True, return boxes in original image space.
Default: False.
with_nms (bool): If True, do nms before return boxes.
Default: True.
Returns:
tuple(Tensor):
det_bboxes (Tensor): Bbox predictions in shape (N, 5), where
the first 4 columns are bounding box positions
(tl_x, tl_y, br_x, br_y) and the 5-th column is a score
between 0 and 1.
det_labels (Tensor): A (N,) tensor where each item is the
predicted class label of the corresponding box.
"""
cfg = self.test_cfg if cfg is None else cfg
assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors)
mlvl_bboxes = []
mlvl_scores = []
for cls_score, bbox_pred, stride, anchors in zip(
cls_scores, bbox_preds, self.anchor_generator.strides,
mlvl_anchors):
assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
assert stride[0] == stride[1]
scores = cls_score.permute(1, 2, 0).reshape(
-1, self.cls_out_channels)
bbox_pred = bbox_pred.permute(1, 2, 0)
bbox_pred = self.integral(bbox_pred) * stride[0]
nms_pre = cfg.get('nms_pre', -1)
if nms_pre > 0 and scores.shape[0] > nms_pre:
max_scores, _ = scores.max(dim=1)
_, topk_inds = max_scores.topk(nms_pre)
anchors = anchors[topk_inds, :]
bbox_pred = bbox_pred[topk_inds, :]
scores = scores[topk_inds, :]
bboxes = distance2bbox(
self.anchor_center(anchors), bbox_pred, max_shape=img_shape)
mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores)
mlvl_bboxes = torch.cat(mlvl_bboxes)
if rescale:
mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor)
mlvl_scores = torch.cat(mlvl_scores)
# Add a dummy background class to the backend when using sigmoid
# remind that we set FG labels to [0, num_class-1] since mmdet v2.0
# BG cat_id: num_class
padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
mlvl_scores = torch.cat([mlvl_scores, padding], dim=1)
if with_nms:
det_bboxes, det_labels = multiclass_nms(mlvl_bboxes, mlvl_scores,
cfg.score_thr, cfg.nms,
cfg.max_per_img)
return det_bboxes, det_labels
else:
return mlvl_bboxes, mlvl_scores
def get_targets(self,
anchor_list,
valid_flag_list,
gt_bboxes_list,
img_metas,
gt_bboxes_ignore_list=None,
gt_labels_list=None,
label_channels=1,
unmap_outputs=True):
"""Get targets for clq head.
This method is almost the same as `AnchorHead.get_targets()`. Besides
returning the targets as the parent method does, it also returns the
anchors as the first element of the returned tuple.
"""
num_imgs = len(img_metas)
assert len(anchor_list) == len(valid_flag_list) == num_imgs
# anchor number of multi levels
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
num_level_anchors_list = [num_level_anchors] * num_imgs
# concat all level anchors and flags to a single tensor
for i in range(num_imgs):
assert len(anchor_list[i]) == len(valid_flag_list[i])
anchor_list[i] = torch.cat(anchor_list[i])
valid_flag_list[i] = torch.cat(valid_flag_list[i])
# compute targets for each image
if gt_bboxes_ignore_list is None:
gt_bboxes_ignore_list = [None for _ in range(num_imgs)]
if gt_labels_list is None:
gt_labels_list = [None for _ in range(num_imgs)]
(all_anchors, all_labels, all_label_weights, all_bbox_targets,
all_bbox_weights, pos_inds_list, neg_inds_list) = multi_apply(
self._get_target_single,
anchor_list,
valid_flag_list,
num_level_anchors_list,
gt_bboxes_list,
gt_bboxes_ignore_list,
gt_labels_list,
img_metas,
label_channels=label_channels,
unmap_outputs=unmap_outputs)
# no valid anchors
if any([labels is None for labels in all_labels]):
return None
# sampled anchors of all images
num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list])
num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list])
# split targets to a list w.r.t. multiple levels
anchors_list = images_to_levels(all_anchors, num_level_anchors)
labels_list = images_to_levels(all_labels, num_level_anchors)
label_weights_list = images_to_levels(all_label_weights,
num_level_anchors)
bbox_targets_list = images_to_levels(all_bbox_targets,
num_level_anchors)
bbox_weights_list = images_to_levels(all_bbox_weights,
num_level_anchors)
return (anchors_list, labels_list, label_weights_list,
bbox_targets_list, bbox_weights_list, num_total_pos,
num_total_neg)
def _get_target_single(self,
flat_anchors,
valid_flags,
num_level_anchors,
gt_bboxes,
gt_bboxes_ignore,
gt_labels,
img_meta,
label_channels=1,
unmap_outputs=True):
"""Compute regression, classification targets for anchors in a single
image.
Args:
flat_anchors (Tensor): Multi-level anchors of the image, which are
concatenated into a single tensor of shape (num_anchors, 4)
valid_flags (Tensor): Multi level valid flags of the image,
which are concatenated into a single tensor of
shape (num_anchors,).
num_level_anchors Tensor): Number of anchors of each scale level.
gt_bboxes (Tensor): Ground truth bboxes of the image,
shape (num_gts, 4).
gt_bboxes_ignore (Tensor): Ground truth bboxes to be
ignored, shape (num_ignored_gts, 4).
gt_labels (Tensor): Ground truth labels of each box,
shape (num_gts,).
img_meta (dict): Meta info of the image.
label_channels (int): Channel of label.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors.
Returns:
tuple: N is the number of total anchors in the image.
anchors (Tensor): All anchors in the image with shape (N, 4).
labels (Tensor): Labels of all anchors in the image with shape
(N,).
label_weights (Tensor): Label weights of all anchor in the
image with shape (N,).
bbox_targets (Tensor): BBox targets of all anchors in the
image with shape (N, 4).
bbox_weights (Tensor): BBox weights of all anchors in the
image with shape (N, 4).
pos_inds (Tensor): Indices of postive anchor with shape
(num_pos,).
neg_inds (Tensor): Indices of negative anchor with shape
(num_neg,).
"""
inside_flags = anchor_inside_flags(flat_anchors, valid_flags,
img_meta['img_shape'][:2],
self.train_cfg.allowed_border)
if not inside_flags.any():
return (None, ) * 7
# assign gt and sample anchors
anchors = flat_anchors[inside_flags, :]
num_level_anchors_inside = self.get_num_level_anchors_inside(
num_level_anchors, inside_flags)
assign_result = self.assigner.assign(anchors, num_level_anchors_inside,
gt_bboxes, gt_bboxes_ignore,
gt_labels)
sampling_result = self.sampler.sample(assign_result, anchors,
gt_bboxes)
num_valid_anchors = anchors.shape[0]
bbox_targets = torch.zeros_like(anchors)
bbox_weights = torch.zeros_like(anchors)
labels = anchors.new_full((num_valid_anchors, ),
self.num_classes,
dtype=torch.long)
label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)
pos_inds = sampling_result.pos_inds
neg_inds = sampling_result.neg_inds
if len(pos_inds) > 0:
pos_bbox_targets = sampling_result.pos_gt_bboxes
bbox_targets[pos_inds, :] = pos_bbox_targets
bbox_weights[pos_inds, :] = 1.0
if gt_labels is None:
# Only rpn gives gt_labels as None
# Foreground is the first class
labels[pos_inds] = 0
else:
labels[pos_inds] = gt_labels[
sampling_result.pos_assigned_gt_inds]
if self.train_cfg.pos_weight <= 0:
label_weights[pos_inds] = 1.0
else:
label_weights[pos_inds] = self.train_cfg.pos_weight
if len(neg_inds) > 0:
label_weights[neg_inds] = 1.0
# map up to original set of anchors
if unmap_outputs:
num_total_anchors = flat_anchors.size(0)
anchors = unmap(anchors, num_total_anchors, inside_flags)
labels = unmap(
labels, num_total_anchors, inside_flags, fill=self.num_classes)
label_weights = unmap(label_weights, num_total_anchors,
inside_flags)
bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags)
bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags)
return (anchors, labels, label_weights, bbox_targets, bbox_weights,
pos_inds, neg_inds)
def get_num_level_anchors_inside(self, num_level_anchors, inside_flags):
split_inside_flags = torch.split(inside_flags, num_level_anchors)
num_level_anchors_inside = [
int(flags.sum()) for flags in split_inside_flags
]
return num_level_anchors_inside