-
Notifications
You must be signed in to change notification settings - Fork 112
/
quantities.jl
500 lines (416 loc) · 20.1 KB
/
quantities.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
# This is a generated function to avoid determining the dimensions of a given
# set of units each time a new quantity is made.
@generated function _Quantity(x::Number, y::Units)
u = y()
du = dimension(u)
dx = dimension(x)
d = du*dx
:(Quantity{typeof(x), $d, typeof($u)}(x))
end
"""
Quantity(x::Number, y::Units)
Create a `Quantity` with numerical value `x` and units `y`.
# Example
```jldoctest
julia> Quantity(5, u"m")
5 m
```
"""
Quantity(x::Number, y::Units) = _Quantity(x, y)
Quantity(x::Number, y::Units{()}) = x
*(x::Number, y::Units, z::Units...) = Quantity(x,*(y,z...))
*(x::Units, y::Number) = *(y,x)
*(x::AbstractQuantity, y::Units, z::Units...) = Quantity(x.val, *(unit(x),y,z...))
*(x::AbstractQuantity, y::AbstractQuantity) = Quantity(x.val*y.val, unit(x)*unit(y))
function *(x::Number, y::AbstractQuantity)
y isa AffineQuantity &&
throw(AffineError("an invalid operation was attempted with affine quantities: $x*$y"))
return Quantity(x*y.val, unit(y))
end
function *(x::AbstractQuantity, y::Number)
x isa AffineQuantity &&
throw(AffineError("an invalid operation was attempted with affine quantities: $x*$y"))
return Quantity(x.val*y, unit(x))
end
*(A::Units, B::AbstractArray) = broadcast(*, A, B)
*(A::AbstractArray, B::Units) = broadcast(*, A, B)
/(A::AbstractArray, B::Units) = broadcast(/, A, B)
# Division (units)
/(x::AbstractQuantity, y::Units) = Quantity(x.val, unit(x) / y)
/(x::Units, y::AbstractQuantity) = Quantity(1/y.val, x / unit(y))
/(x::Number, y::Units) = Quantity(x,inv(y))
/(x::Units, y::Number) = (1/y) * x
//(x::AbstractQuantity, y::Units) = Quantity(x.val, unit(x) / y)
//(x::Units, y::AbstractQuantity) = Quantity(1//y.val, x / unit(y))
//(x::Number, y::Units) = Rational(x)/y
//(x::Units, y::Number) = (1//y) * x
/(x::AbstractQuantity, y::AbstractQuantity) = Quantity(/(x.val, y.val), unit(x) / unit(y))
/(x::AbstractQuantity, y::Number) = Quantity(/(x.val, y), unit(x) / unit(y))
/(x::Number, y::AbstractQuantity) = Quantity(/(x, y.val), unit(x) / unit(y))
//(x::AbstractQuantity, y::AbstractQuantity) = Quantity(//(x.val, y.val), unit(x) / unit(y))
//(x::AbstractQuantity, y::Number) = Quantity(//(x.val, y), unit(x) // unit(y))
//(x::Number, y::AbstractQuantity) = Quantity(//(x, y.val), unit(x) / unit(y))
# ambiguity resolution
//(x::AbstractQuantity, y::Complex) = Quantity(//(x.val, y), unit(x))
for f in (:fld, :cld)
@eval begin
function ($f)(x::AbstractQuantity, y::AbstractQuantity)
z = uconvert(unit(y), x) # TODO: use promote?
($f)(z.val,y.val)
end
($f)(x::Number, y::AbstractQuantity) = Quantity(($f)(x, ustrip(y)), unit(x) / unit(y))
($f)(x::AbstractQuantity, y::Number) = Quantity(($f)(ustrip(x), y), unit(x))
end
end
function div(x::AbstractQuantity, y::AbstractQuantity, r...)
z = uconvert(unit(y), x) # TODO: use promote?
div(z.val,y.val, r...)
end
function div(x::Number, y::AbstractQuantity, r...)
Quantity(div(x, ustrip(y), r...), unit(x) / unit(y))
end
function div(x::AbstractQuantity, y::Number, r...)
Quantity(div(ustrip(x), y, r...), unit(x))
end
for f in (:mod, :rem)
@eval function ($f)(x::AbstractQuantity, y::AbstractQuantity)
z = uconvert(unit(y), x) # TODO: use promote?
Quantity(($f)(z.val,y.val), unit(y))
end
end
_affineerror(f, args...) =
throw(AffineError("an invalid operation was attempted with affine quantities: $f($(join(args, ", ")))"))
for f in (:div, :rem, :divrem)
for r = (RoundNearest, RoundNearestTiesAway, RoundNearestTiesUp,
RoundToZero, RoundUp, RoundDown)
@eval begin
$f(x::AffineQuantity, y::AffineQuantity, ::typeof($r)) = _affineerror($f, x, y, $r)
$f(x::AffineQuantity, y::AbstractQuantity, ::typeof($r)) = _affineerror($f, x, y, $r)
$f(x::AbstractQuantity, y::AffineQuantity, ::typeof($r)) = _affineerror($f, x, y, $r)
end
end
end
for f = (:div, :cld, :fld, :rem, :mod)
@eval begin
$f(x::AffineQuantity, y::AffineQuantity) = _affineerror($f, x, y)
$f(x::AffineQuantity, y::AbstractQuantity) = _affineerror($f, x, y)
$f(x::AbstractQuantity, y::AffineQuantity) = _affineerror($f, x, y)
end
end
Base.mod2pi(x::DimensionlessQuantity) = mod2pi(uconvert(NoUnits, x))
Base.mod2pi(x::AbstractQuantity{S, NoDims, <:Units{(Unitful.Unit{:Degree, NoDims}(0, 1//1),),
NoDims}}) where S = mod(x, 360°)
Base.modf(x::DimensionlessQuantity) = modf(uconvert(NoUnits, x))
# Addition / subtraction
for op in [:+, :-]
@eval ($op)(x::AbstractQuantity{S,D,U}, y::AbstractQuantity{T,D,U}) where {S,T,D,U} =
Quantity(($op)(x.val, y.val), U())
@eval function ($op)(x::AbstractQuantity{S,D,SU}, y::AbstractQuantity{T,D,TU}) where {S,T,D,SU,TU}
($op)(promote(x,y)...)
end
@eval ($op)(x::AbstractQuantity, y::AbstractQuantity) = throw(DimensionError(x,y))
@eval ($op)(x::AbstractQuantity) = Quantity(($op)(x.val), unit(x))
end
function +(x::AffineQuantity{S,D}, y::AbstractQuantity{T,D}) where {S,T,D}
pu = promote_unit(unit(x), unit(y)) # units for the final result.
# Get x on an absolute scale. FreeUnits in the line below prevents
# promote(x′, y) from yielding affine quantities. If x had `ContextUnits` and
# the promotion units were affine units, x′+y would error without this.
x′ = Quantity(x.val - affinetranslation(unit(x)), FreeUnits(absoluteunit(x)))
# Likewise if y were not affine but y had ContextUnits and the promotion units were
# affine, x′+y could also fail.
y′ = Quantity(y.val, FreeUnits(unit(y)))
return uconvert(pu, x′+y′) # we get back the promotion context in the end
end
+(x::AbstractQuantity, y::AffineQuantity) = +(y,x)
# Disallow addition of affine quantities
+(x::AffineQuantity, y::AffineQuantity) = throw(AffineError(
"an invalid operation was attempted with affine quantities: $x + $y"))
# Specialize subtraction of affine quantities
-(x::AffineQuantity, y::AffineQuantity) = -(promote(x,y)...)
function -(x::T, y::T) where T <: AffineQuantity
return Quantity(x.val - y.val, absoluteunit(unit(x)))
end
# Disallow subtracting an affine quantity from a quantity
-(x::AbstractQuantity, y::AffineQuantity) =
throw(AffineError("an invalid operation was attempted with affine quantities: $x - $y"))
# Needed until LU factorization is made to work with unitful numbers
function inv(x::StridedMatrix{T}) where {T <: AbstractQuantity}
m = inv(ustrip(x))
iq = eltype(m)
reinterpret(Quantity{iq, inv(dimension(T)), typeof(inv(unit(T)))}, m)
end
# Other mathematical functions
# `fma` and `muladd`
# The idea here is that if the numeric backing types are not the same, they
# will be promoted to be the same by the generic `fma(::Number, ::Number, ::Number)`
# method. We then catch the possible results and handle the units logic with one
# performant method.
for (_x,_y) in [(:fma, :_fma), (:muladd, :_muladd)]
# Catch some signatures pre-promotion
@eval @inline ($_x)(x::Number, y::AbstractQuantity, z::AbstractQuantity) = ($_y)(x,y,z)
@eval @inline ($_x)(x::AbstractQuantity, y::Number, z::AbstractQuantity) = ($_y)(x,y,z)
# Post-promotion
@eval @inline ($_x)(x::AbstractQuantity, y::AbstractQuantity, z::AbstractQuantity) = ($_y)(x,y,z)
# It seems like most of this is optimized out by the compiler, including the
# apparent runtime check of dimensions, which does not appear in @code_llvm.
@eval @inline function ($_y)(x,y,z)
dimension(x) * dimension(y) != dimension(z) && throw(DimensionError(x*y,z))
uI = unit(x)*unit(y)
uF = promote_unit(uI, unit(z))
c = ($_x)(ustrip(x), ustrip(y), ustrip(uconvert(uI, z)))
uconvert(uF, Quantity(c, uI))
end
end
sqrt(x::AbstractQuantity) = Quantity(sqrt(x.val), sqrt(unit(x)))
cbrt(x::AbstractQuantity) = Quantity(cbrt(x.val), cbrt(unit(x)))
for _y in (:sin, :cos, :tan, :asin, :acos, :atan, :sinh, :cosh, :tanh, :asinh, :acosh, :atanh,
:sinpi, :cospi, :tanpi, :sinc, :cosc, :cis, :cispi, :sincospi)
if isdefined(Base, _y)
@eval Base.$(_y)(x::DimensionlessQuantity) = Base.$(_y)(uconvert(NoUnits, x))
end
end
atan(y::AbstractQuantity{T1,D,U1}, x::AbstractQuantity{T2,D,U2}) where {T1,T2,D,U1,U2} =
atan(promote(y,x)...)
atan(y::AbstractQuantity{T,D,U}, x::AbstractQuantity{T,D,U}) where {T,D,U} = atan(y.val,x.val)
atan(y::AbstractQuantity, x::AbstractQuantity) = throw(DimensionError(x,y))
abs(x::AbstractQuantity) = Quantity(abs(x.val), unit(x))
abs2(x::AbstractQuantity) = Quantity(abs2(x.val), unit(x)*unit(x))
angle(x::AbstractQuantity{<:Complex}) = angle(x.val)
copysign(x::AbstractQuantity, y::Number) = Quantity(copysign(x.val,y/unit(y)), unit(x))
copysign(x::Number, y::AbstractQuantity) = copysign(x,y/unit(y))
copysign(x::AbstractQuantity, y::AbstractQuantity) = Quantity(copysign(x.val,y/unit(y)), unit(x))
flipsign(x::AbstractQuantity, y::Number) = Quantity(flipsign(x.val,y/unit(y)), unit(x))
flipsign(x::Number, y::AbstractQuantity) = flipsign(x,y/unit(y))
flipsign(x::AbstractQuantity, y::AbstractQuantity) = Quantity(flipsign(x.val,y/unit(y)), unit(x))
for (i,j) in zip((:<, :<=, :isless), (:_lt, :_le, :_isless))
@eval ($i)(x::AbstractQuantity, y::AbstractQuantity) = ($j)(x,y)
@eval ($i)(x::AbstractQuantity, y::Number) = ($i)(promote(x,y)...)
@eval ($i)(x::Number, y::AbstractQuantity) = ($i)(promote(x,y)...)
# promotion might not yield Quantity types
@eval @inline ($j)(x::AbstractQuantity{T1}, y::AbstractQuantity{T2}) where {T1,T2} = ($i)(promote(x,y)...)
# If it does yield Quantity types, we'll get back here,
# since at least the numeric part can be promoted.
@eval @inline ($j)(x::AbstractQuantity{T,D,U}, y::AbstractQuantity{T,D,U}) where {T,D,U} = ($i)(x.val,y.val)
@eval @inline ($j)(x::AbstractQuantity{T,D,U1}, y::AbstractQuantity{T,D,U2}) where {T,D,U1,U2} = ($i)(promote(x,y)...)
@eval @inline ($j)(x::AbstractQuantity{T,D1,U1}, y::AbstractQuantity{T,D2,U2}) where {T,D1,D2,U1,U2} = throw(DimensionError(x,y))
end
Base.rtoldefault(::Type{<:AbstractQuantity{T,D,U}}) where {T,D,U} = Base.rtoldefault(T)
function isapprox(
x::AbstractQuantity{T,D,U},
y::AbstractQuantity{T,D,U};
atol = zero(Quantity{real(T),D,U}),
kwargs...,
) where {T,D,U}
return isapprox(x.val, y.val; atol=ustrip(unit(y), atol), kwargs...)
end
function isapprox(x::AbstractQuantity, y::AbstractQuantity; kwargs...)
dimension(x) != dimension(y) && return false
return isapprox(promote(x,y)...; kwargs...)
end
isapprox(x::AbstractQuantity, y::Number; kwargs...) = isapprox(promote(x,y)...; kwargs...)
isapprox(x::Number, y::AbstractQuantity; kwargs...) = isapprox(y, x; kwargs...)
function isapprox(
x::AbstractArray{<:AbstractQuantity{T1,D,U1}},
y::AbstractArray{<:AbstractQuantity{T2,D,U2}};
atol=zero(Quantity{real(T1),D,U1}),
rtol::Real=Base.rtoldefault(T1,T2,atol>zero(atol)),
nans::Bool=false,
norm::Function=norm,
) where {T1,D,U1,T2,U2}
d = norm(x - y)
if isfinite(d)
return iszero(rtol) ? d <= atol : d <= max(atol, rtol*max(norm(x), norm(y)))
else
# Fall back to a component-wise approximate comparison
return all(ab -> isapprox(ab[1], ab[2]; rtol=rtol, atol=atol, nans=nans), zip(x, y))
end
end
isapprox(x::AbstractArray{S}, y::AbstractArray{T};
kwargs...) where {S <: AbstractQuantity,T <: AbstractQuantity} = false
function isapprox(x::AbstractArray{S}, y::AbstractArray{N};
kwargs...) where {S <: AbstractQuantity,N <: Number}
if dimension(N) == dimension(S)
isapprox(map(x->uconvert(NoUnits,x),x),y; kwargs...)
else
false
end
end
isapprox(y::AbstractArray{N}, x::AbstractArray{S};
kwargs...) where {S <: AbstractQuantity,N <: Number} = isapprox(x,y; kwargs...)
for cmp in [:(==), :isequal]
@eval $cmp(x::AbstractQuantity{S,D,U}, y::AbstractQuantity{T,D,U}) where {S,T,D,U} = $cmp(x.val, y.val)
@eval function $cmp(x::AbstractQuantity, y::AbstractQuantity)
dimension(x) != dimension(y) && return false
$cmp(promote(x,y)...)
end
@eval function $cmp(x::AbstractQuantity, y::Number)
$cmp(promote(x,y)...)
end
@eval $cmp(x::Number, y::AbstractQuantity) = $cmp(y,x)
end
_dimerr(f) = error("$f can only be well-defined for dimensionless ",
"numbers. For dimensionful numbers, different input units yield physically ",
"different results.")
isinteger(x::AbstractQuantity) = _dimerr(isinteger)
isinteger(x::DimensionlessQuantity) = isinteger(uconvert(NoUnits, x))
_rounderr() = error("specify the type of the quantity to convert to ",
"when rounding quantities. Example: round(typeof(1u\"m\"), 137u\"cm\").")
# convenience methods
round(u::Units, q::AbstractQuantity, r::RoundingMode=RoundNearest; kwargs...) =
Quantity(round(ustrip(u, q), r; kwargs...), u)
round(::Type{T}, u::Units, q::AbstractQuantity, r::RoundingMode=RoundNearest;
kwargs...) where {T<:Number} =
round(Quantity{T, dimension(u), typeof(u)}, q, r; kwargs...)
# workhorse methods
round(x::AbstractQuantity, r::RoundingMode=RoundNearest; kwargs...) =
_rounderr()
round(x::DimensionlessQuantity; kwargs...) = round(uconvert(NoUnits, x); kwargs...)
round(x::DimensionlessQuantity, r::RoundingMode; kwargs...) =
round(uconvert(NoUnits, x), r; kwargs...)
round(::Type{T}, x::AbstractQuantity, r::RoundingMode=RoundNearest;
kwargs...) where {T<:Number} = _dimerr(:round)
round(::Type{T}, x::DimensionlessQuantity, r::RoundingMode=RoundNearest;
kwargs...) where {T<:Number} = round(T, uconvert(NoUnits, x), r; kwargs...)
function round(::Type{T}, x::AbstractQuantity;
kwargs...) where {S, T <: Quantity{S}}
u = unit(T)
unitless = ustrip(u, x)
return Quantity{S, dimension(T), typeof(u)}(round(unitless; kwargs...))
end
function round(::Type{T}, x::AbstractQuantity, r::RoundingMode;
kwargs...) where {S, T <: Quantity{S}}
u = unit(T)
unitless = ustrip(u, x)
return Quantity{S, dimension(T), typeof(u)}(round(unitless, r; kwargs...))
end
round(::Type{T}, x::DimensionlessQuantity; kwargs...) where {S, T <: Quantity{S}} =
invoke(round, Tuple{Type{T},AbstractQuantity}, T, x; kwargs...) # for ambiguity resolution
round(::Type{T}, x::DimensionlessQuantity, r::RoundingMode; kwargs...) where {S, T <: Quantity{S}} =
invoke(round, Tuple{Type{T},AbstractQuantity,RoundingMode}, T, x, r; kwargs...) # for ambiguity resolution
# that should actually be fixed in Base ↓
for (f,r) = ((:trunc, :RoundToZero), (:floor, :RoundDown), (:ceil, :RoundUp))
@eval $f(x::AbstractQuantity; kwargs...) = round(x, $r; kwargs...)
@eval $f(::Type{T}, x::AbstractQuantity; kwargs...) where {T<:Number} =
round(T, x, $r; kwargs...)
@eval $f(u::Units, x::AbstractQuantity; kwargs...) = round(u, x, $r; kwargs...)
end
zero(x::AbstractQuantity) = Quantity(zero(x.val), unit(x))
zero(x::AffineQuantity) = Quantity(zero(x.val), absoluteunit(x))
zero(x::Type{<:AbstractQuantity{T}}) where {T} = throw(ArgumentError("zero($x) not defined."))
zero(x::Type{<:AbstractQuantity{T,D}}) where {T,D} = zero(T) * upreferred(D)
zero(x::Type{<:AbstractQuantity{T,D,U}}) where {T,D,U<:ScalarUnits} = zero(T)*U()
zero(x::Type{<:AbstractQuantity{T,D,U}}) where {T,D,U<:AffineUnits} = zero(T)*absoluteunit(U())
function zero(x::AbstractArray{T}) where T<:AbstractQuantity
if isconcretetype(T)
z = zero(T)
fill!(similar(x, typeof(z)), z)
else
dest = similar(x)
for i = eachindex(x)
if isassigned(x, i...)
dest[i] = zero(x[i])
else
dest[i] = zero(T)
end
end
dest
end
end
@static if VERSION < v"1.8.0-DEV.107"
function zero(x::AbstractArray{Union{T,Missing}}) where T<:AbstractQuantity # only matches _concrete_ T ...
@assert isconcretetype(T) # ... but check anyway
z = zero(T)
fill!(similar(x, typeof(z)), z)
end
end
one(x::AbstractQuantity) = one(x.val)
one(x::AffineQuantity) =
throw(AffineError("no multiplicative identity for affine quantity $x."))
oneunit(x::AffineQuantity) = Quantity(one(x.val), absoluteunit(x))
oneunit(x::Type{<:AbstractQuantity{T,D,U}}) where {T,D,U<:AffineUnits} = Quantity(one(T), absoluteunit(U()))
get_T(::Type{<:AbstractQuantity{T}}) where T = T
get_T(::Type{<:AbstractQuantity{T,D}}) where {T,D} = T
get_T(::Type{<:AbstractQuantity{T,D,U}}) where {T,D,U} = T
one(x::Type{<:AbstractQuantity}) = one(get_T(x))
one(x::Type{<:AffineQuantity}) =
throw(AffineError("no multiplicative identity for affine quantity type $x."))
isreal(x::AbstractQuantity) = isreal(x.val)
isfinite(x::AbstractQuantity) = isfinite(x.val)
isinf(x::AbstractQuantity) = isinf(x.val)
isnan(x::AbstractQuantity) = isnan(x.val)
@static if VERSION ≥ v"1.7.0-DEV.119"
isunordered(x::AbstractQuantity) = isunordered(x.val)
end
eps(x::T) where {T<:AbstractQuantity} = T(eps(x.val))
eps(x::Type{T}) where {T<:AbstractQuantity} = eps(Unitful.numtype(T))
unsigned(x::AbstractQuantity) = Quantity(unsigned(x.val), unit(x))
for f in (:exp, :exp10, :exp2, :expm1, :log, :log10, :log1p, :log2)
@eval ($f)(x::DimensionlessQuantity) = ($f)(uconvert(NoUnits, x))
end
real(x::AbstractQuantity) = Quantity(real(x.val), unit(x))
imag(x::AbstractQuantity) = Quantity(imag(x.val), unit(x))
conj(x::AbstractQuantity) = Quantity(conj(x.val), unit(x))
@inline norm(x::AbstractQuantity, p::Real=2) = Quantity(norm(x.val, p), unit(x))
"""
sign(x::AbstractQuantity)
Returns the sign of `x`.
"""
sign(x::AbstractQuantity) = sign(x.val)
"""
signbit(x::AbstractQuantity)
Returns the sign bit of the underlying numeric value of `x`.
"""
signbit(x::AbstractQuantity) = signbit(x.val)
prevfloat(x::AbstractQuantity{T}, d::Integer) where {T <: AbstractFloat} = Quantity(prevfloat(x.val, d), unit(x))
prevfloat(x::AbstractQuantity{T}) where {T <: AbstractFloat} = prevfloat(x, 1)
nextfloat(x::AbstractQuantity{T}, d::Integer) where {T <: AbstractFloat} = Quantity(nextfloat(x.val, d), unit(x))
nextfloat(x::AbstractQuantity{T}) where {T <: AbstractFloat} = nextfloat(x, 1)
function frexp(x::AbstractQuantity{T}) where {T <: AbstractFloat}
a,b = frexp(x.val)
a*unit(x), b
end
for f in (:float, :BigFloat, :Float64, :Float32, :Float16)
@eval begin
"""
$($f)(x::AbstractQuantity)
Convert the numeric backing type of `x` to a floating-point representation.
Returns a `Quantity` with the same units.
"""
(Base.$f)(x::AbstractQuantity) = Quantity($f(x.val), unit(x))
end
end
"""
Integer(x::AbstractQuantity)
Convert the numeric backing type of `x` to an integer representation.
Returns a `Quantity` with the same units.
"""
Integer(x::AbstractQuantity) = Quantity(Integer(x.val), unit(x))
"""
Rational(x::AbstractQuantity)
Convert the numeric backing type of `x` to a rational number representation.
Returns a `Quantity` with the same units.
"""
Rational(x::AbstractQuantity) = Quantity(Rational(x.val), unit(x))
Base.hastypemax(::Type{<:AbstractQuantity{T}}) where {T} = Base.hastypemax(T)
typemin(::Type{<:AbstractQuantity{T,D,U}}) where {T,D,U} = typemin(T)*U()
typemin(x::AbstractQuantity{T}) where {T} = typemin(T)*unit(x)
typemax(::Type{<:AbstractQuantity{T,D,U}}) where {T,D,U} = typemax(T)*U()
typemax(x::AbstractQuantity{T}) where {T} = typemax(T)*unit(x)
Base.literal_pow(::typeof(^), x::AbstractQuantity, ::Val{v}) where {v} =
Quantity(Base.literal_pow(^, x.val, Val(v)),
Base.literal_pow(^, unit(x), Val(v)))
# All of these are needed for ambiguity resolution
^(x::AbstractQuantity, y::Integer) = Quantity((x.val)^y, unit(x)^y)
@static if VERSION ≥ v"1.8.0-DEV.501"
Base.@constprop(:aggressive, ^(x::AbstractQuantity, y::Rational) = Quantity((x.val)^y, unit(x)^y))
else
^(x::AbstractQuantity, y::Rational) = Quantity((x.val)^y, unit(x)^y)
end
^(x::AbstractQuantity, y::Real) = Quantity((x.val)^y, unit(x)^y)
Base.rand(r::Random.AbstractRNG, ::Random.SamplerType{<:AbstractQuantity{T,D,U}}) where {T,D,U} =
rand(r, T) * U()
Base.ones(Q::Type{<:AbstractQuantity}, dims::NTuple{N,Integer}) where {N} =
fill!(Array{Q,N}(undef, map(Base.to_dim, dims)), oneunit(Q))
Base.ones(Q::Type{<:AbstractQuantity}, dims::Tuple{}) = fill!(Array{Q}(undef), oneunit(Q))
Base.ones(a::AbstractArray, Q::Type{<:AbstractQuantity}) = fill!(similar(a,Q), oneunit(Q))