diff --git a/fluid/object_detection/train.py b/fluid/object_detection/train.py index 9d2dbadccf..ed826a8eeb 100644 --- a/fluid/object_detection/train.py +++ b/fluid/object_detection/train.py @@ -1,13 +1,24 @@ import paddle.v2 as paddle import paddle.fluid as fluid -import os import reader -import numpy as np import load_model as load_model from mobilenet_ssd import mobile_net +from utility import add_arguments, print_arguments +import os +import numpy as np +import argparse +import functools + +parser = argparse.ArgumentParser(description=__doc__) +add_arg = functools.partial(add_arguments, argparser=parser) +# yapf: disable +add_arg('parallel', bool, True, "Whether use parallel training.") +add_arg('use_gpu', bool, True, "Whether use GPU.") +# yapf: disable -def train(train_file_list, +def train(args, + train_file_list, val_file_list, data_args, learning_rate, @@ -25,16 +36,37 @@ def train(train_file_list, difficult = fluid.layers.data( name='gt_difficult', shape=[1], dtype='int32', lod_level=1) - mbox_locs, mbox_confs, box, box_var = mobile_net(image, image_shape) - nmsed_out = fluid.layers.detection_output( - mbox_locs, mbox_confs, box, box_var, nms_threshold=0.45) - loss_vec = fluid.layers.ssd_loss(mbox_locs, mbox_confs, gt_box, gt_label, + if args.parallel: + places = fluid.layers.get_places() + pd = fluid.layers.ParallelDo(places) + with pd.do(): + image_ = pd.read_input(image) + gt_box_ = pd.read_input(gt_box) + gt_label_ = pd.read_input(gt_label) + difficult_ = pd.read_input(difficult) + locs, confs, box, box_var = mobile_net(image_, image_shape) + loss = fluid.layers.ssd_loss(locs, confs, gt_box_, gt_label_, + box, box_var) + pd.write_output(loss) + pd.write_output(locs) + pd.write_output(confs) + pd.write_output(box) + pd.write_output(box_var) + + loss, locs, confs, box, box_var = pd() + loss = fluid.layers.reduce_sum(loss) + else: + locs, confs, box, box_var = mobile_net(image, image_shape) + nmsed_out = fluid.layers.detection_output( + locs, mbox_confs, box, box_var, nms_threshold=0.45) + loss = fluid.layers.ssd_loss(locs, mbox_confs, gt_box, gt_label, box, box_var) - loss = fluid.layers.nn.reduce_sum(loss_vec) + loss = fluid.layers.reduce_sum(loss) - map_eval = None test_program = fluid.default_main_program().clone(for_test=True) with fluid.program_guard(test_program): + nmsed_out = fluid.layers.detection_output( + locs, confs, box, box_var, nms_threshold=0.45) map_eval = fluid.evaluator.DetectionMAP( nmsed_out, gt_label, @@ -56,7 +88,7 @@ def train(train_file_list, optimizer.minimize(loss) - place = fluid.CUDAPlace(0) + place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) @@ -97,16 +129,18 @@ def test(pass_id): if __name__ == '__main__': + args = parser.parse_args() + print_arguments(args) data_args = reader.Settings( data_dir='./data', label_file='label_list', resize_h=300, resize_w=300, mean_value=[127.5, 127.5, 127.5]) - train( - train_file_list='./data/trainval.txt', - val_file_list='./data/test.txt', - data_args=data_args, - learning_rate=0.001, - batch_size=32, - num_passes=300) + train(args, + train_file_list='./data/trainval.txt', + val_file_list='./data/test.txt', + data_args=data_args, + learning_rate=0.001, + batch_size=32, + num_passes=300) diff --git a/fluid/object_detection/utility.py b/fluid/object_detection/utility.py new file mode 100644 index 0000000000..506e6007ce --- /dev/null +++ b/fluid/object_detection/utility.py @@ -0,0 +1,62 @@ +"""Contains common utility functions.""" +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. +# +#Licensed under the Apache License, Version 2.0 (the "License"); +#you may not use this file except in compliance with the License. +#You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +#Unless required by applicable law or agreed to in writing, software +#distributed under the License is distributed on an "AS IS" BASIS, +#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +#See the License for the specific language governing permissions and +#limitations under the License. + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function +import distutils.util +import numpy as np +from paddle.fluid import core + + +def print_arguments(args): + """Print argparse's arguments. + + Usage: + + .. code-block:: python + + parser = argparse.ArgumentParser() + parser.add_argument("name", default="Jonh", type=str, help="User name.") + args = parser.parse_args() + print_arguments(args) + + :param args: Input argparse.Namespace for printing. + :type args: argparse.Namespace + """ + print("----------- Configuration Arguments -----------") + for arg, value in sorted(vars(args).iteritems()): + print("%s: %s" % (arg, value)) + print("------------------------------------------------") + + +def add_arguments(argname, type, default, help, argparser, **kwargs): + """Add argparse's argument. + + Usage: + + .. code-block:: python + + parser = argparse.ArgumentParser() + add_argument("name", str, "Jonh", "User name.", parser) + args = parser.parse_args() + """ + type = distutils.util.strtobool if type == bool else type + argparser.add_argument( + "--" + argname, + default=default, + type=type, + help=help + ' Default: %(default)s.', + **kwargs)